ppsspp/Core/HLE/sceSas.cpp
2012-11-01 16:19:01 +01:00

429 lines
11 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
// SAS is a software mixing engine that runs on the Media Engine CPU. We just HLE it.
// This is a very rough implementation that needs lots of work.
//
// JPCSP is, as it often is, a pretty good reference although I didn't actually use it much yet:
// http://code.google.com/p/jpcsp/source/browse/trunk/src/jpcsp/HLE/modules150/sceSasCore.java
#include "base/basictypes.h"
#include "HLE.h"
#include "../MIPS/MIPS.h"
#include "sceSas.h"
#include "sceKernel.h"
static const double f[5][2] =
{ { 0.0, 0.0 },
{ 60.0 / 64.0, 0.0 },
{ 115.0 / 64.0, -52.0 / 64.0 },
{ 98.0 / 64.0, -55.0 / 64.0 },
{ 122.0 / 64.0, -60.0 / 64.0 } };
// VAG is a Sony ADPCM audio compression format, which goes all the way back to the PSX.
// It compresses 28 16-bit samples into a block of 16 bytes.
// TODO: Get rid of the doubles, making sure it does not impact sound quality.
// Doubles are pretty fast on Android devices these days though.
class VagDecoder
{
public:
void Start(u8 *data)
{
data_ = data;
curSample = 28;
s_1 = 0.0; // per block?
s_2 = 0.0;
}
int GetSample()
{
if (end_)
return 0;
if (curSample == 28)
Decode();
if (end_)
return 0;
return samples[curSample++];
}
bool Decode();
bool End() const { return end_; }
u8 GetByte() {
return *data_++;
}
private:
double samples[28];
int curSample;
u8 *data_;
// rolling state. start at 0, should probably reset to 0 on loops?
double s_1;
double s_2;
bool end_;
};
bool VagDecoder::Decode()
{
int predict_nr = GetByte();
int shift_factor = predict_nr & 0xf;
predict_nr >>= 4;
int flags = GetByte();
if (flags == 7)
{
end_ = true;
return false;
}
for (int i = 0; i < 28; i += 2)
{
int d = GetByte();
int s = (d & 0xf) << 12;
if (s & 0x8000)
s |= 0xffff0000;
samples[i] = (double)(s >> shift_factor);
s = (d & 0xf0) << 8;
if (s & 0x8000)
s |= 0xffff0000;
samples[i + 1] = (double)(s >> shift_factor);
}
for (int i = 0; i < 28; i++)
{
samples[i] = samples[i] + s_1 * f[predict_nr][0] + s_2 * f[predict_nr][1];
s_2 = s_1;
s_1 = samples[i];
}
curSample = 0;
return true;
}
// A SAS voice.
// TODO: Look into pre-decoding the VAG samples on SetVoice instead of decoding them on the fly.
// It's not very likely that games encode VAG dynamically.
struct Voice
{
u32 vagAddr;
int samplePos;
int size;
int loop;
int volumeLeft;
int volumeRight;
int volumeLeftSend; // volume to "Send" (audio-lingo) to the effects processing engine, like reverb
int volumeRightSend;
int pitch;
bool endFlag;
bool playing;
VagDecoder vag;
};
class SasInstance
{
public:
enum { NUM_VOICES = 32 };
Voice voices[NUM_VOICES];
int grainSize;
int maxVoices;
int sampleRate;
void mix(u32 outAddr);
};
// TODO - allow more than one, associating each with one Core pointer (passed in to all the functions)
// No known games use more than one instance of Sas though.
SasInstance sas;
// TODO: Make deterministic, by adding staging buffers that we pump out on a fixed CoreTiming-scheduled interval.
void SasInstance::mix(u32 outAddr)
{
s16 *out = (s16 *)Memory::GetPointer(outAddr);
// Don't need to memset, done by the caller.
for (int v = 0; v < NUM_VOICES; v++) // sas.maxVoices?
{
Voice &voice = sas.voices[v];
if (voice.playing)
{
for (int i = 0; i < grainSize; i++)
{
int sample = voice.vag.GetSample();
voice.samplePos++;
if (voice.samplePos >= voice.size || voice.vag.End())
{
voice.playing = false;
break;
}
int l = sample; int r = sample; //* (voice.volumeLeft >> 16), r = sample * (voice.volumeRight >> 16);
// TODO: should mix into a temporary 32-bit buffer and then clip down
out[i * 2] += l;
out[i * 2 + 1] += r;
}
}
}
}
u32 sceSasInit(u32 core, u32 grainSize, u32 maxVoices, u32 unknown, u32 sampleRate)
{
DEBUG_LOG(HLE,"0=sceSasInit()");
memset(&sas, 0, sizeof(sas));
sas.grainSize = grainSize;
sas.maxVoices = maxVoices;
sas.sampleRate = sampleRate;
for (int i = 0; i < 32; i++) {
sas.voices[i].playing = false;
}
return 0;
}
u32 sceSasGetEndFlag()
{
u32 endFlag = 0;
for (int i = 0; i < sas.maxVoices; i++) {
if (!sas.voices[i].playing)
endFlag |= 1 << i;
}
DEBUG_LOG(HLE,"%08x=sceSasGetEndFlag()", endFlag);
return endFlag;
}
// Runs the mixer
void _sceSasCore()
{
u32 outAddr = PARAM(1);
DEBUG_LOG(HLE,"0=sceSasCore(, %08x) (grain: %i samples)", outAddr, sas.grainSize);
memset(Memory::GetPointer(outAddr), 0, sas.grainSize * 2 * 2);
sas.mix(outAddr);
RETURN(0);
}
// Another way of running the mixer, what was the difference again?
