ppsspp/Common/x64Emitter.h

1067 lines
36 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#ifndef _DOLPHIN_INTEL_CODEGEN_
#define _DOLPHIN_INTEL_CODEGEN_
#include "Common.h"
#include "CodeBlock.h"
#if defined(_M_X64) && !defined(_ARCH_64)
#define _ARCH_64
#endif
#ifdef _ARCH_64
#define PTRBITS 64
#else
#define PTRBITS 32
#endif
namespace Gen
{
enum X64Reg
{
EAX = 0, EBX = 3, ECX = 1, EDX = 2,
ESI = 6, EDI = 7, EBP = 5, ESP = 4,
RAX = 0, RBX = 3, RCX = 1, RDX = 2,
RSI = 6, RDI = 7, RBP = 5, RSP = 4,
R8 = 8, R9 = 9, R10 = 10,R11 = 11,
R12 = 12,R13 = 13,R14 = 14,R15 = 15,
AL = 0, BL = 3, CL = 1, DL = 2,
SIL = 6, DIL = 7, BPL = 5, SPL = 4,
AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106,
AX = 0, BX = 3, CX = 1, DX = 2,
SI = 6, DI = 7, BP = 5, SP = 4,
XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15,
YMM0=0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15,
INVALID_REG = 0xFFFFFFFF
};
enum CCFlags
{
CC_O = 0,
CC_NO = 1,
CC_B = 2, CC_C = 2, CC_NAE = 2,
CC_NB = 3, CC_NC = 3, CC_AE = 3,
CC_Z = 4, CC_E = 4,
CC_NZ = 5, CC_NE = 5,
CC_BE = 6, CC_NA = 6,
CC_NBE = 7, CC_A = 7,
CC_S = 8,
CC_NS = 9,
CC_P = 0xA, CC_PE = 0xA,
CC_NP = 0xB, CC_PO = 0xB,
CC_L = 0xC, CC_NGE = 0xC,
CC_NL = 0xD, CC_GE = 0xD,
CC_LE = 0xE, CC_NG = 0xE,
CC_NLE = 0xF, CC_G = 0xF
};
enum
{
NUMGPRs = 16,
NUMXMMs = 16,
};
enum
{
SCALE_NONE = 0,
SCALE_1 = 1,
SCALE_2 = 2,
SCALE_4 = 4,
SCALE_8 = 8,
SCALE_ATREG = 16,
//SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
SCALE_NOBASE_2 = 34,
SCALE_NOBASE_4 = 36,
SCALE_NOBASE_8 = 40,
SCALE_RIP = 0xFF,
SCALE_IMM8 = 0xF0,
SCALE_IMM16 = 0xF1,
SCALE_IMM32 = 0xF2,
SCALE_IMM64 = 0xF3,
};
enum NormalOp {
nrmADD,
nrmADC,
nrmSUB,
nrmSBB,
nrmAND,
nrmOR ,
nrmXOR,
nrmMOV,
nrmTEST,
nrmCMP,
nrmXCHG,
};
enum {
CMP_EQ = 0,
CMP_LT = 1,
CMP_LE = 2,
CMP_UNORD = 3,
CMP_NEQ = 4,
CMP_NLT = 5,
CMP_NLE = 6,
CMP_ORD = 7,
};
enum FloatOp {
floatLD = 0,
floatST = 2,
floatSTP = 3,
floatLD80 = 5,
floatSTP80 = 7,
floatINVALID = -1,
};
enum FloatRound {
FROUND_NEAREST = 0,
FROUND_FLOOR = 1,
FROUND_CEIL = 2,
FROUND_ZERO = 3,
FROUND_MXCSR = 4,
FROUND_RAISE_PRECISION = 0,
FROUND_IGNORE_PRECISION = 8,
};
class XEmitter;
// RIP addressing does not benefit from micro op fusion on Core arch
struct OpArg
{
OpArg() {} // dummy op arg, used for storage
OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
{
operandReg = 0;
scale = (u8)_scale;
offsetOrBaseReg = (u16)rmReg;
indexReg = (u16)scaledReg;
//if scale == 0 never mind offsetting
offset = _offset;
}
bool operator==(const OpArg &b) const
{
return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg &&
indexReg == b.indexReg && offset == b.offset;
}
void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const;
void WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W = 0) const;
void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const;
void WriteFloatModRM(XEmitter *emit, FloatOp op);
void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
// This one is public - must be written to
u64 offset; // use RIP-relative as much as possible - 64-bit immediates are not available.
