ppsspp/Common/Arm64Emitter.cpp
2015-04-10 12:05:51 -07:00

3586 lines
95 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <limits>
#include <algorithm>
#include <vector>
#include <cmath>
#include <cinttypes>
#include <stdlib.h>
#include "base/basictypes.h"
#include "Arm64Emitter.h"
#include "MathUtil.h"
#include "CommonTypes.h"
namespace Arm64Gen
{
const int kWRegSizeInBits = 32;
const int kXRegSizeInBits = 64;
// The below few functions are taken from V8.
int CountLeadingZeros(uint64_t value, int width) {
// TODO(jbramley): Optimize this for ARM64 hosts.
int count = 0;
uint64_t bit_test = 1ULL << (width - 1);
while ((count < width) && ((bit_test & value) == 0)) {
count++;
bit_test >>= 1;
}
return count;
}
uint64_t LargestPowerOf2Divisor(uint64_t value) {
return value & -(int64_t)value;
}
bool IsPowerOfTwo(uint64_t x) {
return (x != 0) && ((x & (x - 1)) == 0);
}
#define V8_UINT64_C(x) ((uint64_t)(x))
bool IsImmArithmetic(uint64_t input, u32 *val, bool *shift) {
if (input < 4096) {
*val = input;
*shift = false;
return true;
} else if ((input & 0xFFF000) == input) {
*val = input >> 12;
*shift = true;
return true;
}
return false;
}
bool IsImmLogical(uint64_t value, unsigned int width, unsigned int *n, unsigned int *imm_s, unsigned int *imm_r) {
//DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
// DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
bool negate = false;
// Logical immediates are encoded using parameters n, imm_s and imm_r using
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1 bits
// are set. The pattern is rotated right by R, and repeated across a 32 or
// 64-bit value, depending on destination register width.
//
// Put another way: the basic format of a logical immediate is a single
// contiguous stretch of 1 bits, repeated across the whole word at intervals
// given by a power of 2. To identify them quickly, we first locate the
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
// is different for every logical immediate, so it gives us all the
// information we need to identify the only logical immediate that our input
// could be, and then we simply check if that's the value we actually have.
//
// (The rotation parameter does give the possibility of the stretch of 1 bits
// going 'round the end' of the word. To deal with that, we observe that in
// any situation where that happens the bitwise NOT of the value is also a
// valid logical immediate. So we simply invert the input whenever its low bit
// is set, and then we know that the rotated case can't arise.)
if (value & 1) {
// If the low bit is 1, negate the value, and set a flag to remember that we
// did (so that we can adjust the return values appropriately).
negate = true;
value = ~value;
}
if (width == kWRegSizeInBits) {
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
// The most-significant 32 bits may not be zero (ie. negate is true) so
// shift the value left before duplicating it.
value <<= kWRegSizeInBits;
value |= value >> kWRegSizeInBits;
}
// The basic analysis idea: imagine our input word looks like this.
//
// 0011111000111110001111100011111000111110001111100011111000111110
// c b a
// |<--d-->|
//
// We find the lowest set bit (as an actual power-of-2 value, not its index)
// and call it a. Then we add a to our original number, which wipes out the
// bottommost stretch of set bits and replaces it with a 1 carried into the
// next zero bit. Then we look for the new lowest set bit, which is in
// position b, and subtract it, so now our number is just like the original
// but with the lowest stretch of set bits completely gone. Now we find the
// lowest set bit again, which is position c in the diagram above. Then we'll
// measure the distance d between bit positions a and c (using CLZ), and that
// tells us that the only valid logical immediate that could possibly be equal
// to this number is the one in which a stretch of bits running from a to just
// below b is replicated every d bits.
uint64_t a = LargestPowerOf2Divisor(value);
uint64_t value_plus_a = value + a;
uint64_t b = LargestPowerOf2Divisor(value_plus_a);
uint64_t value_plus_a_minus_b = value_plus_a - b;
uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
int d, clz_a, out_n;
uint64_t mask;
if (c != 0) {
// The general case, in which there is more than one stretch of set bits.
// Compute the repeat distance d, and set up a bitmask covering the basic
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
// of these cases the N bit of the output will be zero.
clz_a = CountLeadingZeros(a, kXRegSizeInBits);
int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
d = clz_a - clz_c;
mask = ((V8_UINT64_C(1) << d) - 1);
out_n = 0;
} else {
// Handle degenerate cases.
//
// If any of those 'find lowest set bit' operations didn't find a set bit at
// all, then the word will have been zero thereafter, so in particular the
// last lowest_set_bit operation will have returned zero. So we can test for
// all the special case conditions in one go by seeing if c is zero.
if (a == 0) {
// The input was zero (or all 1 bits, which will come to here too after we
// inverted it at the start of the function), for which we just return
// false.
return false;
} else {
// Otherwise, if c was zero but a was not, then there's just one stretch
// of set bits in our word, meaning that we have the trivial case of
// d == 64 and only one 'repetition'. Set up all the same variables as in
// the general case above, and set the N bit in the output.
clz_a = CountLeadingZeros(a, kXRegSizeInBits);
d = 64;
mask = ~V8_UINT64_C(0);
out_n = 1;
}
}
// If the repeat period d is not a power of two, it can't be encoded.
if (!IsPowerOfTwo(d)) {
return false;
}
if (((b - a) & ~mask) != 0) {
// If the bit stretch (b - a) does not fit within the mask derived from the
// repeat period, then fail.
return false;
}
// The only possible option is b - a repeated every d bits. Now we're going to
// actually construct the valid logical immediate derived from that
// specification, and see if it equals our original input.
//
// To repeat a value every d bits, we multiply it by a number of the form
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
// be derived using a table lookup on CLZ(d).
static const uint64_t multipliers[] = {
0x0000000000000001UL,
0x0000000100000001UL,
0x0001000100010001UL,
0x0101010101010101UL,
0x1111111111111111UL,
0x5555555555555555UL,
};
int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
// Ensure that the index to the multipliers array is within bounds.
_dbg_assert_(JIT, (multiplier_idx >= 0) &&
(static_cast<size_t>(multiplier_idx) < ARRAY_SIZE(multipliers)));
uint64_t multiplier = multipliers[multiplier_idx];
uint64_t candidate = (b - a) * multiplier;
if (value != candidate) {
// The candidate pattern doesn't match our input value, so fail.
return false;
}
// We have a match! This is a valid logical immediate, so now we have to
// construct the bits and pieces of the instruction encoding that generates
// it.
// Count the set bits in our basic stretch. The special case of clz(0) == -1
// makes the answer come out right for stretches that reach the very top of
// the word (e.g. numbers like 0xffffc00000000000).
int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
int s = clz_a - clz_b;
// Decide how many bits to rotate right by, to put the low bit of that basic
// stretch in position a.
int r;
if (negate) {
// If we inverted the input right at the start of this function, here's
// where we compensate: the number of set bits becomes the number of clear
// bits, and the rotation count is based on position b rather than position
// a (since b is the location of the 'lowest' 1 bit after inversion).
s = d - s;
r = (clz_b + 1) & (d - 1);
} else {
r = (clz_a + 1) & (d - 1);
}
// Now we're done, except for having to encode the S output in such a way that
// it gives both the number of set bits and the length of the repeated
// segment. The s field is encoded like this:
//
// imms size S
// ssssss 64 UInt(ssssss)
// 0sssss 32 UInt(sssss)
// 10ssss 16 UInt(ssss)
// 110sss 8 UInt(sss)
// 1110ss 4 UInt(ss)
// 11110s 2 UInt(s)
//
// So we 'or' (-d << 1) with our computed s to form imms.
*n = out_n;
*imm_s = ((-d << 1) | (s - 1)) & 0x3f;
*imm_r = r;
return true;
}
void ARM64XEmitter::SetCodePtr(u8* ptr)
{
m_code = ptr;
m_startcode = m_code;
m_lastCacheFlushEnd = ptr;
}
const u8* ARM64XEmitter::GetCodePtr() const
{
return m_code;
}
u8* ARM64XEmitter::GetWritableCodePtr()
{
return m_code;
}
void ARM64XEmitter::ReserveCodeSpace(u32 bytes)
{
for (u32 i = 0; i < bytes/4; i++)
BRK(0);
}
const u8* ARM64XEmitter::AlignCode16()
{
int c = int((u64)m_code & 15);
if (c)
ReserveCodeSpace(16-c);
return m_code;
}
const u8* ARM64XEmitter::AlignCodePage()
{
int c = int((u64)m_code & 4095);
if (c)
ReserveCodeSpace(4096-c);
return m_code;
}
void ARM64XEmitter::FlushIcache()
{
FlushIcacheSection(m_lastCacheFlushEnd, m_code);
m_lastCacheFlushEnd = m_code;
}
void ARM64XEmitter::FlushIcacheSection(u8* start, u8* end)
{
#if defined(IOS)
// Header file says this is equivalent to: sys_icache_invalidate(start, end - start);
sys_cache_control(kCacheFunctionPrepareForExecution, start, end - start);
#else
#if defined(__clang__) && !defined(_M_IX86) && !defined(_M_X64)
__clear_cache(start, end);
#else
#if !defined(_M_IX86) && !defined(_M_X64)
__builtin___clear_cache(start, end);
#endif
#endif
#endif
}
// Exception generation
static const u32 ExcEnc[][3] = {
{0, 0, 1}, // SVC
{0, 0, 2}, // HVC
{0, 0, 3}, // SMC
{1, 0, 0}, // BRK
{2, 0, 0}, // HLT
{5, 0, 1}, // DCPS1
{5, 0, 2}, // DCPS2
{5, 0, 3}, // DCPS3
};
// Arithmetic generation
static const u32 ArithEnc[] = {
0x058, // ADD
0x258, // SUB
};
// Conditional Select
static const u32 CondSelectEnc[][2] = {
{0, 0}, // CSEL
{0, 1}, // CSINC
{1, 0}, // CSINV
{1, 1}, // CSNEG
};
// Data-Processing (1 source)
static const u32 Data1SrcEnc[][2] = {
{0, 0}, // RBIT
{0, 1}, // REV16
{0, 2}, // REV32
{0, 3}, // REV64
{0, 4}, // CLZ
{0, 5}, // CLS
};
// Data-Processing (2 source)
static const u32 Data2SrcEnc[] = {
0x02, // UDIV
0x03, // SDIV
0x08, // LSLV
0x09, // LSRV
0x0A, // ASRV
0x0B, // RORV
0x10, // CRC32B
0x11, // CRC32H
0x12, // CRC32W
0x14, // CRC32CB
0x15, // CRC32CH
0x16, // CRC32CW
0x13, // CRC32X (64bit Only)
0x17, // XRC32CX (64bit Only)
