ppsspp/Core/HW/SasAudio.cpp
2013-09-30 19:05:04 +02:00

822 lines
22 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "base/basictypes.h"
#include "../MemMap.h"
#include "Core/HLE/sceAtrac.h"
#include "Core/Config.h"
#include "SasAudio.h"
#include <algorithm>
// #define AUDIO_TO_FILE
static const s8 f[16][2] = {
{ 0, 0 },
{ 60, 0 },
{ 115, -52 },
{ 98, -55 },
{ 122, -60 },
// Padding to prevent overflow.
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
};
void VagDecoder::Start(u32 data, int vagSize, bool loopEnabled) {
loopEnabled_ = loopEnabled;
loopAtNextBlock_ = false;
loopStartBlock_ = 0;
numBlocks_ = vagSize / 16;
end_ = false;
data_ = data;
read_ = data;
curSample = 28;
curBlock_ = -1;
s_1 = 0; // per block?
s_2 = 0;
}
void VagDecoder::DecodeBlock(u8 *&readp) {
int predict_nr = *readp++;
int shift_factor = predict_nr & 0xf;
predict_nr >>= 4;
int flags = *readp++;
if (flags == 7) {
VERBOSE_LOG(SASMIX, "VAG ending block at %d", curBlock_);
end_ = true;
return;
}
else if (flags == 6) {
loopStartBlock_ = curBlock_;
}
else if (flags == 3) {
if (loopEnabled_) {
loopAtNextBlock_ = true;
}
}
for (int i = 0; i < 28; i += 2) {
int d = *readp++;
int s = (short)((d & 0xf) << 12);
DecodeSample(i, s >> shift_factor, predict_nr);
s = (short)((d & 0xf0) << 8);
DecodeSample(i + 1, s >> shift_factor, predict_nr);
}
curSample = 0;
curBlock_++;
if (curBlock_ == numBlocks_) {
end_ = true;
}
}
inline void VagDecoder::DecodeSample(int i, int sample, int predict_nr) {
samples[i] = (int) (sample + ((s_1 * f[predict_nr][0] + s_2 * f[predict_nr][1]) >> 6));
s_2 = s_1;
s_1 = samples[i];
}
void VagDecoder::GetSamples(s16 *outSamples, int numSamples) {
if (end_) {
memset(outSamples, 0, numSamples * sizeof(s16));
return;
}
u8 *readp = Memory::GetPointer(read_);
if (!readp)
{
WARN_LOG(SASMIX, "Bad VAG samples address?");
return;
}
u8 *origp = readp;
for (int i = 0; i < numSamples; i++) {
if (curSample == 28) {
if (loopAtNextBlock_) {
VERBOSE_LOG(SASMIX, "Looping VAG from block %d/%d to %d", curBlock_, numBlocks_, loopStartBlock_);
// data_ starts at curBlock = -1.
read_ = data_ + 16 * loopStartBlock_ + 16;
readp = Memory::GetPointer(read_);
origp = readp;
curBlock_ = loopStartBlock_;
loopAtNextBlock_ = false;
}
DecodeBlock(readp);
if (end_) {
// Clear the rest of the buffer and return.