u16 operandReg;
void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
bool IsSimpleReg() const {return scale == SCALE_NONE;}
bool IsSimpleReg(X64Reg reg) const
{
if (!IsSimpleReg())
return false;
return GetSimpleReg() == reg;
}
bool CanDoOpWith(const OpArg &other) const
{
if (IsSimpleReg()) return true;
if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false;
return true;
}
int GetImmBits() const
{
switch (scale)
{
case SCALE_IMM8: return 8;
case SCALE_IMM16: return 16;
case SCALE_IMM32: return 32;
case SCALE_IMM64: return 64;
default: return -1;
}
}
void SetImmBits(int bits) {
switch (bits)
{
case 8: scale = SCALE_IMM8; break;
case 16: scale = SCALE_IMM16; break;
case 32: scale = SCALE_IMM32; break;
case 64: scale = SCALE_IMM64; break;
}
}
X64Reg GetSimpleReg() const
{
if (scale == SCALE_NONE)
return (X64Reg)offsetOrBaseReg;
else
return INVALID_REG;
}
u32 GetImmValue() const {
return (u32)offset;
}
// For loops.
void IncreaseOffset(int sz) {
offset += sz;
}
private:
u8 scale;
u16 offsetOrBaseReg;
u16 indexReg;
};
inline OpArg M(const void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);}
template <typename T>
inline OpArg M(const T *ptr) {return OpArg((u64)(const void *)ptr, (int)SCALE_RIP);}
inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);}
inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}
inline OpArg MDisp(X64Reg value, int offset)
{
return OpArg((u32)offset, SCALE_ATREG, value);
}
inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
{
return OpArg(offset, scale, base, scaled);
}
inline OpArg MScaled(X64Reg scaled, int scale, int offset)
{
if (scale == SCALE_1)
return OpArg(offset, SCALE_ATREG, scaled);
else
return OpArg(offset, scale | 0x20, RAX, scaled);
}
inline OpArg MRegSum(X64Reg base, X64Reg offset)
{
return MComplex(base, offset, 1, 0);
}
inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);}
inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);}
inline OpArg UImmAuto(u32 imm) {
return OpArg(imm, imm >= 128 ? SCALE_IMM32 : SCALE_IMM8);
}
inline OpArg SImmAuto(s32 imm) {
return OpArg(imm, (imm >= 128 || imm < -128) ? SCALE_IMM32 : SCALE_IMM8);
}
#ifdef _ARCH_64
inline OpArg ImmPtr(const void* imm) {return Imm64((u64)imm);}
#else
inline OpArg ImmPtr(const void* imm) {return Imm32((u32)imm);}
#endif
inline u32 PtrOffset(const void* ptr, const void* base)
{
#ifdef _ARCH_64
s64 distance = (s64)ptr-(s64)base;
if (distance >= 0x80000000LL ||
distance < -0x80000000LL)
{
_assert_msg_(DYNA_REC, 0, "pointer offset out of range");
return 0;
}
return (u32)distance;
#else
return (u32)ptr-(u32)base;
#endif
}
//usage: int a[]; ARRAY_OFFSET(a,10)
#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0]))
//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))
struct FixupBranch
{
u8 *ptr;
int type; //0 = 8bit 1 = 32bit
};
enum SSECompare
{
EQ = 0,
LT,
LE,
UNORD,
NEQ,
NLT,
NLE,
ORD,
};
typedef const u8* JumpTarget;
class XEmitter
{
friend struct OpArg; // for Write8 etc
private:
u8 *code;
bool flags_locked;
void CheckFlags();
void Rex(int w, int r, int x, int b);
void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
void WriteMulDivType(int bits, OpArg src, int ext);
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
void WriteShift(int bits, OpArg dest, OpArg &shift, int ext);
void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext);
void WriteMXCSR(OpArg arg, int ext);