void _sceSasCoreWithMix()
{
u32 outAddr = PARAM(1);
DEBUG_LOG(HLE,"0=sceSasCoreWithMix(, %08x)", outAddr);
sas.mix(outAddr);
RETURN(0);
}
void sceSasSetVoice()
{
u32 core = PARAM(0);
int voiceNum = PARAM(1);
u32 vagAddr = PARAM(2);
int size = PARAM(3);
int loop = PARAM(4);
DEBUG_LOG(HLE,"0=sceSasSetVoice(core=%08x, voicenum=%i, vag=%08x, size=%i, loop=%i)",
core, voiceNum, vagAddr, size, loop);
//Real VAG header is 0x30 bytes behind the vagAddr
Voice &v = sas.voices[voiceNum];
v.vagAddr = vagAddr;
v.size = size;
v.loop = loop;
v.playing = false;
RETURN(0);
}
void sceSasSetVolume()
{
u32 core = PARAM(0);
int voiceNum = PARAM(1);
int l = PARAM(2);
int r = PARAM(3);
int el = PARAM(4);
int er = PARAM(5);
DEBUG_LOG(HLE,"UNIMPL 0=sceSasSetVolume(core=%08x, voicenum=%i, l=%i, r=%i, el=%i, er=%i", core, voiceNum, l, r, el, er);
Voice &v = sas.voices[voiceNum];
v.volumeLeft = l;
v.volumeRight = r;
RETURN(0);
}
void sceSasSetPitch()
{
u32 core = PARAM(0);
int voiceNum = PARAM(1);
int pitch = PARAM(2);
Voice &v = sas.voices[voiceNum];
v.pitch = pitch;
DEBUG_LOG(HLE,"UNIMPL 0=sceSasSetPitch(core=%08x, voicenum=%i, pitch=%i)", core, voiceNum, pitch);
RETURN(0);
}
void sceSasSetKeyOn()
{
u32 core = PARAM(0);
int voiceNum = PARAM(1);
DEBUG_LOG(HLE,"0=sceSasSetKeyOff(core=%08x, voicenum=%i)", core, voiceNum);
Voice &v = sas.voices[voiceNum];
v.vag.Start(Memory::GetPointer(v.vagAddr));
v.playing = true;
RETURN(0);
}
// TODO: We really need ADSR work:
// sceSasSetKeyOff can be used to start sounds, that just sound during the Release phase!
void sceSasSetKeyOff()
{
u32 core = PARAM(0);
int voiceNum = PARAM(1);
DEBUG_LOG(HLE,"0=sceSasSetKeyOff(core=%08x, voicenum=%i)", core, voiceNum);
Voice &v = sas.voices[voiceNum];
v.playing = false; // not right! Should directly enter Release envelope stage instead!
RETURN(0);
}
void sceSasSetADSR()
{
u32 core = PARAM(0);
int voiceNum = PARAM(1);
int flag = PARAM(2);
int a = PARAM(3);
int d = PARAM(4);
int s = PARAM(5);
int r = PARAM(6); //??
DEBUG_LOG(HLE,"UNIMPL 0=sceSasSetADSR(core=%08x, voicenum=%i, flag=%i, a=%08x, d=%08x, s=%08x, r=%08x)",
core, voiceNum, flag, a,d,s,r);
RETURN(0);
}
void sceSasSetADSRMode()
{
u32 core = PARAM(0);
int voiceNum = PARAM(1);
int flag = PARAM(2);
int a = PARAM(3);
int d = PARAM(4);
int s = PARAM(5);
int r = PARAM(6); //??
DEBUG_LOG(HLE,"UNIMPL 0=sceSasSetADSRMode(core=%08x, voicenum=%i, flag=%i, a=%08x, d=%08x, s=%08x, r=%08x)",
core, voiceNum, flag, a,d,s,r);
RETURN(0);
}
// http://code.google.com/p/jpcsp/source/browse/trunk/src/jpcsp/HLE/modules150/sceSasCore.java
u32 sceSasSetSimpleADSR(u32 core, u32 voiceNum, u32 ADSREnv1, u32 ADSREnv2)
{
DEBUG_LOG(HLE,"UNIMPL 0=sasSetSimpleADSR(%08x, %i, %08x, %08x)", core, voiceNum, ADSREnv1, ADSREnv2);
ADSREnv1 &= 0xFFFF;
ADSREnv2 &= 0xFFFF;
//....