memset(&outSamples[i], 0, (numSamples - i) * sizeof(s16));
return;
}
}
outSamples[i] = end_ ? 0 : samples[curSample++];
}
if (readp > origp) {
read_ += readp - origp;
}
}
void VagDecoder::DoState(PointerWrap &p)
{
auto s = p.Section("VagDecoder", 1);
if (!s)
return;
p.DoArray(samples, ARRAY_SIZE(samples));
p.Do(curSample);
p.Do(data_);
p.Do(read_);
p.Do(curBlock_);
p.Do(loopStartBlock_);
p.Do(numBlocks_);
p.Do(s_1);
p.Do(s_2);
p.Do(loopEnabled_);
p.Do(loopAtNextBlock_);
p.Do(end_);
}
int SasAtrac3::setContext(u32 context) {
contextAddr = context;
atracID = _AtracGetIDByContext(context);
if (!sampleQueue)
sampleQueue = new Atrac3plus_Decoder::BufferQueue;
sampleQueue->clear();
return 0;
}
int SasAtrac3::getNextSamples(s16* outbuf, int wantedSamples) {
if (atracID < 0)
return -1;
u32 finish = 0;
int wantedbytes = wantedSamples * sizeof(s16);
while (!finish && sampleQueue->getQueueSize() < wantedbytes) {
u32 numSamples = 0;
int remains = 0;
static s16 buf[0x800];
_AtracDecodeData(atracID, (u8*)buf, &numSamples, &finish, &remains);
if (numSamples > 0)
sampleQueue->push((u8*)buf, numSamples * sizeof(s16));
else
finish = 1;
}
sampleQueue->pop_front((u8*)outbuf, wantedbytes);
return finish;
}
int SasAtrac3::addStreamData(u8* buf, u32 addbytes) {
if (atracID > 0) {
_AtracAddStreamData(atracID, buf, addbytes);
}
return 0;
}
void SasAtrac3::DoState(PointerWrap &p) {
auto s = p.Section("SasAtrac3", 1);
if (!s)
return;
p.Do(contextAddr);
p.Do(atracID);
if (p.mode == p.MODE_READ && atracID >= 0 && !sampleQueue) {
sampleQueue = new Atrac3plus_Decoder::BufferQueue;
}
}
// http://code.google.com/p/jpcsp/source/browse/trunk/src/jpcsp/HLE/modules150/sceSasCore.java
int simpleRate(int n) {
n &= 0x7F;
if (n == 0x7F) {
return 0;
}
int rate = ((7 - (n & 0x3)) << 26) >> (n >> 2);
if (rate == 0) {
return 1;
}
return rate;
}
static int getAttackRate(int bitfield1) {
return simpleRate(bitfield1 >> 8);
}
static int getAttackType(int bitfield1) {
return (bitfield1 & 0x8000) == 0 ? PSP_SAS_ADSR_CURVE_MODE_LINEAR_INCREASE : PSP_SAS_ADSR_CURVE_MODE_LINEAR_BENT;
}
static int getDecayRate(int bitfield1) {
return 0x80000000 >> ((bitfield1 >> 4) & 0x000F);
}
static int getSustainRate(int bitfield2) {
return simpleRate(bitfield2 >> 6);
}
static int getSustainType(int bitfield2) {
switch (bitfield2 >> 13) {
case 0: return PSP_SAS_ADSR_CURVE_MODE_LINEAR_INCREASE;
case 2: return PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE;
case 4: return PSP_SAS_ADSR_CURVE_MODE_LINEAR_BENT;
case 6: return PSP_SAS_ADSR_CURVE_MODE_EXPONENT_DECREASE;
}
ERROR_LOG(SASMIX,"sasSetSimpleADSR,ERROR_SAS_INVALID_ADSR_CURVE_MODE");
return 0;
}
static int getReleaseType(int bitfield2) {
return (bitfield2 & 0x0020) == 0 ? PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE : PSP_SAS_ADSR_CURVE_MODE_EXPONENT_DECREASE;
}
static int getReleaseRate(int bitfield2) {
int n = bitfield2 & 0x001F;
if (n == 31) {
return 0;
}
if (getReleaseType(bitfield2) == PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE) {
return (0x40000000 >> (n + 2));
}
return (0x40000000 >> n);
}
static int getSustainLevel(int bitfield1) {
return ((bitfield1 & 0x000F) + 1) << 26;
}
void ADSREnvelope::SetSimpleEnvelope(u32 ADSREnv1, u32 ADSREnv2) {
attackRate = getAttackRate(ADSREnv1);
attackType = getAttackType(ADSREnv1);
decayRate = getDecayRate(ADSREnv1);
decayType = PSP_SAS_ADSR_CURVE_MODE_EXPONENT_DECREASE;
sustainRate = getSustainRate(ADSREnv2);
sustainType = getSustainType(ADSREnv2);
releaseRate = getReleaseRate(ADSREnv2);
releaseType = getReleaseType(ADSREnv2);
sustainLevel = getSustainLevel(ADSREnv1);
}
SasInstance::SasInstance()
: maxVoices(PSP_SAS_VOICES_MAX),
sampleRate(44100),
outputMode(0),
mixBuffer(0),
sendBuffer(0),
resampleBuffer(0),
grainSize(0) {
#ifdef AUDIO_TO_FILE
audioDump = fopen("D:\\audio.raw", "wb");
#endif
memset(&waveformEffect, 0, sizeof(waveformEffect));
waveformEffect.type = -1;
waveformEffect.isDryOn = 1;
}
SasInstance::~SasInstance() {
ClearGrainSize();
}
void SasInstance::ClearGrainSize() {
if (mixBuffer)
delete [] mixBuffer;
if (sendBuffer)
delete [] sendBuffer;
if (resampleBuffer)
delete [] resampleBuffer;
mixBuffer = NULL;
sendBuffer = NULL;
resampleBuffer = NULL;
}
void SasInstance::SetGrainSize(int newGrainSize) {
grainSize = newGrainSize;
// If you change the sizes here, don't forget DoState().