void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg);
void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2);
void ABI_CalculateFrameSize(u32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
protected:
inline void Write8(u8 value) {*code++ = value;}
inline void Write16(u16 value) {*(u16*)code = (value); code += 2;}
inline void Write32(u32 value) {*(u32*)code = (value); code += 4;}
inline void Write64(u64 value) {*(u64*)code = (value); code += 8;}
public:
XEmitter() { code = nullptr; flags_locked = false; }
XEmitter(u8 *code_ptr) { code = code_ptr; flags_locked = false; }
virtual ~XEmitter() {}
void WriteModRM(int mod, int rm, int reg);
void WriteSIB(int scale, int index, int base);
void SetCodePtr(u8 *ptr);
void ReserveCodeSpace(int bytes);
const u8 *AlignCode4();
const u8 *AlignCode16();
const u8 *AlignCodePage();
const u8 *GetCodePtr() const;
u8 *GetWritableCodePtr();
void LockFlags() { flags_locked = true; }
void UnlockFlags() { flags_locked = false; }
// Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
// INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr.,
// INC and DEC are slow on Intel Core, but not on AMD. They create a
// false flag dependency because they only update a subset of the flags.
// XCHG is SLOW and should be avoided.
// Debug breakpoint
void INT3();
// Do nothing
void NOP(size_t count = 1);
// Save energy in wait-loops on P4 only. Probably not too useful.
void PAUSE();
// Flag control
void STC();
void CLC();
void CMC();
// These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD!
void LAHF(); // 3 cycle vector path
void SAHF(); // direct path fast
// Stack control
void PUSH(X64Reg reg);
void POP(X64Reg reg);
void PUSH(int bits, const OpArg &reg);
void POP(int bits, const OpArg &reg);
void PUSHF();
void POPF();
// Flow control
void RET();
void RET_FAST();
void UD2();
FixupBranch J(bool force5bytes = false);
void JMP(const u8 * addr, bool force5Bytes = false);
void JMP(OpArg arg);
void JMPptr(const OpArg &arg);
void JMPself(); //infinite loop!
#ifdef CALL
#undef CALL
#endif
void CALL(const void *fnptr);
void CALLptr(OpArg arg);
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
//void J_CC(CCFlags conditionCode, JumpTarget target);
void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false);
void SetJumpTarget(const FixupBranch &branch);
void SETcc(CCFlags flag, OpArg dest);
// Note: CMOV brings small if any benefit on current cpus.
void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
// Fences
void LFENCE();
void MFENCE();
void SFENCE();
// Bit scan
void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit
void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit
// Cache control
enum PrefetchLevel
{
PF_NTA, //Non-temporal (data used once and only once)
PF_T0, //All cache levels
PF_T1, //Levels 2+ (aliased to T0 on AMD)
PF_T2, //Levels 3+ (aliased to T0 on AMD)
};
void PREFETCH(PrefetchLevel level, OpArg arg);
void MOVNTI(int bits, OpArg dest, X64Reg src);
void MOVNTDQ(OpArg arg, X64Reg regOp);
void MOVNTPS(OpArg arg, X64Reg regOp);
void MOVNTPD(OpArg arg, X64Reg regOp);
// Multiplication / division
void MUL(int bits, OpArg src); //UNSIGNED
void IMUL(int bits, OpArg src); //SIGNED
void IMUL(int bits, X64Reg regOp, OpArg src);
void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm);
void DIV(int bits, OpArg src);
