ppsspp/GPU/GLES/VertexShaderGenerator.cpp
2014-06-10 22:44:53 +02:00

679 lines
23 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <stdio.h>
#include <locale.h>
#include "gfx_es2/gpu_features.h"
#if defined(_WIN32) && defined(_DEBUG)
#include "Common/CommonWindows.h"
#endif
#include "base/stringutil.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "Core/Config.h"
#include "GPU/GLES/VertexShaderGenerator.h"
// SDL 1.2 on Apple does not have support for OpenGL 3 and hence needs
// special treatment in the shader generator.
#ifdef __APPLE__
#define FORCE_OPENGL_2_0
#endif
#undef WRITE
#define WRITE p+=sprintf
bool CanUseHardwareTransform(int prim) {
if (!g_Config.bHardwareTransform)
return false;
return !gstate.isModeThrough() && prim != GE_PRIM_RECTANGLES;
}
int TranslateNumBones(int bones) {
if (!bones) return 0;
if (bones < 4) return 4;
// if (bones < 8) return 8; I get drawing problems in FF:CC with this!
return bones;
}
// prim so we can special case for RECTANGLES :(
void ComputeVertexShaderID(VertexShaderID *id, u32 vertType, int prim, bool useHWTransform) {
bool doTexture = gstate.isTextureMapEnabled() && !gstate.isModeClear();
bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX;
bool doShadeMapping = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP;
bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0;
bool hasNormal = (vertType & GE_VTYPE_NRM_MASK) != 0;
bool hasTexcoord = (vertType & GE_VTYPE_TC_MASK) != 0;
bool enableFog = gstate.isFogEnabled() && !gstate.isModeThrough() && !gstate.isModeClear();
bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled();
int id0 = 0;
int id1 = 1;
id0 = lmode & 1;
id0 |= (gstate.isModeThrough() & 1) << 1;
id0 |= (enableFog & 1) << 2;
id0 |= (hasColor & 1) << 3;
if (doTexture) {
id0 |= 1 << 4;
id0 |= (gstate_c.flipTexture & 1) << 5;
id0 |= (doTextureProjection & 1) << 6;
}
if (useHWTransform) {
id0 |= 1 << 8;
id0 |= (hasNormal & 1) << 9;
// UV generation mode
id0 |= gstate.getUVGenMode() << 16;
// The next bits are used differently depending on UVgen mode
if (doTextureProjection) {
id0 |= gstate.getUVProjMode() << 18;
} else if (doShadeMapping) {
id0 |= gstate.getUVLS0() << 18;
id0 |= gstate.getUVLS1() << 20;
}
// Bones
if (vertTypeIsSkinningEnabled(vertType))
id0 |= (TranslateNumBones(vertTypeGetNumBoneWeights(vertType)) - 1) << 22;
// Okay, d[1] coming up. ==============
if (gstate.isLightingEnabled() || doShadeMapping) {
// Light bits
for (int i = 0; i < 4; i++) {
id1 |= gstate.getLightComputation(i) << (i * 4);
id1 |= gstate.getLightType(i) << (i * 4 + 2);
}
id1 |= (gstate.materialupdate & 7) << 16;
for (int i = 0; i < 4; i++) {
id1 |= (gstate.isLightChanEnabled(i) & 1) << (20 + i);
}
// doShadeMapping is stored as UVGenMode, so this is enough for isLightingEnabled.
id1 |= 1 << 24;
}
// 2 bits.