};
// Data-Processing (3 source)
static const u32 Data3SrcEnc[][2] = {
{0, 0}, // MADD
{0, 1}, // MSUB
{1, 0}, // SMADDL (64Bit Only)
{1, 1}, // SMSUBL (64Bit Only)
{2, 0}, // SMULH (64Bit Only)
{5, 0}, // UMADDL (64Bit Only)
{5, 1}, // UMSUBL (64Bit Only)
{6, 0}, // UMULH (64Bit Only)
};
// Logical (shifted register)
static const u32 LogicalEnc[][2] = {
{0, 0}, // AND
{0, 1}, // BIC
{1, 0}, // OOR
{1, 1}, // ORN
{2, 0}, // EOR
{2, 1}, // EON
{3, 0}, // ANDS
{3, 1}, // BICS
};
// Load/Store Exclusive
static u32 LoadStoreExcEnc[][5] = {
{0, 0, 0, 0, 0}, // STXRB
{0, 0, 0, 0, 1}, // STLXRB
{0, 0, 1, 0, 0}, // LDXRB
{0, 0, 1, 0, 1}, // LDAXRB
{0, 1, 0, 0, 1}, // STLRB
{0, 1, 1, 0, 1}, // LDARB
{1, 0, 0, 0, 0}, // STXRH
{1, 0, 0, 0, 1}, // STLXRH
{1, 0, 1, 0, 0}, // LDXRH
{1, 0, 1, 0, 1}, // LDAXRH
{1, 1, 0, 0, 1}, // STLRH
{1, 1, 1, 0, 1}, // LDARH
{2, 0, 0, 0, 0}, // STXR
{3, 0, 0, 0, 0}, // (64bit) STXR
{2, 0, 0, 0, 1}, // STLXR
{3, 0, 0, 0, 1}, // (64bit) STLXR
{2, 0, 0, 1, 0}, // STXP
{3, 0, 0, 1, 0}, // (64bit) STXP
{2, 0, 0, 1, 1}, // STLXP
{3, 0, 0, 1, 1}, // (64bit) STLXP
{2, 0, 1, 0, 0}, // LDXR
{3, 0, 1, 0, 0}, // (64bit) LDXR
{2, 0, 1, 0, 1}, // LDAXR
{3, 0, 1, 0, 1}, // (64bit) LDAXR
{2, 0, 1, 1, 0}, // LDXP
{3, 0, 1, 1, 0}, // (64bit) LDXP
{2, 0, 1, 1, 1}, // LDAXP
{3, 0, 1, 1, 1}, // (64bit) LDAXP
{2, 1, 0, 0, 1}, // STLR
{3, 1, 0, 0, 1}, // (64bit) STLR
{2, 1, 1, 0, 1}, // LDAR
{3, 1, 1, 0, 1}, // (64bit) LDAR
};
void ARM64XEmitter::EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr)
{
bool b64Bit = Is64Bit(Rt);
s64 distance = (s64)ptr - (s64)m_code;
_assert_msg_(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %lx", __FUNCTION__, (int)distance);
distance >>= 2;
_assert_msg_(DYNA_REC, distance >= -0x40000 && distance <= 0x3FFFF, "%s: Received too large distance: %lx", __FUNCTION__, (int)distance);
Rt = DecodeReg(Rt);
Write32((b64Bit << 31) | (0x34 << 24) | (op << 24) | \
(((u32)distance << 5) & 0xFFFFE0) | Rt);
}
void ARM64XEmitter::EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr)
{
bool b64Bit = Is64Bit(Rt);
s64 distance = (s64)ptr - (s64)m_code;
_assert_msg_(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %llx", __FUNCTION__, distance);
distance >>= 2;
_assert_msg_(DYNA_REC, distance >= -0x3FFF && distance < 0x3FFF, "%s: Received too large distance: %llx", __FUNCTION__, distance);
Rt = DecodeReg(Rt);
Write32((b64Bit << 31) | (0x36 << 24) | (op << 24) | \
(bits << 19) | (distance << 5) | Rt);
}
void ARM64XEmitter::EncodeUnconditionalBranchInst(u32 op, const void* ptr)
{
s64 distance = (s64)ptr - s64(m_code);
_assert_msg_(DYNA_REC, !(distance & 0x3), "%s: distance must be a multiple of 4: %llx", __FUNCTION__, distance);
distance >>= 2;
_assert_msg_(DYNA_REC, distance >= -0x2000000LL && distance <= 0x1FFFFFFLL, "%s: Received too large distance: %llx", __FUNCTION__, distance);
Write32((op << 31) | (0x5 << 26) | (distance & 0x3FFFFFF));
}
void ARM64XEmitter::EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn)
{
Rn = DecodeReg(Rn);
Write32((0x6B << 25) | (opc << 21) | (op2 << 16) | (op3 << 10) | (Rn << 5) | op4);
}
void ARM64XEmitter::EncodeExceptionInst(u32 instenc, u32 imm)
{
_assert_msg_(DYNA_REC, !(imm & ~0xFFFF), "%s: Exception instruction too large immediate: %d", __FUNCTION__, imm);
Write32((0xD4 << 24) | (ExcEnc[instenc][0] << 21) | (imm << 5) | (ExcEnc[instenc][1] << 2) | ExcEnc[instenc][2]);
}
void ARM64XEmitter::EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt)
{
Write32((0x354 << 22) | (op0 << 19) | (op1 << 16) | (CRn << 12) | (CRm << 8) | (op2 << 5) | Rt);
}
void ARM64XEmitter::EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
bool b64Bit = Is64Bit(Rd);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Write32((b64Bit << 31) | (flags << 29) | (ArithEnc[instenc] << 21) | \
(Option.GetType() == ArithOption::TYPE_EXTENDEDREG ? (1 << 21) : 0) | (Rm << 16) | Option.GetData() | (Rn << 5) | Rd);
}
void ARM64XEmitter::EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
bool b64Bit = Is64Bit(Rd);
Rd = DecodeReg(Rd);
Rm = DecodeReg(Rm);
Rn = DecodeReg(Rn);
Write32((b64Bit << 31) | (op << 30) | (flags << 29) | \
(0xD0 << 21) | (Rm << 16) | (Rn << 5) | Rd);
}
void ARM64XEmitter::EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond)
{
bool b64Bit = Is64Bit(Rn);
_assert_msg_(DYNA_REC, !(imm & ~0x1F), "%s: too large immediate: %d", __FUNCTION__, imm)
_assert_msg_(DYNA_REC, !(nzcv & ~0xF), "%s: Flags out of range: %d", __FUNCTION__, nzcv)
Rn = DecodeReg(Rn);
Write32((b64Bit << 31) | (op << 30) | (1 << 29) | (0xD2 << 21) | \
(imm << 16) | (cond << 12) | (1 << 11) | (Rn << 5) | nzcv);
}
void ARM64XEmitter::EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond)
{
bool b64Bit = Is64Bit(Rm);
_assert_msg_(DYNA_REC, !(nzcv & ~0xF), "%s: Flags out of range: %d", __FUNCTION__, nzcv)
Rm = DecodeReg(Rm);
Rn = DecodeReg(Rn);
Write32((b64Bit << 31) | (op << 30) | (1 << 29) | (0xD2 << 21) | \
(Rm << 16) | (cond << 12) | (Rn << 5) | nzcv);
}
void ARM64XEmitter::EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
bool b64Bit = Is64Bit(Rd);
Rd = DecodeReg(Rd);
Rm = DecodeReg(Rm);
Rn = DecodeReg(Rn);
Write32((b64Bit << 31) | (CondSelectEnc[instenc][0] << 30) | \
(0xD4 << 21) | (Rm << 16) | (cond << 12) | (CondSelectEnc[instenc][1] << 10) | \
(Rn << 5) | Rd);
}
void ARM64XEmitter::EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn)
{
bool b64Bit = Is64Bit(Rd);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((b64Bit << 31) | (0x2D6 << 21) | \
(Data1SrcEnc[instenc][0] << 16) | (Data1SrcEnc[instenc][1] << 10) | \
(Rn << 5) | Rd);
}
void ARM64XEmitter::EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
bool b64Bit = Is64Bit(Rd);
Rd = DecodeReg(Rd);
Rm = DecodeReg(Rm);
Rn = DecodeReg(Rn);
Write32((b64Bit << 31) | (0x0D6 << 21) | \
(Rm << 16) | (Data2SrcEnc[instenc] << 10) | \
(Rn << 5) | Rd);
}
void ARM64XEmitter::EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
bool b64Bit = Is64Bit(Rd);
Rd = DecodeReg(Rd);
Rm = DecodeReg(Rm);
Rn = DecodeReg(Rn);
Ra = DecodeReg(Ra);
Write32((b64Bit << 31) | (0xD8 << 21) | (Data3SrcEnc[instenc][0] << 21) | \
(Rm << 16) | (Data3SrcEnc[instenc][1] << 15) | \
(Ra << 10) | (Rn << 5) | Rd);
}
void ARM64XEmitter::EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
bool b64Bit = Is64Bit(Rd);
Rd = DecodeReg(Rd);
Rm = DecodeReg(Rm);
Rn = DecodeReg(Rn);
Write32((b64Bit << 31) | (LogicalEnc[instenc][0] << 29) | (0x5 << 25) | (LogicalEnc[instenc][1] << 21) | \
Shift.GetData() | (Rm << 16) | (Rn << 5) | Rd);
}
void ARM64XEmitter::EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm)
{
bool b64Bit = Is64Bit(Rt);
bool bVec = IsVector(Rt);
_assert_msg_(DYNA_REC, !(imm & 0xFFFFF), "%s: offset too large %d", __FUNCTION__, imm);
Rt = DecodeReg(Rt);
if (b64Bit && bitop != 0x2) // LDRSW(0x2) uses 64bit reg, doesn't have 64bit bit set
bitop |= 0x1;
Write32((bitop << 30) | (bVec << 26) | (0x18 << 24) | (imm << 5) | Rt);
}
void ARM64XEmitter::EncodeLoadStoreExcInst(u32 instenc,
ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn, ARM64Reg Rt)
{
Rs = DecodeReg(Rs);
Rt2 = DecodeReg(Rt2);
Rn = DecodeReg(Rn);
Rt = DecodeReg(Rt);
Write32((LoadStoreExcEnc[instenc][0] << 30) | (0x8 << 24) | (LoadStoreExcEnc[instenc][1] << 23) | \
(LoadStoreExcEnc[instenc][2] << 22) | (LoadStoreExcEnc[instenc][3] << 21) | (Rs << 16) | \
(LoadStoreExcEnc[instenc][4] << 15) | (Rt2 << 10) | (Rn << 5) | Rt);
}
void ARM64XEmitter::EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm)
{
bool b64Bit = Is64Bit(Rt);
bool b128Bit = IsQuad(Rt);
bool bVec = IsVector(Rt);
if (b128Bit)
imm >>= 4;
else if (b64Bit)
imm >>= 3;
else
imm >>= 2;
_assert_msg_(DYNA_REC, !(imm & ~0xF), "%s: offset too large %d", __FUNCTION__, imm);
u32 opc = 0;
if (b128Bit)
opc = 2;
else if (b64Bit && bVec)
opc = 1;
else if (b64Bit && !bVec)
opc = 2;
Rt = DecodeReg(Rt);
Rt2 = DecodeReg(Rt2);
Rn = DecodeReg(Rn);
Write32((opc << 30) | (bVec << 26) | (op << 22) | (imm << 15) | (Rt2 << 10) | (Rn << 5) | Rt);
}
void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
bool b64Bit = Is64Bit(Rt);
bool bVec = IsVector(Rt);
u32 offset = imm & 0x1FF;
_assert_msg_(DYNA_REC, !(imm < -256 || imm > 255), "%s: offset too large %d", __FUNCTION__, imm);
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
Write32((b64Bit << 30) | (op << 22) | (bVec << 26) | (offset << 12) | (op2 << 10) | (Rn << 5) | Rt);
}
void ARM64XEmitter::EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm, u8 size)
{
bool b64Bit = Is64Bit(Rt);
bool bVec = IsVector(Rt);
if (size == 64)
imm >>= 3;
else if (size == 32)
imm >>= 2;
else if (size == 16)
imm >>= 1;
_assert_msg_(DYNA_REC, imm >= 0, "%s(INDEX_UNSIGNED): offset must be positive %d", __FUNCTION__, imm);
_assert_msg_(DYNA_REC, !(imm & ~0xFFF), "%s(INDEX_UNSIGNED): offset too large %d", __FUNCTION__, imm);
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
Write32((b64Bit << 30) | (op << 22) | (bVec << 26) | (imm << 10) | (Rn << 5) | Rt);
}
void ARM64XEmitter::EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos)
{
bool b64Bit = Is64Bit(Rd);
_assert_msg_(DYNA_REC, !(imm & ~0xFFFF), "%s: immediate out of range: %d", __FUNCTION__, imm);
Rd = DecodeReg(Rd);
Write32((b64Bit << 31) | (op << 29) | (0x25 << 23) | (pos << 21) | (imm << 5) | Rd);
}
void ARM64XEmitter::EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms)
{
bool b64Bit = Is64Bit(Rd);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((b64Bit << 31) | (op << 29) | (0x26 << 23) | (b64Bit << 22) | \
(immr << 16) | (imms << 10) | (Rn << 5) | Rd);
}
void ARM64XEmitter::EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
ARM64Reg decoded_Rm = DecodeReg(Rm.GetReg());
Write32((size << 30) | (opc << 22) | (0x1C1 << 21) | (decoded_Rm << 16) | \
Rm.GetData() | (1 << 11) | (Rn << 5) | Rt);
}
void ARM64XEmitter::EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd)
{
bool b64Bit = Is64Bit(Rd);
_assert_msg_(DYNA_REC, !(imm & ~0xFFF), "%s: immediate too large: %x", __FUNCTION__, imm);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((b64Bit << 31) | (op << 30) | (flags << 29) | (0x11 << 24) | (shift << 22) | \
(imm << 10) | (Rn << 5) | Rd);
}
void ARM64XEmitter::EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, int n)
{
// Sometimes Rd is fixed to SP, but can still be 32bit or 64bit.