void IDIV(int bits, OpArg src);
// Shift
void ROL(int bits, OpArg dest, OpArg shift);
void ROR(int bits, OpArg dest, OpArg shift);
void RCL(int bits, OpArg dest, OpArg shift);
void RCR(int bits, OpArg dest, OpArg shift);
void SHL(int bits, OpArg dest, OpArg shift);
void SHR(int bits, OpArg dest, OpArg shift);
void SAR(int bits, OpArg dest, OpArg shift);
// Bit Test
void BT(int bits, OpArg dest, OpArg index);
void BTS(int bits, OpArg dest, OpArg index);
void BTR(int bits, OpArg dest, OpArg index);
void BTC(int bits, OpArg dest, OpArg index);
// Double-Precision Shift
void SHRD(int bits, OpArg dest, OpArg src, OpArg shift);
void SHLD(int bits, OpArg dest, OpArg src, OpArg shift);
// Extend EAX into EDX in various ways
void CWD(int bits = 16);
inline void CDQ() {CWD(32);}
inline void CQO() {CWD(64);}
void CBW(int bits = 8);
inline void CWDE() {CBW(16);}
inline void CDQE() {CBW(32);}
// Load effective address
void LEA(int bits, X64Reg dest, OpArg src);
// Integer arithmetic
void NEG (int bits, OpArg src);
void ADD (int bits, const OpArg &a1, const OpArg &a2);
void ADC (int bits, const OpArg &a1, const OpArg &a2);
void SUB (int bits, const OpArg &a1, const OpArg &a2);
void SBB (int bits, const OpArg &a1, const OpArg &a2);
void AND (int bits, const OpArg &a1, const OpArg &a2);
void CMP (int bits, const OpArg &a1, const OpArg &a2);
// Bit operations
void NOT (int bits, OpArg src);
void OR (int bits, const OpArg &a1, const OpArg &a2);
void XOR (int bits, const OpArg &a1, const OpArg &a2);
void MOV (int bits, const OpArg &a1, const OpArg &a2);
void TEST(int bits, const OpArg &a1, const OpArg &a2);
// Are these useful at all? Consider removing.
void XCHG(int bits, const OpArg &a1, const OpArg &a2);
void XCHG_AHAL();
// Byte swapping (32 and 64-bit only).
void BSWAP(int bits, X64Reg reg);
// Sign/zero extension
void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary
void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
// Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE.
void MOVBE(int dbits, const OpArg& dest, const OpArg& src);
// Available only on AMD >= Phenom or Intel >= Haswell
void LZCNT(int bits, X64Reg dest, OpArg src);
// Note: this one is actually part of BMI1
void TZCNT(int bits, X64Reg dest, OpArg src);
// WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
void STMXCSR(OpArg memloc);
void LDMXCSR(OpArg memloc);
// Prefixes
void LOCK();
void REP();
void REPNE();
void FSOverride();
void GSOverride();
// x87
enum x87StatusWordBits {
x87_InvalidOperation = 0x1,
x87_DenormalizedOperand = 0x2,
x87_DivisionByZero = 0x4,
x87_Overflow = 0x8,
x87_Underflow = 0x10,
x87_Precision = 0x20,
x87_StackFault = 0x40,
x87_ErrorSummary = 0x80,
x87_C0 = 0x100,
x87_C1 = 0x200,
x87_C2 = 0x400,
x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
x87_C3 = 0x4000,
x87_FPUBusy = 0x8000,
};
void FLD(int bits, OpArg src);
void FST(int bits, OpArg dest);
void FSTP(int bits, OpArg dest);
void FNSTSW_AX();
void FWAIT();
// SSE/SSE2: Floating point arithmetic
void ADDSS(X64Reg regOp, OpArg arg);
void ADDSD(X64Reg regOp, OpArg arg);
void SUBSS(X64Reg regOp, OpArg arg);
void SUBSD(X64Reg regOp, OpArg arg);
void MULSS(X64Reg regOp, OpArg arg);
void MULSD(X64Reg regOp, OpArg arg);
void DIVSS(X64Reg regOp, OpArg arg);
void DIVSD(X64Reg regOp, OpArg arg);
void MINSS(X64Reg regOp, OpArg arg);
void MINSD(X64Reg regOp, OpArg arg);