if (mixBuffer)
delete [] mixBuffer;
if (sendBuffer)
delete [] sendBuffer;
mixBuffer = new s32[grainSize * 2];
sendBuffer = new s32[grainSize * 2];
memset(mixBuffer, 0, sizeof(int) * grainSize * 2);
memset(sendBuffer, 0, sizeof(int) * grainSize * 2);
if (resampleBuffer)
delete [] resampleBuffer;
// 2 samples padding at the start, that's where we copy the two last samples from the channel
// so that we can do bicubic resampling if necessary. Plus 1 for smoothness hackery.
resampleBuffer = new s16[grainSize * 4 + 3];
}
static inline s16 clamp_s16(int i) {
if (i > 32767)
return 32767;
if (i < -32768)
return -32768;
return i;
}
void SasInstance::Mix(u32 outAddr, u32 inAddr, int leftVol, int rightVol) {
int voicesPlayingCount = 0;
for (int v = 0; v < PSP_SAS_VOICES_MAX; v++) {
SasVoice &voice = voices[v];
if (!voice.playing || voice.paused)
continue;
voicesPlayingCount++;
// TODO: Special case no-resample case for speed
switch (voice.type) {
case VOICETYPE_VAG:
if (voice.type == VOICETYPE_VAG && !voice.vagAddr)
break;
case VOICETYPE_PCM:
if (voice.type == VOICETYPE_PCM && !voice.pcmAddr)
break;
default:
// Load resample history (so we can use a wide filter)
resampleBuffer[0] = voice.resampleHist[0];
resampleBuffer[1] = voice.resampleHist[1];
// Figure out number of samples to read.
// Actually this is not entirely correct - we need to get one extra sample, and store it
// for the next time around. A little complicated...
// But for now, see Smoothness HACKERY below :P
u32 numSamples = (voice.sampleFrac + grainSize * voice.pitch) / PSP_SAS_PITCH_BASE;
if ((int)numSamples > grainSize * 4) {
ERROR_LOG(SASMIX, "numSamples too large, clamping: %i vs %i", numSamples, grainSize * 4);
numSamples = grainSize * 4;
}
// Read N samples into the resample buffer. Could do either PCM or VAG here.
switch (voice.type) {
case VOICETYPE_VAG:
{
voice.vag.GetSamples(resampleBuffer + 2, numSamples);
if (voice.vag.End()) {
// NOTICE_LOG(SAS, "Hit end of VAG audio");
voice.playing = false;
voice.on = false; // ??
}
}
break;
case VOICETYPE_PCM:
{
u32 size = std::min(voice.pcmSize * 2 - voice.pcmIndex, (int)(numSamples * sizeof(s16)));
memset(resampleBuffer + 2, 0, numSamples * sizeof(s16));
if (!voice.on) {
voice.pcmIndex = 0;
break;
}
Memory::Memcpy(resampleBuffer + 2, voice.pcmAddr + voice.pcmIndex, size);
voice.pcmIndex += size;
if (voice.pcmIndex >= voice.pcmSize * 2) {
voice.pcmIndex = 0;
}
}
break;
case VOICETYPE_ATRAC3:
{
int ret = voice.atrac3.getNextSamples(resampleBuffer + 2, numSamples);
if (ret) {
// Hit atrac3 voice end
voice.playing = false;
voice.on = false; // ??