id1 |= (vertTypeGetWeightMask(vertType) >> GE_VTYPE_WEIGHT_SHIFT) << 25;
id1 |= (gstate.areNormalsReversed() & 1) << 27;
if (doTextureProjection && gstate.getUVProjMode() == GE_PROJMAP_UV) {
id1 |= ((vertType & GE_VTYPE_TC_MASK) >> GE_VTYPE_TC_SHIFT) << 28; // two bits
} else {
id1 |= (hasTexcoord & 1) << 28;
}
}
id->d[0] = id0;
id->d[1] = id1;
}
static const char * const boneWeightAttrDecl[9] = {
"#ERROR#",
"attribute mediump float w1;\n",
"attribute mediump vec2 w1;\n",
"attribute mediump vec3 w1;\n",
"attribute mediump vec4 w1;\n",
"attribute mediump vec4 w1;\nattribute mediump float w2;\n",
"attribute mediump vec4 w1;\nattribute mediump vec2 w2;\n",
"attribute mediump vec4 w1;\nattribute mediump vec3 w2;\n",
"attribute mediump vec4 w1, w2;\n",
};
static const char * const boneWeightInDecl[9] = {
"#ERROR#",
"in mediump float w1;\n",
"in mediump vec2 w1;\n",
"in mediump vec3 w1;\n",
"in mediump vec4 w1;\n",
"in mediump vec4 w1;\nin mediump float w2;\n",
"in mediump vec4 w1;\nin mediump vec2 w2;\n",
"in mediump vec4 w1;\nin mediump vec3 w2;\n",
"in mediump vec4 w1, w2;\n",
};
enum DoLightComputation {
LIGHT_OFF,
LIGHT_SHADE,
LIGHT_FULL,
};
void GenerateVertexShader(int prim, u32 vertType, char *buffer, bool useHWTransform) {
char *p = buffer;
// #define USE_FOR_LOOP
// In GLSL ES 3.0, you use "out" variables instead.
bool glslES30 = false;
const char *varying = "varying";
const char *attribute = "attribute";
const char * const * boneWeightDecl = boneWeightAttrDecl;
bool highpFog = false;
#if defined(USING_GLES2)
// Let's wait until we have a real use for this.
// ES doesn't support dual source alpha :(
if (gl_extensions.GLES3) {
WRITE(p, "#version 300 es\n");
glslES30 = true;
} else {
WRITE(p, "#version 100\n"); // GLSL ES 1.0
}
WRITE(p, "precision highp float;\n");
// PowerVR needs highp to do the fog in MHU correctly.
// Others don't, and some can't handle highp in the fragment shader.
highpFog = gl_extensions.gpuVendor == GPU_VENDOR_POWERVR;
#elif !defined(FORCE_OPENGL_2_0)
if (gl_extensions.VersionGEThan(3, 3, 0)) {
glslES30 = true;
WRITE(p, "#version 330\n");
WRITE(p, "#define lowp\n");
WRITE(p, "#define mediump\n");
WRITE(p, "#define highp\n");
} else if (gl_extensions.VersionGEThan(3, 0, 0)) {
WRITE(p, "#version 130\n");
// Remove lowp/mediump in non-mobile non-glsl 3 implementations
WRITE(p, "#define lowp\n");
WRITE(p, "#define mediump\n");
WRITE(p, "#define highp\n");
} else {
WRITE(p, "#version 110\n");
// Remove lowp/mediump in non-mobile non-glsl 3 implementations
WRITE(p, "#define lowp\n");
WRITE(p, "#define mediump\n");
WRITE(p, "#define highp\n");
}
#else
// Need to remove lowp/mediump for Mac
WRITE(p, "#define lowp\n");
WRITE(p, "#define mediump\n");
WRITE(p, "#define highp\n");
#endif
if (glslES30) {
attribute = "in";
varying = "out";
boneWeightDecl = boneWeightInDecl;
}
int lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled();
bool doTexture = gstate.isTextureMapEnabled() && !gstate.isModeClear();
bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX;
bool doShadeMapping = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP;
bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0 || !useHWTransform;
bool hasNormal = (vertType & GE_VTYPE_NRM_MASK) != 0 && useHWTransform;
bool hasTexcoord = (vertType & GE_VTYPE_TC_MASK) != 0 || !useHWTransform;
bool enableFog = gstate.isFogEnabled() && !gstate.isModeThrough() && !gstate.isModeClear();
bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0;
bool flipV = gstate_c.flipTexture; // This also means that we are texturing from a render target
bool flipNormal = gstate.areNormalsReversed();
DoLightComputation doLight[4] = {LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF};
if (useHWTransform) {
int shadeLight0 = doShadeMapping ? gstate.getUVLS0() : -1;
int shadeLight1 = doShadeMapping ? gstate.getUVLS1() : -1;
for (int i = 0; i < 4; i++) {
if (i == shadeLight0 || i == shadeLight1)
doLight[i] = LIGHT_SHADE;
if (gstate.isLightingEnabled() && gstate.isLightChanEnabled(i))
doLight[i] = LIGHT_FULL;
}
}
if (vertTypeIsSkinningEnabled(vertType)) {
WRITE(p, "%s", boneWeightDecl[TranslateNumBones(vertTypeGetNumBoneWeights(vertType))]);
}
if (useHWTransform)
WRITE(p, "%s vec3 position;\n", attribute);
else
WRITE(p, "%s vec4 position;\n", attribute); // need to pass the fog coord in w
if (useHWTransform && hasNormal)
WRITE(p, "%s mediump vec3 normal;\n", attribute);
if (doTexture && hasTexcoord) {
if (!useHWTransform && doTextureProjection)
WRITE(p, "%s vec3 texcoord;\n", attribute);
else
WRITE(p, "%s vec2 texcoord;\n", attribute);
}
if (hasColor) {
WRITE(p, "%s lowp vec4 color0;\n", attribute);
if (lmode && !useHWTransform) // only software transform supplies color1 as vertex data
WRITE(p, "%s lowp vec3 color1;\n", attribute);
}
if (gstate.isModeThrough()) {
WRITE(p, "uniform mat4 u_proj_through;\n");
} else {
WRITE(p, "uniform mat4 u_proj;\n");
// Add all the uniforms we'll need to transform properly.