void MAXSS(X64Reg regOp, OpArg arg);
void MAXSD(X64Reg regOp, OpArg arg);
void SQRTSS(X64Reg regOp, OpArg arg);
void SQRTSD(X64Reg regOp, OpArg arg);
void RSQRTSS(X64Reg regOp, OpArg arg);
// SSE/SSE2: Floating point bitwise (yes)
void CMPSS(X64Reg regOp, OpArg arg, u8 compare);
void CMPSD(X64Reg regOp, OpArg arg, u8 compare);
inline void CMPEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_EQ); }
inline void CMPLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LT); }
inline void CMPLESS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LE); }
inline void CMPUNORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_UNORD); }
inline void CMPNEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NEQ); }
inline void CMPNLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NLT); }
inline void CMPORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_ORD); }
// SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
void ADDPS(X64Reg regOp, OpArg arg);
void ADDPD(X64Reg regOp, OpArg arg);
void SUBPS(X64Reg regOp, OpArg arg);
void SUBPD(X64Reg regOp, OpArg arg);
void CMPPS(X64Reg regOp, OpArg arg, u8 compare);
void CMPPD(X64Reg regOp, OpArg arg, u8 compare);
void MULPS(X64Reg regOp, OpArg arg);
void MULPD(X64Reg regOp, OpArg arg);
void DIVPS(X64Reg regOp, OpArg arg);
void DIVPD(X64Reg regOp, OpArg arg);
void MINPS(X64Reg regOp, OpArg arg);
void MINPD(X64Reg regOp, OpArg arg);
void MAXPS(X64Reg regOp, OpArg arg);
void MAXPD(X64Reg regOp, OpArg arg);
void SQRTPS(X64Reg regOp, OpArg arg);
void SQRTPD(X64Reg regOp, OpArg arg);
void RSQRTPS(X64Reg regOp, OpArg arg);
// SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
void ANDPS(X64Reg regOp, OpArg arg);
void ANDPD(X64Reg regOp, OpArg arg);
void ANDNPS(X64Reg regOp, OpArg arg);
void ANDNPD(X64Reg regOp, OpArg arg);
void ORPS(X64Reg regOp, OpArg arg);
void ORPD(X64Reg regOp, OpArg arg);
void XORPS(X64Reg regOp, OpArg arg);
void XORPD(X64Reg regOp, OpArg arg);
// SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle);
void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle);
// SSE/SSE2: Useful alternative to shuffle in some cases.
void MOVDDUP(X64Reg regOp, OpArg arg);
// TODO: Actually implement
#if 0
// SSE3: Horizontal operations in SIMD registers. Could be useful for various VFPU things like dot products...
void ADDSUBPS(X64Reg dest, OpArg src);
void ADDSUBPD(X64Reg dest, OpArg src);
void HADDPD(X64Reg dest, OpArg src);
void HSUBPS(X64Reg dest, OpArg src);
void HSUBPD(X64Reg dest, OpArg src);
// SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
void DPPD(X64Reg dest, OpArg src, u8 arg);
// These are probably useful for VFPU emulation.
void INSERTPS(X64Reg dest, OpArg src, u8 arg);
void EXTRACTPS(OpArg dest, X64Reg src, u8 arg);
#endif
// SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily on Ivy.
void HADDPS(X64Reg dest, OpArg src);
// SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
void DPPS(X64Reg dest, OpArg src, u8 arg);
void UNPCKLPS(X64Reg dest, OpArg src);
void UNPCKHPS(X64Reg dest, OpArg src);
void UNPCKLPD(X64Reg dest, OpArg src);
void UNPCKHPD(X64Reg dest, OpArg src);
// SSE/SSE2: Compares.
void COMISS(X64Reg regOp, OpArg arg);
void COMISD(X64Reg regOp, OpArg arg);
void UCOMISS(X64Reg regOp, OpArg arg);
void UCOMISD(X64Reg regOp, OpArg arg);
// SSE/SSE2: Moves. Use the right data type for your data, in most cases.