}
}
break;
default:
{
memset(resampleBuffer + 2, 0, numSamples * sizeof(s16));
}
break;
}
// Smoothness HACKERY
resampleBuffer[2 + numSamples] = resampleBuffer[2 + numSamples - 1];
// Save resample history
voice.resampleHist[0] = resampleBuffer[2 + numSamples - 2];
voice.resampleHist[1] = resampleBuffer[2 + numSamples - 1];
// Resample to the correct pitch, writing exactly "grainSize" samples.
u32 sampleFrac = voice.sampleFrac;
const int MAX_CONFIG_VOLUME = 20;
int volumeShift = (MAX_CONFIG_VOLUME - g_Config.iSFXVolume);
if (volumeShift < 0) volumeShift = 0;
for (int i = 0; i < grainSize; i++) {
// For now: nearest neighbour, not even using the resample history at all.
int sample = resampleBuffer[sampleFrac / PSP_SAS_PITCH_BASE + 2];
sampleFrac += voice.pitch;
// The maximum envelope height (PSP_SAS_ENVELOPE_HEIGHT_MAX) is (1 << 30) - 1.
// Reduce it to 14 bits, by shifting off 15. Round up by adding (1 << 14) first.
int envelopeValue = voice.envelope.GetHeight();
envelopeValue = (envelopeValue + (1 << 14)) >> 15;
// We just scale by the envelope before we scale by volumes.
// Again, we round up by adding (1 << 14) first (*after* multiplying.)
sample = ((sample * envelopeValue) + (1 << 14)) >> 15;
// We mix into this 32-bit temp buffer and clip in a second loop
// Ideally, the shift right should be there too but for now I'm concerned about
// not overflowing.
mixBuffer[i * 2] += (sample * voice.volumeLeft ) >> volumeShift; // Max = 16 and Min = 12(default)
mixBuffer[i * 2 + 1] += (sample * voice.volumeRight) >> volumeShift; // Max = 16 and Min = 12(default)
sendBuffer[i * 2] += sample * voice.volumeLeftSend >> 12;
sendBuffer[i * 2 + 1] += sample * voice.volumeRightSend >> 12;
voice.envelope.Step();
}
voice.sampleFrac = sampleFrac;
// Let's hope grainSize is a power of 2.
//voice.sampleFrac &= grainSize * PSP_SAS_PITCH_BASE - 1;
voice.sampleFrac -= numSamples * PSP_SAS_PITCH_BASE;
if (voice.envelope.HasEnded())
{
// NOTICE_LOG(SAS, "Hit end of envelope");
voice.playing = false;
}
}
}
//if (voicesPlayingCount)
// NOTICE_LOG(SAS, "Sas mixed %i voices", voicesPlayingCount);
// Okay, apply effects processing to the Send buffer alone here.
// Reverb, echo, what have you.
// TODO
// Alright, all voices mixed. Let's convert and clip, and at the same time, wipe mixBuffer for next time. Could also dither.
s16 *outp = (s16 *)Memory::GetPointer(outAddr);
const s16 *inp = inAddr ? (s16*)Memory::GetPointer(inAddr) : 0;
if (outputMode == 0) {
if (inp) {
for (int i = 0; i < grainSize * 2; i += 2) {
int sampleL = mixBuffer[i] + sendBuffer[i] + ((*inp++) * leftVol >> 12);
int sampleR = mixBuffer[i + 1] + sendBuffer[i + 1] + ((*inp++) * rightVol >> 12);
*outp++ = clamp_s16(sampleL);
*outp++ = clamp_s16(sampleR);
}
} else {
for (int i = 0; i < grainSize * 2; i += 2) {
*outp++ = clamp_s16(mixBuffer[i] + sendBuffer[i]);
*outp++ = clamp_s16(mixBuffer[i + 1] + sendBuffer[i + 1]);
}
}
} else {
for (int i = 0; i < grainSize * 2; i += 2) {
int sampleL = mixBuffer[i] + sendBuffer[i];
if (inp)
sampleL += (*inp++) * leftVol >> 12;
*outp++ = clamp_s16(sampleL);
}
}
memset(mixBuffer, 0, grainSize * sizeof(int) * 2);
memset(sendBuffer, 0, grainSize * sizeof(int) * 2);
#ifdef AUDIO_TO_FILE
fwrite(Memory::GetPointer(outAddr), 1, grainSize * 2 * 2, audioDump);
#endif
}
void SasInstance::DoState(PointerWrap &p) {
auto s = p.Section("SasInstance", 1);
if (!s)
return;
p.Do(grainSize);
if (p.mode == p.MODE_READ) {
if (grainSize > 0) {
SetGrainSize(grainSize);
} else {
ClearGrainSize();
}
}
p.Do(maxVoices);
p.Do(sampleRate);
p.Do(outputMode);
// SetGrainSize() / ClearGrainSize() should've made our buffers match.