// Use Rn to determine bitness here.
bool b64Bit = Is64Bit(Rn);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((b64Bit << 31) | (op << 29) | (0x24 << 23) | (n << 22) | \
(immr << 16) | (imms << 10) | (Rn << 5) | Rd);
}
void ARM64XEmitter::EncodeLoadStorePair(u32 op, bool V, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm)
{
u32 type_encode = 0;
switch (type) {
case INDEX_UNSIGNED:
type_encode = 2;
break;
case INDEX_POST:
type_encode = 1;
break;
case INDEX_PRE:
type_encode = 3;
break;
}
// ASIMD
if (V) {
imm >>= 2;
if (IsQuad(Rt)) {
op = 2;
if (type_encode == 2)
imm >>= 2;
} else if (IsDouble(Rt)) {
op = 1;
if (type_encode == 2)
imm >>= 1;
} else {
op = 0;
}
} else {
bool b64Bit = Is64Bit(Rt);
if (b64Bit) {
op |= 2;
imm >>= 3;
} else {
imm >>= 2;
}
}
_assert_msg_(JIT, imm >= -64 && imm <= 63, "%s recieved too large imm: %d", imm);
Rt = DecodeReg(Rt);
Rt2 = DecodeReg(Rt2);
Rn = DecodeReg(Rn);
Write32((op << 30) | (5 << 27) | (V << 26) | (type_encode << 23) | (load << 22) | \
(((uint32_t)imm & 0x7F) << 15) | (Rt2 << 10) | (Rn << 5) | Rt);
}
void ARM64XEmitter::EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm)
{
Rd = DecodeReg(Rd);
Write32((op << 31) | ((imm & 0x3) << 29) | (0x10 << 24) | \
((imm & 0x1FFFFC) << 3) | Rd);
}
void ARM64XEmitter::EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
_assert_msg_(DYNA_REC, !(imm < -256 || imm > 255), "%s received too large offset: %d", __FUNCTION__, imm);
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
Write32((size << 30) | (7 << 27) | (op << 22) | ((imm & 0x1FF) << 12) | (Rn << 5) | Rt);
}
static inline bool IsInRangeImm19(s64 distance) {
return (distance >= -0x40000 && distance <= 0x3FFFF);
}
static inline bool IsInRangeImm14(s64 distance) {
return (distance >= -0x2000 && distance <= 0x1FFF);
}
static inline bool IsInRangeImm26(s64 distance) {
return (distance >= -0x2000000 && distance <= 0x1FFFFFF);
}
static inline u32 MaskImm19(s64 distance) {
return distance & 0x7FFFF;
}
static inline u32 MaskImm14(s64 distance) {
return distance & 0x3FFF;
}
static inline u32 MaskImm26(s64 distance) {
return distance & 0x3FFFFFF;
}
// FixupBranch branching
void ARM64XEmitter::SetJumpTarget(FixupBranch const& branch)
{
bool Not = false;
u32 inst = 0;
s64 distance = (s64)(m_code - branch.ptr);
distance >>= 2;
switch (branch.type)
{
case 1: // CBNZ
Not = true;
case 0: // CBZ
{
_assert_msg_(DYNA_REC, IsInRangeImm19(distance), "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, (int)distance);
bool b64Bit = Is64Bit(branch.reg);
ARM64Reg reg = DecodeReg(branch.reg);
inst = (b64Bit << 31) | (0x1A << 25) | (Not << 24) | (MaskImm19(distance) << 5) | reg;
}
break;
case 2: // B (conditional)
_assert_msg_(DYNA_REC, IsInRangeImm19(distance), "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, distance);
inst = (0x2A << 25) | (MaskImm19(distance) << 5) | branch.cond;
break;
case 4: // TBNZ
Not = true;
case 3: // TBZ
{
_assert_msg_(DYNA_REC, IsInRangeImm14(distance), "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, (int)distance);
ARM64Reg reg = DecodeReg(branch.reg);
inst = ((branch.bit & 0x20) << 26) | (0x1B << 25) | (Not << 24) | ((branch.bit & 0x1F) << 19) | (MaskImm14(distance) << 5) | reg;
}
break;
case 5: // B (uncoditional)
_assert_msg_(DYNA_REC, IsInRangeImm26(distance), "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, distance);
inst = (0x5 << 26) | MaskImm26(distance);
break;
case 6: // BL (unconditional)
_assert_msg_(DYNA_REC, IsInRangeImm26(distance), "%s(%d): Received too large distance: %lx", __FUNCTION__, branch.type, distance);
inst = (0x25 << 26) | MaskImm26(distance);
break;
}
*(u32*)branch.ptr = inst;
}
FixupBranch ARM64XEmitter::CBZ(ARM64Reg Rt)
{
FixupBranch branch;
branch.ptr = m_code;
branch.type = 0;
branch.reg = Rt;
HINT(HINT_NOP);
return branch;
}
FixupBranch ARM64XEmitter::CBNZ(ARM64Reg Rt)
{
FixupBranch branch;
branch.ptr = m_code;
branch.type = 1;
branch.reg = Rt;
HINT(HINT_NOP);
return branch;
}
FixupBranch ARM64XEmitter::B(CCFlags cond)
{
FixupBranch branch;
branch.ptr = m_code;
branch.type = 2;
branch.cond = cond;
HINT(HINT_NOP);
return branch;
}
FixupBranch ARM64XEmitter::TBZ(ARM64Reg Rt, u8 bit)
{
FixupBranch branch;
branch.ptr = m_code;
branch.type = 3;
branch.reg = Rt;
branch.bit = bit;
HINT(HINT_NOP);
return branch;
}
FixupBranch ARM64XEmitter::TBNZ(ARM64Reg Rt, u8 bit)
{
FixupBranch branch;
branch.ptr = m_code;
branch.type = 4;
branch.reg = Rt;
branch.bit = bit;
HINT(HINT_NOP);
return branch;
}
FixupBranch ARM64XEmitter::B()
{
FixupBranch branch;
branch.ptr = m_code;
branch.type = 5;
HINT(HINT_NOP);
return branch;
}
FixupBranch ARM64XEmitter::BL()
{
FixupBranch branch;
branch.ptr = m_code;
branch.type = 6;
HINT(HINT_NOP);
return branch;
}
// Compare and Branch
void ARM64XEmitter::CBZ(ARM64Reg Rt, const void* ptr)
{
EncodeCompareBranchInst(0, Rt, ptr);
}
void ARM64XEmitter::CBNZ(ARM64Reg Rt, const void* ptr)
{
EncodeCompareBranchInst(1, Rt, ptr);
}
// Conditional Branch
void ARM64XEmitter::B(CCFlags cond, const void* ptr)
{
s64 distance = (s64)ptr - (s64)m_code;
distance >>= 2;
_assert_msg_(DYNA_REC, IsInRangeImm19(distance), "%s: Received too large distance: %p->%p %lld %llx", __FUNCTION__, m_code, ptr, distance, distance);
Write32((0x54 << 24) | (MaskImm19(distance) << 5) | cond);
}
// Test and Branch
void ARM64XEmitter::TBZ(ARM64Reg Rt, u8 bits, const void* ptr)
{
EncodeTestBranchInst(0, Rt, bits, ptr);
}
void ARM64XEmitter::TBNZ(ARM64Reg Rt, u8 bits, const void* ptr)
{
EncodeTestBranchInst(1, Rt, bits, ptr);
}
// Unconditional Branch
void ARM64XEmitter::B(const void* ptr)
{
EncodeUnconditionalBranchInst(0, ptr);
}
void ARM64XEmitter::BL(const void* ptr)
{
EncodeUnconditionalBranchInst(1, ptr);
}
void ARM64XEmitter::QuickCallFunction(ARM64Reg scratchreg, const void *func) {
s64 distance = (s64)func - (s64)m_code;
distance >>= 2; // Can only branch to opcode-aligned (4) addresses
if (!IsInRangeImm26(distance)) {
// WARN_LOG(DYNA_REC, "Distance too far in function call (%p to %p)! Using scratch.", m_code, func);
MOVI2R(scratchreg, (uintptr_t)func);
BLR(scratchreg);
} else {
BL(func);
}
}
// Unconditional Branch (register)
void ARM64XEmitter::BR(ARM64Reg Rn)
{
EncodeUnconditionalBranchInst(0, 0x1F, 0, 0, Rn);
}
void ARM64XEmitter::BLR(ARM64Reg Rn)
{
EncodeUnconditionalBranchInst(1, 0x1F, 0, 0, Rn);
}
void ARM64XEmitter::RET(ARM64Reg Rn)
{
EncodeUnconditionalBranchInst(2, 0x1F, 0, 0, Rn);
}
void ARM64XEmitter::ERET()
{
EncodeUnconditionalBranchInst(4, 0x1F, 0, 0, SP);
}
void ARM64XEmitter::DRPS()
{
EncodeUnconditionalBranchInst(5, 0x1F, 0, 0, SP);
}
// Exception generation
void ARM64XEmitter::SVC(u32 imm)
{
EncodeExceptionInst(0, imm);
}
void ARM64XEmitter::HVC(u32 imm)
{
EncodeExceptionInst(1, imm);
}
void ARM64XEmitter::SMC(u32 imm)
{
EncodeExceptionInst(2, imm);
}
void ARM64XEmitter::BRK(u32 imm)
{
EncodeExceptionInst(3, imm);
}
void ARM64XEmitter::HLT(u32 imm)
{
EncodeExceptionInst(4, imm);
}
void ARM64XEmitter::DCPS1(u32 imm)
{
EncodeExceptionInst(5, imm);
}
void ARM64XEmitter::DCPS2(u32 imm)
{
EncodeExceptionInst(6, imm);
}
void ARM64XEmitter::DCPS3(u32 imm)
{
EncodeExceptionInst(7, imm);
}
// System
void ARM64XEmitter::_MSR(PStateField field, u8 imm)
{
u32 op1 = 0, op2 = 0;
switch (field)
{
case FIELD_SPSel: op1 = 0; op2 = 5; break;
case FIELD_DAIFSet: op1 = 3; op2 = 6; break;
case FIELD_DAIFClr: op1 = 3; op2 = 7; break;
default:
_assert_msg_(JIT, false, "Invalid PStateField to do a imm move to");
break;
}
EncodeSystemInst(0, op1, 4, imm, op2, WSP);
}
static void GetSystemReg(PStateField field, int &o0, int &op1, int &CRn, int &CRm, int &op2) {
switch (field) {
case FIELD_NZCV:
o0 = 3; op1 = 3; CRn = 4; CRm = 2; op2 = 0;
break;
case FIELD_FPCR:
o0 = 3; op1 = 3; CRn = 4; CRm = 4; op2 = 0;
break;
case FIELD_FPSR:
o0 = 3; op1 = 3; CRn = 4; CRm = 4; op2 = 1;
break;
default:
_assert_msg_(JIT, false, "Invalid PStateField to do a register move from/to");
break;
}
}
void ARM64XEmitter::_MSR(PStateField field, ARM64Reg Rt) {
int o0 = 0, op1 = 0, CRn = 0, CRm = 0, op2 = 0;
_assert_msg_(JIT, Is64Bit(Rt), "MSR: Rt must be 64-bit");
GetSystemReg(field, o0, op1, CRn, CRm, op2);
EncodeSystemInst(o0, op1, CRn, CRm, op2, DecodeReg(Rt));
}
void ARM64XEmitter::MRS(ARM64Reg Rt, PStateField field) {
int o0 = 0, op1 = 0, CRn = 0, CRm = 0, op2 = 0;
_assert_msg_(JIT, Is64Bit(Rt), "MRS: Rt must be 64-bit");
GetSystemReg(field, o0, op1, CRn, CRm, op2);
EncodeSystemInst(o0 | 4, op1, CRn, CRm, op2, DecodeReg(Rt));
}
void ARM64XEmitter::HINT(SystemHint op)
{
EncodeSystemInst(0, 3, 2, 0, op, WSP);
}
void ARM64XEmitter::CLREX()
{
EncodeSystemInst(0, 3, 3, 0, 2, WSP);
}
void ARM64XEmitter::DSB(BarrierType type)
{
EncodeSystemInst(0, 3, 3, type, 4, WSP);
}
void ARM64XEmitter::DMB(BarrierType type)
{
EncodeSystemInst(0, 3, 3, type, 5, WSP);
}
void ARM64XEmitter::ISB(BarrierType type)
{
EncodeSystemInst(0, 3, 3, type, 6, WSP);
}
// Add/Subtract (extended register)
void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
ADD(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0));
}
void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(0, false, Rd, Rn, Rm, Option);
}
void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticInst(0, true, Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0));
}
void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(0, true, Rd, Rn, Rm, Option);
}
void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
SUB(Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0));
}
void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(1, false, Rd, Rn, Rm, Option);
}
void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticInst(1, true, Rd, Rn, Rm, ArithOption(Rd, ST_LSL, 0));
}
void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(1, true, Rd, Rn, Rm, Option);
}
void ARM64XEmitter::CMN(ARM64Reg Rn, ARM64Reg Rm)
{
CMN(Rn, Rm, ArithOption(Rn, ST_LSL, 0));
}
void ARM64XEmitter::CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(0, true, Is64Bit(Rn) ? ZR : WZR, Rn, Rm, Option);
}
void ARM64XEmitter::CMP(ARM64Reg Rn, ARM64Reg Rm)
{
CMP(Rn, Rm, ArithOption(Rn, ST_LSL, 0));
}
void ARM64XEmitter::CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option)
{
EncodeArithmeticInst(1, true, Is64Bit(Rn) ? ZR : WZR, Rn, Rm, Option);
}
// Add/Subtract (with carry)
void ARM64XEmitter::ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticCarryInst(0, false, Rd, Rn, Rm);
}
void ARM64XEmitter::ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticCarryInst(0, true, Rd, Rn, Rm);
}
void ARM64XEmitter::SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticCarryInst(1, false, Rd, Rn, Rm);
}
void ARM64XEmitter::SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeArithmeticCarryInst(1, true, Rd, Rn, Rm);
}
// Conditional Compare (immediate)
void ARM64XEmitter::CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond)
{
EncodeCondCompareImmInst(0, Rn, imm, nzcv, cond);
}
void ARM64XEmitter::CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond)
{
EncodeCondCompareImmInst(1, Rn, imm, nzcv, cond);
}
// Conditiona Compare (register)
void ARM64XEmitter::CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond)
{
EncodeCondCompareRegInst(0, Rn, Rm, nzcv, cond);
}
void ARM64XEmitter::CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond)
{
EncodeCondCompareRegInst(1, Rn, Rm, nzcv, cond);
}
// Conditional Select
void ARM64XEmitter::CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
EncodeCondSelectInst(0, Rd, Rn, Rm, cond);
}
void ARM64XEmitter::CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
EncodeCondSelectInst(1, Rd, Rn, Rm, cond);
}
void ARM64XEmitter::CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