void MOVAPS(X64Reg regOp, OpArg arg);
void MOVAPD(X64Reg regOp, OpArg arg);
void MOVAPS(OpArg arg, X64Reg regOp);
void MOVAPD(OpArg arg, X64Reg regOp);
void MOVUPS(X64Reg regOp, OpArg arg);
void MOVUPD(X64Reg regOp, OpArg arg);
void MOVUPS(OpArg arg, X64Reg regOp);
void MOVUPD(OpArg arg, X64Reg regOp);
void MOVDQA(X64Reg regOp, OpArg arg);
void MOVDQA(OpArg arg, X64Reg regOp);
void MOVDQU(X64Reg regOp, OpArg arg);
void MOVDQU(OpArg arg, X64Reg regOp);
void MOVSS(X64Reg regOp, OpArg arg);
void MOVSD(X64Reg regOp, OpArg arg);
void MOVSS(OpArg arg, X64Reg regOp);
void MOVSD(OpArg arg, X64Reg regOp);
void MOVLPS(X64Reg regOp, OpArg arg);
void MOVLPD(X64Reg regOp, OpArg arg);
void MOVLPS(OpArg arg, X64Reg regOp);
void MOVLPD(OpArg arg, X64Reg regOp);
void MOVHPS(X64Reg regOp, OpArg arg);
void MOVHPD(X64Reg regOp, OpArg arg);
void MOVHPS(OpArg arg, X64Reg regOp);
void MOVHPD(OpArg arg, X64Reg regOp);
void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
void MOVD_xmm(X64Reg dest, const OpArg &arg);
void MOVQ_xmm(X64Reg dest, OpArg arg);
void MOVD_xmm(const OpArg &arg, X64Reg src);
void MOVQ_xmm(OpArg arg, X64Reg src);
// SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
void MOVMSKPS(X64Reg dest, OpArg arg);
void MOVMSKPD(X64Reg dest, OpArg arg);
// SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
void MASKMOVDQU(X64Reg dest, X64Reg src);
void LDDQU(X64Reg dest, OpArg src);
// SSE/SSE2: Data type conversions.
void CVTPS2PD(X64Reg dest, OpArg src);
void CVTPD2PS(X64Reg dest, OpArg src);
void CVTSS2SD(X64Reg dest, OpArg src);
void CVTSI2SS(X64Reg dest, OpArg src);
void CVTSD2SS(X64Reg dest, OpArg src);
void CVTSI2SD(X64Reg dest, OpArg src);
void CVTDQ2PD(X64Reg regOp, OpArg arg);
void CVTPD2DQ(X64Reg regOp, OpArg arg);
void CVTDQ2PS(X64Reg regOp, OpArg arg);
void CVTPS2DQ(X64Reg regOp, OpArg arg);
void CVTTPS2DQ(X64Reg regOp, OpArg arg);
void CVTTPD2DQ(X64Reg regOp, OpArg arg);
// Destinations are X64 regs (rax, rbx, ...) for these instructions.
void CVTSS2SI(X64Reg xregdest, OpArg src);
void CVTSD2SI(X64Reg xregdest, OpArg src);
void CVTTSS2SI(X64Reg xregdest, OpArg arg);
void CVTTSD2SI(X64Reg xregdest, OpArg arg);
// SSE2: Packed integer instructions
void PACKSSDW(X64Reg dest, OpArg arg);
void PACKSSWB(X64Reg dest, OpArg arg);
void PACKUSDW(X64Reg dest, OpArg arg);
void PACKUSWB(X64Reg dest, OpArg arg);
void PUNPCKLBW(X64Reg dest, const OpArg &arg);
void PUNPCKLWD(X64Reg dest, const OpArg &arg);
void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
void PUNPCKLQDQ(X64Reg dest, const OpArg &arg);
void PTEST(X64Reg dest, OpArg arg);
void PAND(X64Reg dest, OpArg arg);
void PANDN(X64Reg dest, OpArg arg);
void PXOR(X64Reg dest, OpArg arg);
void POR(X64Reg dest, OpArg arg);
void PADDB(X64Reg dest, OpArg arg);
void PADDW(X64Reg dest, OpArg arg);