if (mixBuffer != NULL && grainSize > 0) {
p.DoArray(mixBuffer, grainSize * 2);
}
if (sendBuffer != NULL && grainSize > 0) {
p.DoArray(sendBuffer, grainSize * 2);
}
if (resampleBuffer != NULL && grainSize > 0) {
p.DoArray(resampleBuffer, grainSize * 4 + 3);
}
int n = PSP_SAS_VOICES_MAX;
p.Do(n);
if (n != PSP_SAS_VOICES_MAX)
{
ERROR_LOG(HLE, "Savestate failure: wrong number of SAS voices");
return;
}
p.DoArray(voices, ARRAY_SIZE(voices));
p.Do(waveformEffect);
}
void SasVoice::Reset() {
resampleHist[0] = 0;
resampleHist[1] = 0;
}
void SasVoice::KeyOn() {
envelope.KeyOn();
switch (type) {
case VOICETYPE_VAG:
if (Memory::IsValidAddress(vagAddr)) {
vag.Start(vagAddr, vagSize, loop);
} else {
ERROR_LOG(SASMIX, "Invalid VAG address %08x", vagAddr);
return;
}
break;
default:
break;
}
playing = true;
on = true;
paused = false;
}
void SasVoice::KeyOff() {
on = false;
envelope.KeyOff();
}
void SasVoice::ChangedParams(bool changedVag) {
if (!playing && on) {
playing = true;
if (changedVag)
vag.Start(vagAddr, vagSize, loop);
}
// TODO: restart VAG somehow
}
void SasVoice::DoState(PointerWrap &p)
{
auto s = p.Section("SasVoice", 1);
if (!s)
return;
p.Do(playing);
p.Do(paused);
p.Do(on);
p.Do(type);
p.Do(vagAddr);
p.Do(vagSize);
p.Do(pcmAddr);
p.Do(pcmSize);
p.Do(pcmIndex);
p.Do(sampleRate);
p.Do(sampleFrac);
p.Do(pitch);
p.Do(loop);
p.Do(noiseFreq);
p.Do(volumeLeft);
p.Do(volumeRight);
p.Do(volumeLeftSend);
p.Do(volumeRightSend);
p.Do(effectLeft);
p.Do(effectRight);
p.DoArray(resampleHist, ARRAY_SIZE(resampleHist));
envelope.DoState(p);
vag.DoState(p);
atrac3.DoState(p);
}
// This is horribly stolen from JPCSP.
// Need to find a real solution.
static const short expCurve[] = {
0x0000, 0x0380, 0x06E4, 0x0A2D, 0x0D5B, 0x1072, 0x136F, 0x1653,
0x1921, 0x1BD9, 0x1E7B, 0x2106, 0x237F, 0x25E4, 0x2835, 0x2A73,
0x2CA0, 0x2EBB, 0x30C6, 0x32C0, 0x34AB, 0x3686, 0x3852, 0x3A10,
0x3BC0, 0x3D63, 0x3EF7, 0x4081, 0x41FC, 0x436E, 0x44D3, 0x462B,
0x477B, 0x48BF, 0x49FA, 0x4B2B, 0x4C51, 0x4D70, 0x4E84, 0x4F90,