EncodeCondSelectInst(2, Rd, Rn, Rm, cond);
}
void ARM64XEmitter::CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
EncodeCondSelectInst(3, Rd, Rn, Rm, cond);
}
// Data-Processing 1 source
void ARM64XEmitter::RBIT(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(0, Rd, Rn);
}
void ARM64XEmitter::REV16(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(1, Rd, Rn);
}
void ARM64XEmitter::REV32(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(2, Rd, Rn);
}
void ARM64XEmitter::REV64(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(3, Rd, Rn);
}
void ARM64XEmitter::CLZ(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(4, Rd, Rn);
}
void ARM64XEmitter::CLS(ARM64Reg Rd, ARM64Reg Rn)
{
EncodeData1SrcInst(5, Rd, Rn);
}
// Data-Processing 2 source
void ARM64XEmitter::UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(0, Rd, Rn, Rm);
}
void ARM64XEmitter::SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(1, Rd, Rn, Rm);
}
void ARM64XEmitter::LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(2, Rd, Rn, Rm);
}
void ARM64XEmitter::LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(3, Rd, Rn, Rm);
}
void ARM64XEmitter::ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(4, Rd, Rn, Rm);
}
void ARM64XEmitter::RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(5, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(6, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(7, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(8, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(9, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(10, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(11, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(12, Rd, Rn, Rm);
}
void ARM64XEmitter::CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData2SrcInst(13, Rd, Rn, Rm);
}
// Data-Processing 3 source
void ARM64XEmitter::MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(0, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(1, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(2, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
SMADDL(Rd, Rn, Rm, SP);
}
void ARM64XEmitter::SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(3, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData3SrcInst(4, Rd, Rn, Rm, SP);
}
void ARM64XEmitter::UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(5, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra)
{
EncodeData3SrcInst(6, Rd, Rn, Rm, Ra);
}
void ARM64XEmitter::UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData3SrcInst(7, Rd, Rn, Rm, SP);
}
void ARM64XEmitter::MUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData3SrcInst(0, Rd, Rn, Rm, SP);
}
void ARM64XEmitter::MNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EncodeData3SrcInst(1, Rd, Rn, Rm, SP);
}
// Logical (shifted register)
void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(0, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(1, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(2, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(3, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(4, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(5, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(6, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
{
EncodeLogicalInst(7, Rd, Rn, Rm, Shift);
}
void ARM64XEmitter::MOV(ARM64Reg Rd, ARM64Reg Rm, ArithOption Shift) {
ORR(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, Shift);
}
void ARM64XEmitter::MOV(ARM64Reg Rd, ARM64Reg Rm)
{
if (IsGPR(Rd) && IsGPR(Rm)) {
ORR(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, ArithOption(Rm, ST_LSL, 0));
} else {
_assert_msg_(JIT, false, "Non-GPRs not supported in MOV");
}
}
void ARM64XEmitter::MVN(ARM64Reg Rd, ARM64Reg Rm)
{
ORN(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, ArithOption(Rm, ST_LSL, 0));
}
void ARM64XEmitter::LSL(ARM64Reg Rd, ARM64Reg Rm, int shift)
{
ORR(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, ArithOption(Rm, ST_LSL, shift));
}
void ARM64XEmitter::LSR(ARM64Reg Rd, ARM64Reg Rm, int shift)
{
ORR(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, ArithOption(Rm, ST_LSR, shift));
}
void ARM64XEmitter::ASR(ARM64Reg Rd, ARM64Reg Rm, int shift)
{
ORR(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, ArithOption(Rm, ST_ASR, shift));
}
void ARM64XEmitter::ROR(ARM64Reg Rd, ARM64Reg Rm, int shift)
{
ORR(Rd, Is64Bit(Rd) ? ZR : WZR, Rm, ArithOption(Rm, ST_ROR, shift));
}
// Logical (immediate)
void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{
EncodeLogicalImmInst(0, Rd, Rn, immr, imms, invert);
}
void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{
EncodeLogicalImmInst(3, Rd, Rn, immr, imms, invert);
}
void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{
EncodeLogicalImmInst(2, Rd, Rn, immr, imms, invert);
}
void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{
EncodeLogicalImmInst(1, Rd, Rn, immr, imms, invert);
}
void ARM64XEmitter::TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{
EncodeLogicalImmInst(3, Is64Bit(Rn) ? ZR : WZR, Rn, immr, imms, invert);
}
// Add/subtract (immediate)
void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift)
{
EncodeAddSubImmInst(0, false, shift, imm, Rn, Rd);
}
void ARM64XEmitter::ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift)
{
EncodeAddSubImmInst(0, true, shift, imm, Rn, Rd);
}
void ARM64XEmitter::SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift)
{
EncodeAddSubImmInst(1, false, shift, imm, Rn, Rd);
}
void ARM64XEmitter::SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift)
{
EncodeAddSubImmInst(1, true, shift, imm, Rn, Rd);
}
void ARM64XEmitter::CMP(ARM64Reg Rn, u32 imm, bool shift)
{
EncodeAddSubImmInst(1, true, shift, imm, Rn, Is64Bit(Rn) ? SP : WSP);
}
// Data Processing (Immediate)
void ARM64XEmitter::MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos)
{
EncodeMOVWideInst(2, Rd, imm, pos);
}
void ARM64XEmitter::MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos)
{
EncodeMOVWideInst(0, Rd, imm, pos);
}
void ARM64XEmitter::MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos)
{
EncodeMOVWideInst(3, Rd, imm, pos);
}
// Bitfield move
void ARM64XEmitter::BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms)
{
EncodeBitfieldMOVInst(1, Rd, Rn, immr, imms);
}
void ARM64XEmitter::SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms)
{
EncodeBitfieldMOVInst(0, Rd, Rn, immr, imms);
}
void ARM64XEmitter::UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms)
{
EncodeBitfieldMOVInst(2, Rd, Rn, immr, imms);
}
void ARM64XEmitter::EXTR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u32 shift) {
bool sf = Is64Bit(Rd);
bool N = sf;
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Write32((sf << 31) | (0x27 << 23) | (N << 22) | (Rm << 16) | (shift << 10) | (Rm << 5) | Rd);
}
void ARM64XEmitter::SXTB(ARM64Reg Rd, ARM64Reg Rn)
{
SBFM(Rd, Rn, 0, 7);
}
void ARM64XEmitter::SXTH(ARM64Reg Rd, ARM64Reg Rn)
{
SBFM(Rd, Rn, 0, 15);
}
void ARM64XEmitter::SXTW(ARM64Reg Rd, ARM64Reg Rn)
{
_assert_msg_(DYNA_REC, Is64Bit(Rd), "%s requires 64bit register as destination", __FUNCTION__);
SBFM(Rd, Rn, 0, 31);
}
void ARM64XEmitter::UXTB(ARM64Reg Rd, ARM64Reg Rn)
{
UBFM(Rd, Rn, 0, 7);
}
void ARM64XEmitter::UXTH(ARM64Reg Rd, ARM64Reg Rn)
{
UBFM(Rd, Rn, 0, 15);
}
// Load Register (Literal)
void ARM64XEmitter::LDR(ARM64Reg Rt, u32 imm)
{
EncodeLoadRegisterInst(0, Rt, imm);
}
void ARM64XEmitter::LDRSW(ARM64Reg Rt, u32 imm)
{
EncodeLoadRegisterInst(2, Rt, imm);
}
void ARM64XEmitter::PRFM(ARM64Reg Rt, u32 imm)
{
EncodeLoadRegisterInst(3, Rt, imm);
}
// Load/Store pair
void ARM64XEmitter::LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm)
{
EncodeLoadStorePair(0, false, 1, type, Rt, Rt2, Rn, imm);
}
void ARM64XEmitter::LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm)
{
EncodeLoadStorePair(1, false, 1, type, Rt, Rt2, Rn, imm);
}
void ARM64XEmitter::STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm)
{
EncodeLoadStorePair(0, false, 0, type, Rt, Rt2, Rn, imm);
}
// Load/Store Exclusive
void ARM64XEmitter::STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(0, Rs, SP, Rt, Rn);
}
void ARM64XEmitter::STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(1, Rs, SP, Rt, Rn);
}
void ARM64XEmitter::LDXRB(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(2, SP, SP, Rt, Rn);
}
void ARM64XEmitter::LDAXRB(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(3, SP, SP, Rt, Rn);
}
void ARM64XEmitter::STLRB(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(4, SP, SP, Rt, Rn);
}
void ARM64XEmitter::LDARB(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(5, SP, SP, Rt, Rn);
}
void ARM64XEmitter::STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(6, Rs, SP, Rt, Rn);
}
void ARM64XEmitter::STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(7, Rs, SP, Rt, Rn);
}
void ARM64XEmitter::LDXRH(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(8, SP, SP, Rt, Rn);
}
void ARM64XEmitter::LDAXRH(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(9, SP, SP, Rt, Rn);
}
void ARM64XEmitter::STLRH(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(10, SP, SP, Rt, Rn);
}
void ARM64XEmitter::LDARH(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(11, SP, SP, Rt, Rn);
}
void ARM64XEmitter::STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(12 + Is64Bit(Rt), Rs, SP, Rt, Rn);
}
void ARM64XEmitter::STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(14 + Is64Bit(Rt), Rs, SP, Rt, Rn);
}
void ARM64XEmitter::STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(16 + Is64Bit(Rt), Rs, Rt2, Rt, Rn);
}
void ARM64XEmitter::STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(18 + Is64Bit(Rt), Rs, Rt2, Rt, Rn);
}
void ARM64XEmitter::LDXR(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(20 + Is64Bit(Rt), SP, SP, Rt, Rn);
}
void ARM64XEmitter::LDAXR(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(22 + Is64Bit(Rt), SP, SP, Rt, Rn);
}
void ARM64XEmitter::LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(24 + Is64Bit(Rt), SP, Rt2, Rt, Rn);
}
void ARM64XEmitter::LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(26 + Is64Bit(Rt), SP, Rt2, Rt, Rn);
}
void ARM64XEmitter::STLR(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(28 + Is64Bit(Rt), SP, SP, Rt, Rn);
}
void ARM64XEmitter::LDAR(ARM64Reg Rt, ARM64Reg Rn)
{
EncodeLoadStoreExcInst(30 + Is64Bit(Rt), SP, SP, Rt, Rn);
}
// Load/Store no-allocate pair (offset)
void ARM64XEmitter::STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm)
{
EncodeLoadStorePairedInst(0xA0, Rt, Rt2, Rn, imm);
}
void ARM64XEmitter::LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm)
{
EncodeLoadStorePairedInst(0xA1, Rt, Rt2, Rn, imm);
}
// Load/Store register (immediate post-indexed)
// XXX: Most of these support vectors
void ARM64XEmitter::STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == INDEX_UNSIGNED)
EncodeLoadStoreIndexedInst(0x0E4, Rt, Rn, imm, 8);
else
EncodeLoadStoreIndexedInst(0x0E0,
type == INDEX_POST ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == INDEX_UNSIGNED)
EncodeLoadStoreIndexedInst(0x0E5, Rt, Rn, imm, 8);
else
EncodeLoadStoreIndexedInst(0x0E1,
type == INDEX_POST ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == INDEX_UNSIGNED)
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x0E6 : 0x0E7, Rt, Rn, imm, 8);
else
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x0E2 : 0x0E3,
type == INDEX_POST ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == INDEX_UNSIGNED)
EncodeLoadStoreIndexedInst(0x1E4, Rt, Rn, imm, 16);
else
EncodeLoadStoreIndexedInst(0x1E0,