void PADDD(X64Reg dest, OpArg arg);
void PADDQ(X64Reg dest, OpArg arg);
void PADDSB(X64Reg dest, OpArg arg);
void PADDSW(X64Reg dest, OpArg arg);
void PADDUSB(X64Reg dest, OpArg arg);
void PADDUSW(X64Reg dest, OpArg arg);
void PSUBB(X64Reg dest, OpArg arg);
void PSUBW(X64Reg dest, OpArg arg);
void PSUBD(X64Reg dest, OpArg arg);
void PSUBQ(X64Reg dest, OpArg arg);
void PSUBSB(X64Reg dest, OpArg arg);
void PSUBSW(X64Reg dest, OpArg arg);
void PSUBUSB(X64Reg dest, OpArg arg);
void PSUBUSW(X64Reg dest, OpArg arg);
void PAVGB(X64Reg dest, OpArg arg);
void PAVGW(X64Reg dest, OpArg arg);
void PCMPEQB(X64Reg dest, OpArg arg);
void PCMPEQW(X64Reg dest, OpArg arg);
void PCMPEQD(X64Reg dest, OpArg arg);
void PCMPGTB(X64Reg dest, OpArg arg);
void PCMPGTW(X64Reg dest, OpArg arg);
void PCMPGTD(X64Reg dest, OpArg arg);
void PEXTRW(X64Reg dest, OpArg arg, u8 subreg);
void PINSRW(X64Reg dest, OpArg arg, u8 subreg);
void PMADDWD(X64Reg dest, OpArg arg);
void PSADBW(X64Reg dest, OpArg arg);
void PMAXSW(X64Reg dest, OpArg arg);
void PMAXUB(X64Reg dest, OpArg arg);
void PMINSW(X64Reg dest, OpArg arg);
void PMINUB(X64Reg dest, OpArg arg);
// SSE4: More MAX/MIN instructions.
void PMINSB(X64Reg dest, OpArg arg);
void PMINSD(X64Reg dest, OpArg arg);
void PMINUW(X64Reg dest, OpArg arg);
void PMINUD(X64Reg dest, OpArg arg);
void PMAXSB(X64Reg dest, OpArg arg);
void PMAXSD(X64Reg dest, OpArg arg);
void PMAXUW(X64Reg dest, OpArg arg);
void PMAXUD(X64Reg dest, OpArg arg);
void PMOVMSKB(X64Reg dest, OpArg arg);
void PSHUFD(X64Reg dest, OpArg arg, u8 shuffle);
void PSHUFB(X64Reg dest, OpArg arg);
void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle);
void PSHUFHW(X64Reg dest, OpArg arg, u8 shuffle);
void PSRLW(X64Reg reg, int shift);
void PSRLD(X64Reg reg, int shift);
void PSRLQ(X64Reg reg, int shift);
void PSRLQ(X64Reg reg, OpArg arg);
void PSRLDQ(X64Reg reg, int shift);
void PSLLW(X64Reg reg, int shift);
void PSLLD(X64Reg reg, int shift);
void PSLLQ(X64Reg reg, int shift);
void PSLLDQ(X64Reg reg, int shift);
void PSRAW(X64Reg reg, int shift);
void PSRAD(X64Reg reg, int shift);
// SSE4: data type conversions
void PMOVSXBW(X64Reg dest, OpArg arg);
void PMOVSXBD(X64Reg dest, OpArg arg);
void PMOVSXBQ(X64Reg dest, OpArg arg);
void PMOVSXWD(X64Reg dest, OpArg arg);
void PMOVSXWQ(X64Reg dest, OpArg arg);
void PMOVSXDQ(X64Reg dest, OpArg arg);
void PMOVZXBW(X64Reg dest, OpArg arg);
void PMOVZXBD(X64Reg dest, OpArg arg);
void PMOVZXBQ(X64Reg dest, OpArg arg);
void PMOVZXWD(X64Reg dest, OpArg arg);
void PMOVZXWQ(X64Reg dest, OpArg arg);
void PMOVZXDQ(X64Reg dest, OpArg arg);
// SSE4: variable blend instructions (xmm0 implicit argument)
void PBLENDVB(X64Reg dest, OpArg arg);
void BLENDVPS(X64Reg dest, OpArg arg);
void BLENDVPD(X64Reg dest, OpArg arg);
// SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.)