0x5095, 0x5191, 0x5284, 0x5370, 0x5455, 0x5534, 0x5609, 0x56D9,
0x57A3, 0x5867, 0x5924, 0x59DB, 0x5A8C, 0x5B39, 0x5BE0, 0x5C81,
0x5D1C, 0x5DB5, 0x5E48, 0x5ED5, 0x5F60, 0x5FE5, 0x6066, 0x60E2,
0x615D, 0x61D2, 0x6244, 0x62B2, 0x631D, 0x6384, 0x63E8, 0x644A,
0x64A8, 0x6503, 0x655B, 0x65B1, 0x6605, 0x6653, 0x66A2, 0x66ED,
0x6737, 0x677D, 0x67C1, 0x6804, 0x6844, 0x6882, 0x68BF, 0x68F9,
0x6932, 0x6969, 0x699D, 0x69D2, 0x6A03, 0x6A34, 0x6A63, 0x6A8F,
0x6ABC, 0x6AE6, 0x6B0E, 0x6B37, 0x6B5D, 0x6B84, 0x6BA7, 0x6BCB,
0x6BED, 0x6C0E, 0x6C2D, 0x6C4D, 0x6C6B, 0x6C88, 0x6CA4, 0x6CBF,
0x6CD9, 0x6CF3, 0x6D0C, 0x6D24, 0x6D3B, 0x6D52, 0x6D68, 0x6D7D,
0x6D91, 0x6DA6, 0x6DB9, 0x6DCA, 0x6DDE, 0x6DEF, 0x6DFF, 0x6E10,
0x6E20, 0x6E30, 0x6E3E, 0x6E4C, 0x6E5A, 0x6E68, 0x6E76, 0x6E82,
0x6E8E, 0x6E9B, 0x6EA5, 0x6EB1, 0x6EBC, 0x6EC6, 0x6ED1, 0x6EDB,
0x6EE4, 0x6EED, 0x6EF6, 0x6EFE, 0x6F07, 0x6F10, 0x6F17, 0x6F20,
0x6F27, 0x6F2E, 0x6F35, 0x6F3C, 0x6F43, 0x6F48, 0x6F4F, 0x6F54,
0x6F5B, 0x6F60, 0x6F66, 0x6F6B, 0x6F70, 0x6F74, 0x6F79, 0x6F7E,
0x6F82, 0x6F87, 0x6F8A, 0x6F90, 0x6F93, 0x6F97, 0x6F9A, 0x6F9E,
0x6FA1, 0x6FA5, 0x6FA8, 0x6FAC, 0x6FAD, 0x6FB1, 0x6FB4, 0x6FB6,
0x6FBA, 0x6FBB, 0x6FBF, 0x6FC1, 0x6FC4, 0x6FC6, 0x6FC8, 0x6FC9,
0x6FCD, 0x6FCF, 0x6FD0, 0x6FD2, 0x6FD4, 0x6FD6, 0x6FD7, 0x6FD9,
0x6FDB, 0x6FDD, 0x6FDE, 0x6FDE, 0x6FE0, 0x6FE2, 0x6FE4, 0x6FE5,
0x6FE5, 0x6FE7, 0x6FE9, 0x6FE9, 0x6FEB, 0x6FEC, 0x6FEC, 0x6FEE,
0x6FEE, 0x6FF0, 0x6FF0, 0x6FF2, 0x6FF2, 0x6FF3, 0x6FF3, 0x6FF5,
0x6FF5, 0x6FF7, 0x6FF7, 0x6FF7, 0x6FF9, 0x6FF9, 0x6FF9, 0x6FFA,
0x6FFA, 0x6FFA, 0x6FFC, 0x6FFC, 0x6FFC, 0x6FFE, 0x6FFE, 0x6FFE,
0x7000
};
static int durationFromRate(int rate)
{
if (rate == 0) {
return PSP_SAS_ENVELOPE_FREQ_MAX;
} else {
// From experimental tests on a PSP:
// rate=0x7FFFFFFF => duration=0x10
// rate=0x3FFFFFFF => duration=0x22
// rate=0x1FFFFFFF => duration=0x44
// rate=0x0FFFFFFF => duration=0x81
// rate=0x07FFFFFF => duration=0xF1
// rate=0x03FFFFFF => duration=0x1B9
//
// The correct curve model is still unknown.