type == INDEX_POST ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == INDEX_UNSIGNED)
EncodeLoadStoreIndexedInst(0x1E5, Rt, Rn, imm, 16);
else
EncodeLoadStoreIndexedInst(0x1E1,
type == INDEX_POST ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == INDEX_UNSIGNED)
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x1E6 : 0x1E7, Rt, Rn, imm, 16);
else
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x1E2 : 0x1E3,
type == INDEX_POST ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == INDEX_UNSIGNED)
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E4 : 0x2E4, Rt, Rn, imm, Is64Bit(Rt) ? 64 : 32);
else
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E0 : 0x2E0,
type == INDEX_POST ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == INDEX_UNSIGNED)
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E5 : 0x2E5, Rt, Rn, imm, Is64Bit(Rt) ? 64 : 32);
else
EncodeLoadStoreIndexedInst(Is64Bit(Rt) ? 0x3E1 : 0x2E1,
type == INDEX_POST ? 1 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
if (type == INDEX_UNSIGNED)
EncodeLoadStoreIndexedInst(0x2E6, Rt, Rn, imm, 32);
else
EncodeLoadStoreIndexedInst(0x2E2,
type == INDEX_POST ? 1 : 3, Rt, Rn, imm);
}
// Load/Store register (register offset)
void ARM64XEmitter::STRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(0, 0, Rt, Rn, Rm);
}
void ARM64XEmitter::LDRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(0, 1, Rt, Rn, Rm);
}
void ARM64XEmitter::LDRSB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
bool b64Bit = Is64Bit(Rt);
EncodeLoadStoreRegisterOffset(0, 3 - b64Bit, Rt, Rn, Rm);
}
void ARM64XEmitter::STRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(1, 0, Rt, Rn, Rm);
}
void ARM64XEmitter::LDRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(1, 1, Rt, Rn, Rm);
}
void ARM64XEmitter::LDRSH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
bool b64Bit = Is64Bit(Rt);
EncodeLoadStoreRegisterOffset(1, 3 - b64Bit, Rt, Rn, Rm);
}
void ARM64XEmitter::STR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
bool b64Bit = Is64Bit(Rt);
EncodeLoadStoreRegisterOffset(2 + b64Bit, 0, Rt, Rn, Rm);
}
void ARM64XEmitter::LDR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
bool b64Bit = Is64Bit(Rt);
EncodeLoadStoreRegisterOffset(2 + b64Bit, 1, Rt, Rn, Rm);
}
void ARM64XEmitter::LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(2, 2, Rt, Rn, Rm);
}
void ARM64XEmitter::PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm)
{
EncodeLoadStoreRegisterOffset(3, 2, Rt, Rn, Rm);
}
// Load/Store register (unscaled offset)
void ARM64XEmitter::STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(0, 0, Rt, Rn, imm);
}
void ARM64XEmitter::LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(0, 1, Rt, Rn, imm);
}
void ARM64XEmitter::LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(0, Is64Bit(Rt) ? 2 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(1, 0, Rt, Rn, imm);
}
void ARM64XEmitter::LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(1, 1, Rt, Rn, imm);
}
void ARM64XEmitter::LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(1, Is64Bit(Rt) ? 2 : 3, Rt, Rn, imm);
}
void ARM64XEmitter::STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(Is64Bit(Rt) ? 3 : 2, 0, Rt, Rn, imm);
}
void ARM64XEmitter::LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EncodeLoadStoreUnscaled(Is64Bit(Rt) ? 3 : 2, 1, Rt, Rn, imm);
}
void ARM64XEmitter::LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
_assert_msg_(DYNA_REC, !Is64Bit(Rt), "%s must have a 64bit destination register!", __FUNCTION__);
EncodeLoadStoreUnscaled(2, 2, Rt, Rn, imm);
}
// Address of label/page PC-relative
void ARM64XEmitter::ADR(ARM64Reg Rd, s32 imm)
{
EncodeAddressInst(0, Rd, imm);
}
void ARM64XEmitter::ADRP(ARM64Reg Rd, s32 imm)
{
EncodeAddressInst(1, Rd, imm >> 12);
}
// LLVM is unhappy about the regular abs function, so here we go.
inline int64_t abs64(int64_t x) {
return x >= 0 ? x : -x;
}
// Wrapper around MOVZ+MOVK (and later MOVN)
void ARM64XEmitter::MOVI2R(ARM64Reg Rd, u64 imm, bool optimize)
{
unsigned int parts = Is64Bit(Rd) ? 4 : 2;
BitSet32 upload_part(0);
// Always start with a movz! Kills the dependency on the register.
bool use_movz = true;
if (!imm)
{
// Zero immediate, just clear the register. EOR is pointless when we have MOVZ, which looks clearer in disasm too.
MOVZ(Rd, 0, SHIFT_0);
return;
}
if ((Is64Bit(Rd) && imm == std::numeric_limits<u64>::max()) ||
(!Is64Bit(Rd) && imm == std::numeric_limits<u32>::max()))
{
// Max unsigned value (or if signed, -1)
// Set to ~ZR
ARM64Reg ZR = Is64Bit(Rd) ? SP : WSP;
ORN(Rd, ZR, ZR, ArithOption(ZR, ST_LSL, 0));
return;
}
// TODO: Make some more systemic use of MOVN, but this will take care of most cases.
// Small negative integer. Use MOVN
if (!Is64Bit(Rd) && (imm | 0xFFFF0000) == imm) {
MOVN(Rd, ~imm, SHIFT_0);
return;
}
// XXX: Use MOVN when possible.
// XXX: Optimize more
// XXX: Support rotating immediates to save instructions
if (optimize)
{
for (unsigned int i = 0; i < parts; ++i)
{
if ((imm >> (i * 16)) & 0xFFFF)
upload_part[i] = 1;
}
}
u64 aligned_pc = (u64)GetCodePtr() & ~0xFFF;
s64 aligned_offset = (s64)imm - (s64)aligned_pc;
if (upload_part.Count() > 1 && abs64(aligned_offset) < 0xFFFFFFFFLL)
{
// Immediate we are loading is within 4GB of our aligned range
// Most likely a address that we can load in one or two instructions
if (!(abs64(aligned_offset) & 0xFFF))
{
// Aligned ADR
ADRP(Rd, (s32)aligned_offset);
return;
}
else
{
// If the address is within 1MB of PC we can load it in a single instruction still
s64 offset = (s64)imm - (s64)GetCodePtr();
if (offset >= -0xFFFFF && offset <= 0xFFFFF)
{
ADR(Rd, (s32)offset);
return;
}
else
{
ADRP(Rd, (s32)(aligned_offset & ~0xFFF));
ADD(Rd, Rd, imm & 0xFFF);
return;
}
}
}
for (unsigned i = 0; i < parts; ++i)
{
if (use_movz && upload_part[i])
{
MOVZ(Rd, (imm >> (i * 16)) & 0xFFFF, (ShiftAmount)i);
use_movz = false;
}
else
{
if (upload_part[i] || !optimize)
MOVK(Rd, (imm >> (i * 16)) & 0xFFFF, (ShiftAmount)i);
}
}
}
void ARM64XEmitter::PUSH(ARM64Reg Rd) {
STR(INDEX_PRE, Rd, SP, -16);
}
void ARM64XEmitter::POP(ARM64Reg Rd) {
LDR(INDEX_POST, Rd, SP, 16);
}
void ARM64XEmitter::PUSH2(ARM64Reg Rd, ARM64Reg Rn) {
STP(INDEX_PRE, Rd, Rn, SP, -16);
}
void ARM64XEmitter::POP2(ARM64Reg Rd, ARM64Reg Rn) {
LDP(INDEX_POST, Rd, Rn, SP, 16);
}
void ARM64XEmitter::ABI_PushRegisters(BitSet32 registers)
{
int num_regs = registers.Count();
if (num_regs % 2)
{
bool first = true;
// Stack is required to be quad-word aligned.
u32 stack_size = ROUND_UP(num_regs * 8, 16);
u32 current_offset = 0;
std::vector<ARM64Reg> reg_pair;
for (auto it : registers)
{
if (first)
{
STR(INDEX_PRE, (ARM64Reg)(X0 + it), SP, -(s32)stack_size);
first = false;
current_offset += 16;
}
else
{
reg_pair.push_back((ARM64Reg)(X0 + it));
if (reg_pair.size() == 2)
{
STP(INDEX_UNSIGNED, reg_pair[0], reg_pair[1], SP, current_offset);
reg_pair.clear();
current_offset += 16;
}
}
}
}
else
{
std::vector<ARM64Reg> reg_pair;
for (auto it : registers)
{
reg_pair.push_back((ARM64Reg)(X0 + it));
if (reg_pair.size() == 2)
{
STP(INDEX_PRE, reg_pair[0], reg_pair[1], SP, -16);
reg_pair.clear();
}
}
}
}
void ARM64XEmitter::ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask)
{
int num_regs = registers.Count();
if (num_regs % 2)
{
bool first = true;
std::vector<ARM64Reg> reg_pair;
for (auto it : registers)
{
if (ignore_mask[it])
it = WSP;
if (first)
{
LDR(INDEX_POST, (ARM64Reg)(X0 + it), SP, 16);
first = false;
}
else
{
reg_pair.push_back((ARM64Reg)(X0 + it));
if (reg_pair.size() == 2)
{
LDP(INDEX_POST, reg_pair[0], reg_pair[1], SP, 16);
reg_pair.clear();
}
}
}
}
else
{
std::vector<ARM64Reg> reg_pair;
for (int i = 31; i >= 0; --i)
{
if (!registers[i])
continue;
int reg = i;
if (ignore_mask[reg])
reg = WSP;
reg_pair.push_back((ARM64Reg)(X0 + reg));
if (reg_pair.size() == 2)
{
LDP(INDEX_POST, reg_pair[1], reg_pair[0], SP, 16);
reg_pair.clear();
}
}
}
}
// Float Emitter
void ARM64FloatEmitter::EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
u32 encoded_size = 0;
u32 encoded_imm = 0;
if (size == 8)
encoded_size = 0;
else if (size == 16)
encoded_size = 1;
else if (size == 32)
encoded_size = 2;
else if (size == 64)
encoded_size = 3;
else if (size == 128)
encoded_size = 0;
if (type == INDEX_UNSIGNED)
{
_assert_msg_(DYNA_REC, !(imm & ((size - 1) >> 3)), "%s(INDEX_UNSIGNED) immediate offset must be aligned to size! (%d) (%p)", __FUNCTION__, imm, m_emit->GetCodePtr());
_assert_msg_(DYNA_REC, imm >= 0, "%s(INDEX_UNSIGNED) immediate offset must be positive!", __FUNCTION__);
if (size == 16)
imm >>= 1;
else if (size == 32)
imm >>= 2;
else if (size == 64)
imm >>= 3;
else if (size == 128)
imm >>= 4;
encoded_imm = (imm & 0xFFF);
}
else
{
_assert_msg_(DYNA_REC, !(imm < -256 || imm > 255), "%s immediate offset must be within range of -256 to 256!", __FUNCTION__);
encoded_imm = (imm & 0x1FF) << 2;
if (type == INDEX_POST)
encoded_imm |= 1;
else
encoded_imm |= 3;
}
Write32((encoded_size << 30) | (0xF << 26) | (type == INDEX_UNSIGNED ? (1 << 24) : 0) | \
(size == 128 ? (1 << 23) : 0) | (opc << 22) | (encoded_imm << 10) | (Rn << 5) | Rt);
}
void ARM64FloatEmitter::EmitScalar2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
_assert_msg_(DYNA_REC, !IsQuad(Rd), "%s only supports double and single registers!", __FUNCTION__);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (Rm << 16) | \
(opcode << 12) | (1 << 11) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
_assert_msg_(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __FUNCTION__);
bool quad = IsQuad(Rd);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Write32((quad << 30) | (U << 29) | (0x71 << 21) | (size << 22) | \
(Rm << 16) | (opcode << 11) | (1 << 10) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn)
{
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((Q << 30) | (op << 29) | (0x7 << 25) | (imm5 << 16) | (imm4 << 11) | \
(1 << 10) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{
_assert_msg_(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __FUNCTION__);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((Q << 30) | (U << 29) | (0x71 << 21) | (size << 22) | \
(opcode << 12) | (1 << 11) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn)
{
_assert_msg_(DYNA_REC, !IsSingle(Rt), "%s doesn't support singles!", __FUNCTION__);
bool quad = IsQuad(Rt);
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
Write32((quad << 30) | (0xD << 24) | (L << 22) | (R << 21) | (opcode << 13) | \
(S << 12) | (size << 10) | (Rn << 5) | Rt);
}
void ARM64FloatEmitter::EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm)
{
_assert_msg_(DYNA_REC, !IsSingle(Rt), "%s doesn't support singles!", __FUNCTION__);
bool quad = IsQuad(Rt);
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Write32((quad << 30) | (0x1B << 23) | (L << 22) | (R << 21) | (Rm << 16) | \
(opcode << 13) | (S << 12) | (size << 10) | (Rn << 5) | Rt);
}
void ARM64FloatEmitter::Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{
_assert_msg_(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (opcode << 15) | \
(1 << 14) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{
_assert_msg_(DYNA_REC, Rn <= SP, "%s only supports GPR as source!", __FUNCTION__);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((sf << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | (rmode << 19) | \
(opcode << 16) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitConvertScalarToInt(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round, bool sign)
{
_dbg_assert_msg_(JIT, IsScalar(Rn), "fcvts: Rn must be floating point");
if (IsGPR(Rd)) {
// Use the encoding that transfers the result to a GPR.