}
bool prescale = g_Config.bPrescaleUV && !throughmode && (gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_COORDS || gstate.getUVGenMode() == GE_TEXMAP_UNKNOWN);
if (useHWTransform) {
// When transforming by hardware, we need a great deal more uniforms...
WRITE(p, "uniform mat4 u_world;\n");
WRITE(p, "uniform mat4 u_view;\n");
if (doTextureProjection)
WRITE(p, "uniform mediump mat4 u_texmtx;\n");
if (vertTypeIsSkinningEnabled(vertType)) {
int numBones = TranslateNumBones(vertTypeGetNumBoneWeights(vertType));
#ifdef USE_BONE_ARRAY
WRITE(p, "uniform mediump mat4 u_bone[%i];\n", numBones);
#else
for (int i = 0; i < numBones; i++) {
WRITE(p, "uniform mat4 u_bone%i;\n", i);
}
#endif
}
if (doTexture && (flipV || !prescale || gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP || gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX)) {
WRITE(p, "uniform vec4 u_uvscaleoffset;\n");
}
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_OFF) {
// This is needed for shade mapping
WRITE(p, "uniform vec3 u_lightpos%i;\n", i);
}
if (doLight[i] == LIGHT_FULL) {
GELightType type = gstate.getLightType(i);
if (type != GE_LIGHTTYPE_DIRECTIONAL)
WRITE(p, "uniform mediump vec3 u_lightatt%i;\n", i);
if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) {
WRITE(p, "uniform mediump vec3 u_lightdir%i;\n", i);
WRITE(p, "uniform mediump float u_lightangle%i;\n", i);
WRITE(p, "uniform mediump float u_lightspotCoef%i;\n", i);
}
WRITE(p, "uniform lowp vec3 u_lightambient%i;\n", i);
WRITE(p, "uniform lowp vec3 u_lightdiffuse%i;\n", i);
if (gstate.isUsingSpecularLight(i))
WRITE(p, "uniform lowp vec3 u_lightspecular%i;\n", i);
}
}
if (gstate.isLightingEnabled()) {
WRITE(p, "uniform lowp vec4 u_ambient;\n");
if ((gstate.materialupdate & 2) == 0 || !hasColor)
WRITE(p, "uniform lowp vec3 u_matdiffuse;\n");
// if ((gstate.materialupdate & 4) == 0)
WRITE(p, "uniform lowp vec4 u_matspecular;\n"); // Specular coef is contained in alpha
WRITE(p, "uniform lowp vec3 u_matemissive;\n");
}
}
if (useHWTransform || !hasColor)
WRITE(p, "uniform lowp vec4 u_matambientalpha;\n"); // matambient + matalpha
if (enableFog) {
WRITE(p, "uniform highp vec2 u_fogcoef;\n");
}
WRITE(p, "%s lowp vec4 v_color0;\n", varying);
if (lmode) {
WRITE(p, "%s lowp vec3 v_color1;\n", varying);
}
if (doTexture) {
if (doTextureProjection)
WRITE(p, "%s mediump vec3 v_texcoord;\n", varying);
else
WRITE(p, "%s mediump vec2 v_texcoord;\n", varying);
}
if (enableFog) {
// See the fragment shader generator
if (highpFog) {
WRITE(p, "%s highp float v_fogdepth;\n", varying);
} else {
WRITE(p, "%s mediump float v_fogdepth;\n", varying);
}
}
WRITE(p, "void main() {\n");
if (!useHWTransform) {
// Simple pass-through of vertex data to fragment shader
if (doTexture) {
WRITE(p, " v_texcoord = texcoord;\n");
}
if (hasColor) {
WRITE(p, " v_color0 = color0;\n");
if (lmode)
WRITE(p, " v_color1 = color1;\n");
} else {
WRITE(p, " v_color0 = u_matambientalpha;\n");
if (lmode)
WRITE(p, " v_color1 = vec3(0.0);\n");
}
if (enableFog) {
WRITE(p, " v_fogdepth = position.w;\n");
}
if (gstate.isModeThrough()) {
WRITE(p, " gl_Position = u_proj_through * vec4(position.xyz, 1.0);\n");
} else {
WRITE(p, " gl_Position = u_proj * vec4(position.xyz, 1.0);\n");
}
} else {
// Step 1: World Transform / Skinning
if (!vertTypeIsSkinningEnabled(vertType)) {
// No skinning, just standard T&L.