return 0;
}
u32 sceSasGetEnvelopeHeight(u32 core, u32 voiceNum)
{
// Spam reduction
if (voiceNum == 17)
{
DEBUG_LOG(HLE,"UNIMPL 0=sceSasGetEnvelopeHeight(core=%08x, voicenum=%i)", core, voiceNum);
}
Voice &v = sas.voices[voiceNum];
return v.playing ? 0x3fffffff : 0;
}
void sceSasRevType()
{
u32 core = PARAM(0);
int type = PARAM(1);
DEBUG_LOG(HLE,"UNIMPL 0=sceSasRevType(core=%08x, type=%i)", core, type);
RETURN(0);
}
void sceSasRevParam()
{
u32 core = PARAM(0);
int param1 = PARAM(1);
int param2 = PARAM(2);
DEBUG_LOG(HLE,"UNIMPL 0=sceSasRevParam(core=%08x, param1=%i, param2=%i)", core, param1, param2);
RETURN(0);
}
void sceSasRevEVOL()
{
u32 core = PARAM(0);
int param1 = PARAM(1);
int param2 = PARAM(2);
DEBUG_LOG(HLE,"UNIMPL 0=sceSasRevEVOL(core=%08x, param1=%i, param2=%i)", core, param1, param2);
RETURN(0);
}
void sceSasRevVON()
{
u32 core = PARAM(0);
int param1 = PARAM(1);
int param2 = PARAM(2);
DEBUG_LOG(HLE,"UNIMPL 0=sceSasRevEVOL(core=%08x, param1=%i, param2=%i)", core, param1, param2);
RETURN(0);
}
void sceSasGetOutputMode()
{
u32 core = PARAM(0);
int param1 = PARAM(1);
int param2 = PARAM(2);
DEBUG_LOG(HLE,"UNIMPL 0=sceSasGetOutputMode(core=%08x, param1=%i, param2=%i)", core, param1, param2);
RETURN(0);
}
const HLEFunction sceSasCore[] =
{
{0x42778a9f, WrapU_UUUUU<sceSasInit>, "__sceSasInit"}, // (SceUID * sasCore, int grain, int maxVoices, int outputMode, int sampleRate)
{0xa3589d81, _sceSasCore, "__sceSasCore"},
{0x50a14dfc, _sceSasCoreWithMix, "__sceSasCoreWithMix"}, // Process and mix into buffer (int sasCore, int sasInOut, int leftVolume, int rightVolume)
{0x68a46b95, WrapU_V<sceSasGetEndFlag>, "__sceSasGetEndFlag"}, // int sasCore
{0x440ca7d8, sceSasSetVolume, "__sceSasSetVolume"},
{0xad84d37f, sceSasSetPitch, "__sceSasSetPitch"},
{0x99944089, sceSasSetVoice, "__sceSasSetVoice"}, // (int sasCore, int voice, int vagAddr, int size, int loopmode)
{0xb7660a23, 0, "__sceSasSetNoise"},
{0x019b25eb, sceSasSetADSR, "__sceSasSetADSR"},
{0x9ec3676a, sceSasSetADSRMode, "__sceSasSetADSRmode"},
{0x5f9529f6, 0, "__sceSasSetSL"},
{0x74ae582a, WrapU_UU<sceSasGetEnvelopeHeight>, "__sceSasGetEnvelopeHeight"},
{0xcbcd4f79, WrapU_UUUU<sceSasSetSimpleADSR>, "__sceSasSetSimpleADSR"},
{0xa0cf2fa4, sceSasSetKeyOff, "__sceSasSetKeyOff"},
{0x76f01aca, sceSasSetKeyOn, "__sceSasSetKeyOn"}, // (int sasCore, int voice)
{0xf983b186, sceSasRevVON, "__sceSasRevVON"}, // int sasCore, int dry, int wet
{0xd5a229c9, sceSasRevEVOL, "__sceSasRevEVOL"}, // (int sasCore, int leftVol, int rightVol) // effect volume
{0x33d4ab37, sceSasRevType, "__sceSasRevType"}, // (int sasCore, int type)
{0x267a6dd2, sceSasRevParam, "__sceSasRevParam"}, // (int sasCore, int delay, int feedback)
{0x2c8e6ab3, 0, "__sceSasGetPauseFlag"}, // int sasCore
{0x787d04d5, 0, "__sceSasSetPause"},
{0xa232cbe6, 0, "__sceSasSetTriangularWave"}, // (int sasCore, int voice, int unknown)
{0xd5ebbbcd, 0, "__sceSasSetSteepWave"}, // (int sasCore, int voice, int unknown) // square wave?
{0xBD11B7C2, 0, "__sceSasGetGrain"},
{0xd1e0a01e, 0, "__sceSasSetGrain"},
{0xe175ef66, sceSasGetOutputMode, "__sceSasGetOutputmode"},
{0xe855bf76, 0, "__sceSasSetOutputmode"},
{0x07f58c24, 0, "__sceSasGetAllEnvelopeHeights"}, // (int sasCore, int heightAddr) 32-bit heights, 0-0x40000000
};
void Register_sceSasCore()
{
RegisterModule("sceSasCore", ARRAY_SIZE(sceSasCore), sceSasCore);
}