bool sf = Is64Bit(Rd);
int type = IsDouble(Rn) ? 1 : 0;
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
int opcode = (sign ? 1 : 0);
int rmode = 0;
switch (round) {
case ROUND_A: rmode = 0; opcode |= 4; break;
case ROUND_P: rmode = 1; break;
case ROUND_M: rmode = 2; break;
case ROUND_Z: rmode = 3; break;
case ROUND_N: rmode = 0; break;
}
EmitConversion2(sf, 0, true, type, rmode, opcode, 0, Rd, Rn);
}
else
{
// Use the encoding (vector, single) that keeps the result in the fp register.
int sz = IsDouble(Rn);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
int opcode = 0;
switch (round) {
case ROUND_A: opcode = 0x1C; break;
case ROUND_N: opcode = 0x1A; break;
case ROUND_M: opcode = 0x1B; break;
case ROUND_P: opcode = 0x1A; sz |= 2; break;
case ROUND_Z: opcode = 0x1B; sz |= 2; break;
}
Write32((0x5E << 24) | (sign << 29) | (sz << 22) | (1 << 21) | (opcode << 12) | (2 << 10) | (Rn << 5) | Rd);
}
}
void ARM64FloatEmitter::FCVTS(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round) {
EmitConvertScalarToInt(Rd, Rn, round, false);
}
void ARM64FloatEmitter::FCVTU(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round) {
EmitConvertScalarToInt(Rd, Rn, round, true);
}
void ARM64FloatEmitter::EmitConversion2(bool sf, bool S, bool direction, u32 type, u32 rmode, u32 opcode, int scale, ARM64Reg Rd, ARM64Reg Rn)
{
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((sf << 31) | (S << 29) | (0xF0 << 21) | (direction << 21) | (type << 22) | (rmode << 19) | \
(opcode << 16) | (scale << 10) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm)
{
_assert_msg_(DYNA_REC, !IsQuad(Rn), "%s doesn't support vector!", __FUNCTION__);
bool is_double = IsDouble(Rn);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (Rm << 16) | \
(op << 14) | (1 << 13) | (Rn << 5) | opcode2);
}
void ARM64FloatEmitter::EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
_assert_msg_(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__);
bool is_double = IsDouble(Rd);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (Rm << 16) | \
(cond << 12) | (3 << 10) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
_assert_msg_(DYNA_REC, !IsSingle(Rd), "%s doesn't support singles!", __FUNCTION__);
bool quad = IsQuad(Rd);
u32 encoded_size = 0;
if (size == 16)
encoded_size = 1;
else if (size == 32)
encoded_size = 2;
else if (size == 64)
encoded_size = 3;
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Write32((quad << 30) | (7 << 25) | (encoded_size << 22) | (Rm << 16) | (op << 12) | \
(1 << 11) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm8)
{
_assert_msg_(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__);
bool is_double = !IsSingle(Rd);
Rd = DecodeReg(Rd);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (is_double << 22) | (type << 22) | \
(imm8 << 13) | (1 << 12) | (imm5 << 5) | Rd);
}
void ARM64FloatEmitter::EmitShiftImm(bool Q, bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{
_assert_msg_(DYNA_REC, immh, "%s bad encoding! Can't have zero immh", __FUNCTION__);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((Q << 30) | (U << 29) | (0xF << 24) | (immh << 19) | (immb << 16) | \
(opcode << 11) | (1 << 10) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitScalarShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn) {
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((2 << 30) | (U << 29) | (0x3E << 23) | (immh << 19) | (immb << 16) | (opcode << 11) | (1 << 10) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn)
{
bool quad = IsQuad(Rt);
u32 encoded_size = 0;
if (size == 16)
encoded_size = 1;
else if (size == 32)
encoded_size = 2;
else if (size == 64)
encoded_size = 3;
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
Write32((quad << 30) | (3 << 26) | (L << 22) | (opcode << 12) | \
(encoded_size << 10) | (Rn << 5) | Rt);
}
void ARM64FloatEmitter::EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn)
{
_assert_msg_(DYNA_REC, !IsQuad(Rd), "%s doesn't support vector!", __FUNCTION__);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((M << 31) | (S << 29) | (0xF1 << 21) | (type << 22) | \
(opcode << 15) | (1 << 14) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
bool quad = IsQuad(Rd);
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Write32((quad << 30) | (U << 29) | (0xF << 24) | (size << 22) | (L << 21) | \
(Rm << 16) | (opcode << 12) | (H << 11) | (Rn << 5) | Rd);
}
void ARM64FloatEmitter::EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
_assert_msg_(DYNA_REC, !(imm < -256 || imm > 255), "%s received too large offset: %d", __FUNCTION__, imm);
Rt = DecodeReg(Rt);
Rn = DecodeReg(Rn);
Write32((size << 30) | (0xF << 26) | (op << 22) | ((imm & 0x1FF) << 12) | (Rn << 5) | Rt);
}
void ARM64FloatEmitter::LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EmitLoadStoreImmediate(size, 1, type, Rt, Rn, imm);
}
void ARM64FloatEmitter::STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
EmitLoadStoreImmediate(size, 0, type, Rt, Rn, imm);
}
// Loadstore unscaled
void ARM64FloatEmitter::LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
u32 encoded_size = 0;
u32 encoded_op = 0;
if (size == 8)
{
encoded_size = 0;
encoded_op = 1;
}
else if (size == 16)
{
encoded_size = 1;
encoded_op = 1;
}
else if (size == 32)
{
encoded_size = 2;
encoded_op = 1;
}
else if (size == 64)
{
encoded_size = 3;
encoded_op = 1;
}
else if (size == 128)
{
encoded_size = 0;
encoded_op = 3;
}
EmitLoadStoreUnscaled(encoded_size, encoded_op, Rt, Rn, imm);
}
void ARM64FloatEmitter::STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm)
{
u32 encoded_size = 0;
u32 encoded_op = 0;
if (size == 8)
{
encoded_size = 0;
encoded_op = 0;
}
else if (size == 16)
{
encoded_size = 1;
encoded_op = 0;
}
else if (size == 32)
{
encoded_size = 2;
encoded_op = 0;
}
else if (size == 64)
{
encoded_size = 3;
encoded_op = 0;
}
else if (size == 128)
{
encoded_size = 0;
encoded_op = 2;
}
EmitLoadStoreUnscaled(encoded_size, encoded_op, Rt, Rn, imm);
}
// Loadstore single structure
void ARM64FloatEmitter::LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn)
{
bool S = 0;
u32 opcode = 0;
u32 encoded_size = 0;
ARM64Reg encoded_reg = INVALID_REG;
if (size == 8)
{
S = (index & 4) != 0;
opcode = 0;
encoded_size = index & 3;
if (index & 8)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 16)
{
S = (index & 2) != 0;
opcode = 2;
encoded_size = (index & 1) << 1;
if (index & 4)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 32)
{
S = (index & 1) != 0;
opcode = 4;
encoded_size = 0;
if (index & 2)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 64)
{
S = 0;
opcode = 4;
encoded_size = 1;
if (index == 1)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
EmitLoadStoreSingleStructure(1, 0, opcode, S, encoded_size, encoded_reg, Rn);
}
void ARM64FloatEmitter::LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm)
{
bool S = 0;
u32 opcode = 0;
u32 encoded_size = 0;
ARM64Reg encoded_reg = INVALID_REG;
if (size == 8)
{
S = (index & 4) != 0;
opcode = 0;
encoded_size = index & 3;
if (index & 8)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 16)
{
S = (index & 2) != 0;
opcode = 2;
encoded_size = (index & 1) << 1;
if (index & 4)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 32)
{
S = (index & 1) != 0;
opcode = 4;
encoded_size = 0;
if (index & 2)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 64)
{
S = 0;
opcode = 4;
encoded_size = 1;
if (index == 1)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
EmitLoadStoreSingleStructure(1, 0, opcode, S, encoded_size, encoded_reg, Rn, Rm);
}
void ARM64FloatEmitter::LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn)
{
EmitLoadStoreSingleStructure(1, 0, 6, 0, size >> 4, Rt, Rn);
}
void ARM64FloatEmitter::ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn)
{
bool S = 0;
u32 opcode = 0;
u32 encoded_size = 0;
ARM64Reg encoded_reg = INVALID_REG;
if (size == 8)
{
S = (index & 4) != 0;
opcode = 0;
encoded_size = index & 3;
if (index & 8)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 16)
{
S = (index & 2) != 0;
opcode = 2;
encoded_size = (index & 1) << 1;
if (index & 4)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 32)
{
S = (index & 1) != 0;
opcode = 4;
encoded_size = 0;
if (index & 2)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 64)
{
S = 0;
opcode = 4;
encoded_size = 1;
if (index == 1)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
EmitLoadStoreSingleStructure(0, 0, opcode, S, encoded_size, encoded_reg, Rn);
}
void ARM64FloatEmitter::ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm)
{
bool S = 0;
u32 opcode = 0;
u32 encoded_size = 0;
ARM64Reg encoded_reg = INVALID_REG;
if (size == 8)
{
S = (index & 4) != 0;
opcode = 0;
encoded_size = index & 3;
if (index & 8)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 16)
{
S = (index & 2) != 0;
opcode = 2;
encoded_size = (index & 1) << 1;
if (index & 4)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 32)
{
S = (index & 1) != 0;
opcode = 4;
encoded_size = 0;
if (index & 2)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
else if (size == 64)
{
S = 0;
opcode = 4;
encoded_size = 1;
if (index == 1)
encoded_reg = EncodeRegToQuad(Rt);
else
encoded_reg = EncodeRegToDouble(Rt);
}
EmitLoadStoreSingleStructure(0, 0, opcode, S, encoded_size, encoded_reg, Rn, Rm);
}
// Loadstore multiple structure
void ARM64FloatEmitter::LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn)
{
_assert_msg_(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", __FUNCTION__);
u32 opcode = 0;
if (count == 1)
opcode = 7;
else if (count == 2)
opcode = 0xA;
else if (count == 3)
opcode = 6;
else if (count == 4)
opcode = 2;
EmitLoadStoreMultipleStructure(size, 1, opcode, Rt, Rn);
}
void ARM64FloatEmitter::ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn)