void ROUNDSS(X64Reg dest, OpArg arg, u8 mode);
void ROUNDSD(X64Reg dest, OpArg arg, u8 mode);
void ROUNDPS(X64Reg dest, OpArg arg, u8 mode);
void ROUNDPD(X64Reg dest, OpArg arg, u8 mode);
inline void ROUNDNEARSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_NEAREST); }
inline void ROUNDFLOORSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_FLOOR); }
inline void ROUNDCEILSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_CEIL); }
inline void ROUNDZEROSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_ZERO); }
inline void ROUNDNEARSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_NEAREST); }
inline void ROUNDFLOORSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_FLOOR); }
inline void ROUNDCEILSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_CEIL); }
inline void ROUNDZEROSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_ZERO); }
inline void ROUNDNEARPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_NEAREST); }
inline void ROUNDFLOORPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_FLOOR); }
inline void ROUNDCEILPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_CEIL); }
inline void ROUNDZEROPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_ZERO); }
inline void ROUNDNEARPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_NEAREST); }
inline void ROUNDFLOORPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_FLOOR); }
inline void ROUNDCEILPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_CEIL); }
inline void ROUNDZEROPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_ZERO); }
// AVX
void VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle);
void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
// FMA3
void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
// VEX GPR instructions
void SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
void SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
void SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
void RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate);
void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
void MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
void BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
void BLSR(int bits, X64Reg regOp, OpArg arg);
void BLSMSK(int bits, X64Reg regOp, OpArg arg);
void BLSI(int bits, X64Reg regOp, OpArg arg);
void BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
void RDTSC();
// Utility functions
// The difference between this and CALL is that this aligns the stack
// where appropriate.
void ABI_CallFunction(const void *func);
template <typename T>
void ABI_CallFunction(T (*func)()) {
ABI_CallFunction((const void *)func);
}
void ABI_CallFunction(const u8 *func) {
ABI_CallFunction((const void *)func);
}
void ABI_CallFunctionC16(const void *func, u16 param1);
void ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2);
// These only support u32 parameters, but that's enough for a lot of uses.
// These will destroy the 1 or 2 first "parameter regs".
void ABI_CallFunctionC(const void *func, u32 param1);
void ABI_CallFunctionCC(const void *func, u32 param1, u32 param2);
void ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3);
void ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3);
void ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4);
void ABI_CallFunctionP(const void *func, void *param1);
void ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2);
void ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3);
void ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3);
void ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2);
void ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3);
void ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1);
void ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2);
// Pass a register as a parameter.
void ABI_CallFunctionR(const void *func, X64Reg reg1);
void ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2);
template <typename Tr, typename T1>
void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) {
ABI_CallFunctionC((const void *)func, param1);
}
// A function that doesn't have any control over what it will do to regs,
// such as the dispatcher, should be surrounded by these.
void ABI_PushAllCalleeSavedRegsAndAdjustStack();
void ABI_PopAllCalleeSavedRegsAndAdjustStack();
// A function that doesn't know anything about it's surroundings, should
// be surrounded by these to establish a safe environment, where it can roam free.
// An example is a backpatch injected function.
void ABI_PushAllCallerSavedRegsAndAdjustStack();
void ABI_PopAllCallerSavedRegsAndAdjustStack();
unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize);
void ABI_AlignStack(unsigned int frameSize);
void ABI_RestoreStack(unsigned int frameSize);
// Sets up a __cdecl function.
// Only x64 really needs the parameter count.
void ABI_EmitPrologue(int maxCallParams);
void ABI_EmitEpilogue(int maxCallParams);
#ifdef _M_IX86
inline int ABI_GetNumXMMRegs() { return 8; }
#else
inline int ABI_GetNumXMMRegs() { return 16; }
#endif
}; // class XEmitter
// Everything that needs to generate X86 code should inherit from this.
// You get memory management for free, plus, you can use all the MOV etc functions without
// having to prefix them with gen-> or something similar.
class XCodeBlock : public CodeBlock<XEmitter> {
public:
void PoisonMemory() override;
};
} // namespace
#endif