// We use the following approximation:
// duration = 0x7FFFFFFF / rate * 0x10
return PSP_SAS_ENVELOPE_FREQ_MAX / rate * 0x10;
}
}
const short expCurveReference = 0x7000;
// This needs a rewrite / rethink. Doing all this per sample is insane.
static int getExpCurveAt(int index, int duration) {
const short curveLength = sizeof(expCurve) / sizeof(short);
if (duration == 0) {
// Avoid division by zero, and thus undefined behaviour in conversion to int.
return 0;
}
float curveIndex = (index * curveLength) / (float) duration;
int curveIndex1 = (int) curveIndex;
int curveIndex2 = curveIndex1 + 1;
float curveIndexFraction = curveIndex - curveIndex1;
if (curveIndex1 < 0) {
return expCurve[0];
} else if (curveIndex2 >= curveLength || curveIndex2 < 0) {
return expCurve[curveLength - 1];
}
float sample = expCurve[curveIndex1] * (1.f - curveIndexFraction) + expCurve[curveIndex2] * curveIndexFraction;
return (short)(sample);
}
ADSREnvelope::ADSREnvelope()
: attackRate(0),
decayRate(0),
sustainRate(0),
releaseRate(0),
attackType(PSP_SAS_ADSR_CURVE_MODE_LINEAR_INCREASE),
decayType(PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE),
sustainType(PSP_SAS_ADSR_CURVE_MODE_LINEAR_INCREASE),
sustainLevel(0x100),
releaseType(PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE),
state_(STATE_OFF),
steps_(0),
height_(0) {
}
void ADSREnvelope::WalkCurve(int rate, int type) {
short expFactor;
int duration;
switch (type) {
case PSP_SAS_ADSR_CURVE_MODE_LINEAR_INCREASE:
height_ += rate;
break;
case PSP_SAS_ADSR_CURVE_MODE_LINEAR_DECREASE:
height_ -= rate;
break;
case PSP_SAS_ADSR_CURVE_MODE_LINEAR_BENT:
if (height_ < (s64)PSP_SAS_ENVELOPE_HEIGHT_MAX * 3 / 4) {
height_ += rate;
} else {
height_ += rate / 4;
}
break;
case PSP_SAS_ADSR_CURVE_MODE_EXPONENT_DECREASE:
// NOTICE_LOG(SAS, "UNIMPL EXP DECR");
duration = durationFromRate(rate);
expFactor = getExpCurveAt(steps_, duration);
height_ = (s64)expFactor * PSP_SAS_ENVELOPE_HEIGHT_MAX / expCurveReference;
height_ = PSP_SAS_ENVELOPE_HEIGHT_MAX - height_;
break;
case PSP_SAS_ADSR_CURVE_MODE_EXPONENT_INCREASE:
duration = durationFromRate(rate);
expFactor = getExpCurveAt(steps_, duration);
height_ = (s64)expFactor * PSP_SAS_ENVELOPE_HEIGHT_MAX / expCurveReference;
break;
case PSP_SAS_ADSR_CURVE_MODE_DIRECT:
height_ = rate; // Simple :)
break;
}
}
void ADSREnvelope::SetState(ADSRState state) {
steps_ = 0;
state_ = state;
}
void ADSREnvelope::Step() {
switch (state_) {
case STATE_ATTACK:
WalkCurve(attackRate, attackType);
if (height_ > PSP_SAS_ENVELOPE_HEIGHT_MAX || height_ < 0)
SetState(STATE_DECAY);
break;
case STATE_DECAY:
WalkCurve(decayRate, decayType);
if (height_ > PSP_SAS_ENVELOPE_HEIGHT_MAX || height_ < sustainLevel)
SetState(STATE_SUSTAIN);
break;
case STATE_SUSTAIN:
WalkCurve(sustainRate, sustainType);
if (height_ <= 0) {
height_ = 0;
SetState(STATE_RELEASE);
}
break;
case STATE_RELEASE:
WalkCurve(releaseRate, releaseType);
if (height_ <= 0) {
height_ = 0;
SetState(STATE_OFF);
}
break;
case STATE_OFF:
// Do nothing
break;
}
steps_++;
}
void ADSREnvelope::KeyOn() {
SetState(STATE_ATTACK);
height_ = 0;
}
void ADSREnvelope::KeyOff() {
SetState(STATE_RELEASE);
height_ = sustainLevel;
}
void ADSREnvelope::DoState(PointerWrap &p) {
auto s = p.Section("ADSREnvelope", 1);
if (!s)
return;
p.Do(attackRate);
p.Do(decayRate);
p.Do(sustainRate);
p.Do(releaseRate);
p.Do(attackType);
p.Do(decayType);
p.Do(sustainType);
p.Do(sustainLevel);
p.Do(releaseType);
p.Do(state_);
p.Do(steps_);
p.Do(height_);
}