{
_assert_msg_(DYNA_REC, !(count == 0 || count > 4), "%s must have a count of 1 to 4 registers!", __FUNCTION__);
u32 opcode = 0;
if (count == 1)
opcode = 7;
else if (count == 2)
opcode = 0xA;
else if (count == 3)
opcode = 6;
else if (count == 4)
opcode = 2;
EmitLoadStoreMultipleStructure(size, 0, opcode, Rt, Rn);
}
// Scalar - 1 Source
void ARM64FloatEmitter::FMOV(ARM64Reg Rd, ARM64Reg Rn, bool top)
{
if (IsScalar(Rd) && IsScalar(Rn)) {
EmitScalar1Source(0, 0, IsDouble(Rd), 0, Rd, Rn);
} else {
_assert_msg_(JIT, !IsQuad(Rd) && !IsQuad(Rn), "FMOV can't move to/from quads");
int type = 0;
int rmode = 0;
int opcode = 6;
int sf = 0;
if (IsSingle(Rd) && !Is64Bit(Rn) && !top) {
// GPR to scalar single
opcode |= 1;
} else if (!Is64Bit(Rd) && IsSingle(Rn) && !top) {
// Scalar single to GPR - defaults are correct
} else {
// TODO
_assert_msg_(JIT, 0, "FMOV: Unhandled case");
}
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Write32((sf << 31) | (0x1e2 << 20) | (rmode << 19) | (opcode << 16) | (Rn << 5) | Rd);
}
}
void ARM64FloatEmitter::FABS(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalar1Source(0, 0, IsDouble(Rd), 1, Rd, Rn);
}
void ARM64FloatEmitter::FNEG(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalar1Source(0, 0, IsDouble(Rd), 2, Rd, Rn);
}
void ARM64FloatEmitter::FSQRT(ARM64Reg Rd, ARM64Reg Rn)
{
EmitScalar1Source(0, 0, IsDouble(Rd), 3, Rd, Rn);
}
// Scalar - 2 Source
void ARM64FloatEmitter::FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 2, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 0, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 3, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 1, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMAX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 4, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMIN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 5, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMAXNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 6, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMINNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 7, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FNMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitScalar2Source(0, 0, IsDouble(Rd), 8, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) {
EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 0);
}
void ARM64FloatEmitter::FMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) {
EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 1);
}
void ARM64FloatEmitter::FNMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) {
EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 2);
}
void ARM64FloatEmitter::FNMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra) {
EmitScalar3Source(IsDouble(Rd), Rd, Rn, Rm, Ra, 3);
}
void ARM64FloatEmitter::EmitScalar3Source(bool isDouble, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra, int opcode) {
int type = isDouble ? 1 : 0;
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
Rm = DecodeReg(Rm);
Ra = DecodeReg(Ra);
int o1 = opcode >> 1;
int o0 = opcode & 1;
m_emit->Write32((0x1F << 24) | (type << 22) | (o1 << 21) | (Rm << 16) | (o0 << 15) | (Ra << 10) | (Rn << 5) | Rd);
}
// Scalar floating point immediate
void ARM64FloatEmitter::FMOV(ARM64Reg Rd, uint8_t imm8)
{
EmitScalarImm(0, 0, 0, 0, Rd, imm8);
}
// Vector
void ARM64FloatEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, 0, 3, Rd, Rn, Rm);
}
void ARM64FloatEmitter::BSL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, 1, 3, Rd, Rn, Rm);
}
void ARM64FloatEmitter::DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index)
{
u32 imm5 = 0;
if (size == 8)
{
imm5 = 1;
imm5 |= index << 1;
}
else if (size == 16)
{
imm5 = 2;
imm5 |= index << 2;
}
else if (size == 32)
{
imm5 = 4;
imm5 |= index << 3;
}
else if (size == 64)
{
imm5 = 8;
imm5 |= index << 4;
}
EmitCopy(IsQuad(Rd), 0, imm5, 0, Rd, Rn);
}
void ARM64FloatEmitter::FABS(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xF, Rd, Rn);
}
void ARM64FloatEmitter::FADD(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, size >> 6, 0x1A, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, size >> 6, 0x19, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FCVTL(u8 size, ARM64Reg Rd, ARM64Reg Rn, bool source_upper)
{
Emit2RegMisc(source_upper, 0, size >> 6, 0x17, Rd, Rn);
}
void ARM64FloatEmitter::FCVTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, dest_size >> 5, 0x16, Rd, Rn);
}
void ARM64FloatEmitter::FCVTZS(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x1B, Rd, Rn);
}
void ARM64FloatEmitter::FCVTZU(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x1B, Rd, Rn);
}
void ARM64FloatEmitter::FDIV(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, size >> 6, 0x1F, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, size >> 6, 0x1B, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FNEG(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0xF, Rd, Rn);
}
void ARM64FloatEmitter::FRSQRTE(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x1D, Rd, Rn);
}
void ARM64FloatEmitter::FSUB(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, 2 | (size >> 6), 0x1A, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMLS(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, 2 | (size >> 6), 0x19, Rd, Rn, Rm);
}
void ARM64FloatEmitter::NOT(ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 0, 5, Rd, Rn);
}
void ARM64FloatEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, 2, 3, Rd, Rn, Rm);
}
void ARM64FloatEmitter::REV16(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, size >> 4, 1, Rd, Rn);
}
void ARM64FloatEmitter::REV32(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, size >> 4, 0, Rd, Rn);
}
void ARM64FloatEmitter::REV64(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, size >> 4, 0, Rd, Rn);
}
void ARM64FloatEmitter::SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, size >> 6, 0x1D, Rd, Rn);
}
void ARM64FloatEmitter::UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, size >> 6, 0x1D, Rd, Rn);
}
void ARM64FloatEmitter::SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale)
{
int imm = size * 2 - scale;
EmitShiftImm(IsQuad(Rd), 0, imm >> 3, imm & 7, 0x1C, Rd, Rn);
}
void ARM64FloatEmitter::UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale)
{
int imm = size * 2 - scale;
EmitShiftImm(IsQuad(Rd), 1, imm >> 3, imm & 7, 0x1C, Rd, Rn);
}
void ARM64FloatEmitter::XTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, dest_size >> 4, 0x12, Rd, Rn);
}
// Move
void ARM64FloatEmitter::DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
u32 imm5 = 0;
if (size == 8)
imm5 = 1;
else if (size == 16)
imm5 = 2;
else if (size == 32)
imm5 = 4;
else if (size == 64)
imm5 = 8;
EmitCopy(IsQuad(Rd), 0, imm5, 1, Rd, Rn);
}
void ARM64FloatEmitter::INS(u8 size, ARM64Reg Rd, u8 index, ARM64Reg Rn)
{
u32 imm5 = 0;
if (size == 8)
{
imm5 = 1;
imm5 |= index << 1;
}
else if (size == 16)
{
imm5 = 2;
imm5 |= index << 2;
}
else if (size == 32)
{
imm5 = 4;
imm5 |= index << 3;
}
else if (size == 64)
{
imm5 = 8;
imm5 |= index << 4;
}
EmitCopy(1, 0, imm5, 3, Rd, Rn);
}
void ARM64FloatEmitter::INS(u8 size, ARM64Reg Rd, u8 index1, ARM64Reg Rn, u8 index2)
{
u32 imm5 = 0, imm4 = 0;
if (size == 8)
{
imm5 = 1;
imm5 |= index1 << 1;
imm4 = index2;
}
else if (size == 16)
{
imm5 = 2;
imm5 |= index1 << 2;
imm4 = index2 << 1;
}
else if (size == 32)
{
imm5 = 4;
imm5 |= index1 << 3;
imm4 = index2 << 2;
}
else if (size == 64)
{
imm5 = 8;
imm5 |= index1 << 4;
imm4 = index2 << 3;
}
EmitCopy(1, 1, imm5, imm4, Rd, Rn);
}
void ARM64FloatEmitter::UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index)
{
bool b64Bit = Is64Bit(Rd);
_assert_msg_(DYNA_REC, Rd < SP, "%s destination must be a GPR!", __FUNCTION__);
_assert_msg_(DYNA_REC, !(b64Bit && size != 64), "%s must have a size of 64 when destination is 64bit!", __FUNCTION__);
u32 imm5 = 0;
if (size == 8)
{
imm5 = 1;
imm5 |= index << 1;
}
else if (size == 16)
{
imm5 = 2;
imm5 |= index << 2;
}
else if (size == 32)
{
imm5 = 4;
imm5 |= index << 3;
}
else if (size == 64)
{
imm5 = 8;
imm5 |= index << 4;
}
EmitCopy(b64Bit, 0, imm5, 7, Rd, Rn);
}
void ARM64FloatEmitter::SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index)
{
bool b64Bit = Is64Bit(Rd);
_assert_msg_(DYNA_REC, Rd < SP, "%s destination must be a GPR!", __FUNCTION__);
_assert_msg_(DYNA_REC, size != 64, "%s doesn't support 64bit destination. Use UMOV!", __FUNCTION__);
u32 imm5 = 0;
if (size == 8)
{
imm5 = 1;
imm5 |= index << 1;
}
else if (size == 16)
{
imm5 = 2;
imm5 |= index << 2;
}
else if (size == 32)
{
imm5 = 4;
imm5 |= index << 3;
}
EmitCopy(b64Bit, 0, imm5, 5, Rd, Rn);
}
// One source
void ARM64FloatEmitter::FCVT(u8 size_to, u8 size_from, ARM64Reg Rd, ARM64Reg Rn)
{
u32 dst_encoding = 0;
u32 src_encoding = 0;
if (size_to == 16)
dst_encoding = 3;
else if (size_to == 32)
dst_encoding = 0;
else if (size_to == 64)
dst_encoding = 1;
if (size_from == 16)
src_encoding = 3;
else if (size_from == 32)
src_encoding = 0;
else if (size_from == 64)
src_encoding = 1;
Emit1Source(0, 0, src_encoding, 4 | dst_encoding, Rd, Rn);
}
void ARM64FloatEmitter::SCVTF(ARM64Reg Rd, ARM64Reg Rn)
{
if (IsScalar(Rn)) {
// Source is in FP register (like destination!). We must use a vector encoding.
bool sign = false;
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
int sz = IsDouble(Rn);
Write32((0x5e << 24) | (sign << 29) | (sz << 22) | (0x876 << 10) | (Rn << 5) | Rd);
} else {
bool sf = Is64Bit(Rn);
u32 type = 0;
if (IsDouble(Rd))
type = 1;
EmitConversion(sf, 0, type, 0, 2, Rd, Rn);
}
}
void ARM64FloatEmitter::UCVTF(ARM64Reg Rd, ARM64Reg Rn)
{
if (IsScalar(Rn)) {
// Source is in FP register (like destination!). We must use a vector encoding.
bool sign = true;
Rd = DecodeReg(Rd);
Rn = DecodeReg(Rn);
int sz = IsDouble(Rn);
Write32((0x5e << 24) | (sign << 29) | (sz << 22) | (0x876 << 10) | (Rn << 5) | Rd);
} else {
bool sf = Is64Bit(Rn);
u32 type = 0;
if (IsDouble(Rd))
type = 1;
EmitConversion(sf, 0, type, 0, 3, Rd, Rn);
}
}
void ARM64FloatEmitter::SCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale)
{
bool sf = Is64Bit(Rn);
u32 type = 0;
if (IsDouble(Rd))
type = 1;
EmitConversion2(sf, 0, false, type, 0, 2, 64 - scale, Rd, Rn);
}
void ARM64FloatEmitter::UCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale)
{
bool sf = Is64Bit(Rn);
u32 type = 0;
if (IsDouble(Rd))
type = 1;
EmitConversion2(sf, 0, false, type, 0, 3, 64 - scale, Rd, Rn);
}
void ARM64FloatEmitter::FCMP(ARM64Reg Rn, ARM64Reg Rm)
{
EmitCompare(0, 0, 0, 0, Rn, Rm);
}
void ARM64FloatEmitter::FCMP(ARM64Reg Rn)
{
EmitCompare(0, 0, 0, 8, Rn, (ARM64Reg)0);
}
void ARM64FloatEmitter::FCMPE(ARM64Reg Rn, ARM64Reg Rm)
{
EmitCompare(0, 0, 0, 0x10, Rn, Rm);
}
void ARM64FloatEmitter::FCMPE(ARM64Reg Rn)
{
EmitCompare(0, 0, 0, 0x18, Rn, (ARM64Reg)0);
}
void ARM64FloatEmitter::FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(0, size >> 6, 0x1C, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x1D, Rd, Rn);
}
void ARM64FloatEmitter::FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, size >> 6, 0x1C, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0x1C, Rd, Rn);
}
void ARM64FloatEmitter::FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitThreeSame(1, 2 | (size >> 6), 0x1C, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0x0C, Rd, Rn);
}
void ARM64FloatEmitter::FCMLE(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 1, 2 | (size >> 6), 0xD, Rd, Rn);
}
void ARM64FloatEmitter::FCMLT(u8 size, ARM64Reg Rd, ARM64Reg Rn)
{
Emit2RegMisc(IsQuad(Rd), 0, 2 | (size >> 6), 0xE, Rd, Rn);
}
void ARM64FloatEmitter::FCSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond)
{
EmitCondSelect(0, 0, cond, Rd, Rn, Rm);
}
// Permute
void ARM64FloatEmitter::UZP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 1, Rd, Rn, Rm);
}
void ARM64FloatEmitter::TRN1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 2, Rd, Rn, Rm);
}
void ARM64FloatEmitter::ZIP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 3, Rd, Rn, Rm);
}
void ARM64FloatEmitter::UZP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 5, Rd, Rn, Rm);
}
void ARM64FloatEmitter::TRN2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 6, Rd, Rn, Rm);
}
void ARM64FloatEmitter::ZIP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
{
EmitPermute(size, 7, Rd, Rn, Rm);
}
// Shift by immediate
void ARM64FloatEmitter::SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper)
{
_assert_msg_(DYNA_REC, shift < src_size, "%s shift amount must less than the element size!", __FUNCTION__);
u32 immh = 0;
u32 immb = shift & 0xFFF;
if (src_size == 8)
{
immh = 1;
}
else if (src_size == 16)
{
immh = 2 | ((shift >> 3) & 1);
}
else if (src_size == 32)
{
immh = 4 | ((shift >> 3) & 3);;
}
EmitShiftImm(upper, 0, immh, immb, 0x14, Rd, Rn);
}
void ARM64FloatEmitter::USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper)
{
_assert_msg_(DYNA_REC, shift < src_size, "%s shift amount must less than the element size!", __FUNCTION__);
u32 immh = 0;
u32 immb = shift & 0xFFF;
if (src_size == 8)
{
immh = 1;
}
else if (src_size == 16)
{
immh = 2 | ((shift >> 3) & 1);
}
else if (src_size == 32)
{
immh = 4 | ((shift >> 3) & 3);;
}
EmitShiftImm(upper, 1, immh, immb, 0x14, Rd, Rn);
}
void ARM64FloatEmitter::SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift)
{
_assert_msg_(DYNA_REC, shift < dest_size, "%s shift amount must less than the element size!", __FUNCTION__);
u32 immh = 0;
u32 immb = shift & 0xFFF;
if (dest_size == 8)
{
immh = 1;
}
else if (dest_size == 16)
{
immh = 2 | ((shift >> 3) & 1);
}
else if (dest_size == 32)
{
immh = 4 | ((shift >> 3) & 3);;
}
EmitShiftImm(IsQuad(Rd), 1, immh, immb, 0x10, Rd, Rn);
}
void ARM64FloatEmitter::SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper)
{
SSHLL(src_size, Rd, Rn, 0, upper);
}
void ARM64FloatEmitter::UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper)
{
USHLL(src_size, Rd, Rn, 0, upper);
}
// vector x indexed element
void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index)
{
_assert_msg_(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __FUNCTION__);
bool L = false;
bool H = false;
if (size == 32) {
L = index & 1;
H = (index >> 1) & 1;
} else if (size == 64) {
H = index == 1;
}
EmitVectorxElement(0, 2 | (size >> 6), L, 0x9, H, Rd, Rn, Rm);
}
void ARM64FloatEmitter::FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index)
{
_assert_msg_(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __FUNCTION__);
bool L = false;
bool H = false;
if (size == 32) {
L = index & 1;
H = (index >> 1) & 1;
} else if (size == 64) {
H = index == 1;
}
EmitVectorxElement(0, 2 | (size >> 6), L, 1, H, Rd, Rn, Rm);
}
void ARM64FloatEmitter::LDP(IndexType index_type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) {
m_emit->EncodeLoadStorePair(0, true, 1, index_type, Rt, Rt2, Rn, imm);
}
void ARM64FloatEmitter::STP(IndexType index_type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm) {
m_emit->EncodeLoadStorePair(0, true, 0, index_type, Rt, Rt2, Rn, imm);
}
void ARM64FloatEmitter::ABI_PushRegisters(BitSet32 registers)
{
for (auto it : registers)
STR(128, INDEX_PRE, (ARM64Reg)(Q0 + it), SP, -16);
}
void ARM64FloatEmitter::ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask)
{
for (int i = 31; i >= 0; --i)
{
if (!registers[i])
continue;
if (ignore_mask[i])
m_emit->ADD(SP, SP, 16);
else
LDR(128, INDEX_POST, (ARM64Reg)(Q0 + i), SP, 16);
}
}
void ARM64XEmitter::ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) {
unsigned int n, imm_s, imm_r;
if (!Is64Bit(Rn))
imm &= 0xFFFFFFFF;
if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) {
AND(Rd, Rn, imm_r, imm_s, n != 0);
} else {
_assert_msg_(JIT, scratch != INVALID_REG, "ANDSI2R - failed to construct logical immediate value from %08x, need scratch", (u32)imm);
MOVI2R(scratch, imm);
AND(Rd, Rn, scratch);
}
}
void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) {
unsigned int n, imm_s, imm_r;
if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) {
ORR(Rd, Rn, imm_r, imm_s, n != 0);
} else {
_assert_msg_(JIT, scratch != INVALID_REG, "ORRI2R - failed to construct logical immediate value from %08x, need scratch", (u32)imm);
MOVI2R(scratch, imm);
ORR(Rd, Rn, scratch);
}
}
void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) {
unsigned int n, imm_s, imm_r;
if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) {
EOR(Rd, Rn, imm_r, imm_s, n != 0);
} else {
_assert_msg_(JIT, scratch != INVALID_REG, "EORI2R - failed to construct logical immediate value from %08x, need scratch", (u32)imm);
MOVI2R(scratch, imm);
EOR(Rd, Rn, scratch);
}
}
void ARM64XEmitter::ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) {
unsigned int n, imm_s, imm_r;
if (IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32, &n, &imm_s, &imm_r)) {
ANDS(Rd, Rn, imm_r, imm_s, n != 0);
} else {
_assert_msg_(JIT, scratch != INVALID_REG, "ANDSI2R - failed to construct logical immediate value from %08x, need scratch", (u32)imm);
MOVI2R(scratch, imm);
ANDS(Rd, Rn, scratch);
}
}
void ARM64XEmitter::ADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) {
u32 val;
bool shift;
if (IsImmArithmetic(imm, &val, &shift)) {
ADD(Rd, Rn, val, shift);
} else {
_assert_msg_(JIT, scratch != INVALID_REG, "ADDI2R - failed to construct arithmetic immediate value from %08x, need scratch", (u32)imm);
MOVI2R(scratch, imm);
ADD(Rd, Rn, scratch);
}
}
void ARM64XEmitter::SUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) {
u32 val;
bool shift;
if (IsImmArithmetic(imm, &val, &shift)) {
SUB(Rd, Rn, val, shift);
} else {
_assert_msg_(JIT, scratch != INVALID_REG, "SUBI2R - failed to construct arithmetic immediate value from %08x, need scratch", (u32)imm);
MOVI2R(scratch, imm);
SUB(Rd, Rn, scratch);
}
}
void ARM64XEmitter::CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch) {
u32 val;
bool shift;
if (IsImmArithmetic(imm, &val, &shift)) {
CMP(Rn, val, shift);
} else {
_assert_msg_(JIT, scratch != INVALID_REG, "CMPI2R - failed to construct arithmetic immediate value from %08x, need scratch", (u32)imm);
MOVI2R(scratch, imm);
CMP(Rn, scratch);
}
}
bool ARM64XEmitter::TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) {
u32 val;
bool shift;
if (IsImmArithmetic(imm, &val, &shift)) {
ADD(Rd, Rn, val, shift);
return true;
} else {
return false;
}
}
bool ARM64XEmitter::TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) {
u32 val;
bool shift;
if (IsImmArithmetic(imm, &val, &shift)) {
SUB(Rd, Rn, val, shift);
return true;
} else {
return false;
}
}
bool ARM64XEmitter::TryCMPI2R(ARM64Reg Rn, u32 imm) {
u32 val;
bool shift;
if (IsImmArithmetic(imm, &val, &shift)) {
CMP(Rn, val, shift);
return true;
} else {
return false;
}
}
bool ARM64XEmitter::TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) {
u32 n, imm_r, imm_s;
if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r)) {
AND(Rd, Rn, imm_r, imm_s, n != 0);
return true;
} else {
return false;
}
}
bool ARM64XEmitter::TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) {
u32 n, imm_r, imm_s;
if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r)) {
ORR(Rd, Rn, imm_r, imm_s, n != 0);
return true;
} else {
return false;
}
}
bool ARM64XEmitter::TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm) {
u32 n, imm_r, imm_s;
if (IsImmLogical(imm, 32, &n, &imm_s, &imm_r)) {
EOR(Rd, Rn, imm_r, imm_s, n != 0);
return true;
} else {
return false;
}
}
float FPImm8ToFloat(uint8_t bits) {
int E = 8;
int F = 32 - 8 - 1;
int sign = bits >> 7;
uint32_t f = 0;
f |= (sign << 31);
int bit6 = (bits >> 6) & 1;
uint32_t exp = ((!bit6) << 7) | (0x7C * bit6) | ((bits >> 4) & 3);
uint32_t mantissa = (bits & 0xF) << 19;
f |= exp << 23;
f |= mantissa;
float fl;
memcpy(&fl, &f, sizeof(float));
return fl;
}
bool FPImm8FromFloat(float value, uint8_t *immOut) {
uint32_t f;
memcpy(&f, &value, sizeof(float));
uint32_t mantissa4 = (f & 0x7FFFFF) >> 19;
uint32_t exponent = (f >> 23) & 0xFF;
uint32_t sign = f >> 31;
if ((exponent >> 7) == ((exponent >> 6) & 1))
return false;
uint8_t imm8 = (sign << 7) | ((!(exponent >> 7)) << 6) | ((exponent & 3) << 4) | mantissa4;
float newFloat = FPImm8ToFloat(imm8);
if (newFloat == value) {
*immOut = imm8;
return true;
} else {
return false;
}
}
void ARM64FloatEmitter::MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch, bool negate) {
_assert_msg_(JIT, !IsDouble(Rd), "MOVI2F does not yet support double precision");
uint8_t imm8;
if (value == 0.0) {
FMOV(Rd, IsDouble(Rd) ? ZR : WZR);
if (negate) {
FNEG(Rd, Rd);
}
// TODO: There are some other values we could generate with the float-imm instruction, like 1.0...
} else if (FPImm8FromFloat(value, &imm8)) {
FMOV(Rd, imm8);
} else {
_assert_msg_(JIT, scratch != INVALID_REG, "Failed to find a way to generate FP immediate %f without scratch", value);
u32 ival;
if (negate) {
value = -value;
}
memcpy(&ival, &value, sizeof(ival));
m_emit->MOVI2R(scratch, ival);
FMOV(Rd, scratch);
}
}
// TODO: Quite a few values could be generated easily using the MOVI instruction and friends.
void ARM64FloatEmitter::MOVI2FDUP(ARM64Reg Rd, float value, ARM64Reg scratch) {
// TODO: Make it work with more element sizes
// TODO: Optimize - there are shorter solution for many values
ARM64Reg s = (ARM64Reg)(S0 + DecodeReg(Rd));
MOVI2F(s, value, scratch);
DUP(32, Rd, Rd, 0);
}
void ARM64XEmitter::SUBSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) {
u32 val;
bool shift;
if (IsImmArithmetic(imm, &val, &shift)) {
SUBS(Rd, Rn, val, shift);
} else {
_assert_msg_(JIT, scratch != INVALID_REG, "ANDSI2R - failed to construct immediate value from %08x, need scratch", (u32)imm);
MOVI2R(scratch, imm);
SUBS(Rd, Rn, scratch);
}
}
} // namespace