WRITE(p, " vec3 worldpos = (u_world * vec4(position.xyz, 1.0)).xyz;\n");
if (hasNormal)
WRITE(p, " mediump vec3 worldnormal = normalize((u_world * vec4(%snormal, 0.0)).xyz);\n", flipNormal ? "-" : "");
else
WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n");
} else {
int numWeights = TranslateNumBones(vertTypeGetNumBoneWeights(vertType));
static const char *rescale[4] = {"", " * 1.9921875", " * 1.999969482421875", ""}; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f};
const char *factor = rescale[vertTypeGetWeightMask(vertType) >> GE_VTYPE_WEIGHT_SHIFT];
static const char * const boneWeightAttr[8] = {
"w1.x", "w1.y", "w1.z", "w1.w",
"w2.x", "w2.y", "w2.z", "w2.w",
};
#if defined(USE_FOR_LOOP) && defined(USE_BONE_ARRAY)
// To loop through the weights, we unfortunately need to put them in a float array.
// GLSL ES sucks - no way to directly initialize an array!
switch (numWeights) {
case 1: WRITE(p, " float w[1]; w[0] = w1;\n"); break;
case 2: WRITE(p, " float w[2]; w[0] = w1.x; w[1] = w1.y;\n"); break;
case 3: WRITE(p, " float w[3]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z;\n"); break;
case 4: WRITE(p, " float w[4]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w;\n"); break;
case 5: WRITE(p, " float w[5]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2;\n"); break;
case 6: WRITE(p, " float w[6]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2.x; w[5] = w2.y;\n"); break;
case 7: WRITE(p, " float w[7]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2.x; w[5] = w2.y; w[6] = w2.z;\n"); break;
case 8: WRITE(p, " float w[8]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2.x; w[5] = w2.y; w[6] = w2.z; w[7] = w2.w;\n"); break;
}
WRITE(p, " mat4 skinMatrix = w[0] * u_bone[0];\n");
if (numWeights > 1) {
WRITE(p, " for (int i = 1; i < %i; i++) {\n", numWeights);
WRITE(p, " skinMatrix += w[i] * u_bone[i];\n");
WRITE(p, " }\n");
}
#else
#ifdef USE_BONE_ARRAY
if (numWeights == 1)
WRITE(p, " mat4 skinMatrix = w1 * u_bone[0]");
else
WRITE(p, " mat4 skinMatrix = w1.x * u_bone[0]");
for (int i = 1; i < numWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue
if (numWeights == 1 && i == 0) weightAttr = "w1";
if (numWeights == 5 && i == 4) weightAttr = "w2";
WRITE(p, " + %s * u_bone[%i]", weightAttr, i);
}
#else
// Uncomment this to screw up bone shaders to check the vertex shader software fallback
// WRITE(p, "THIS SHOULD ERROR! #error");
if (numWeights == 1)
WRITE(p, " mat4 skinMatrix = w1 * u_bone0");
else
WRITE(p, " mat4 skinMatrix = w1.x * u_bone0");
for (int i = 1; i < numWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue
if (numWeights == 1 && i == 0) weightAttr = "w1";
if (numWeights == 5 && i == 4) weightAttr = "w2";
WRITE(p, " + %s * u_bone%i", weightAttr, i);
}
#endif
#endif
WRITE(p, ";\n");
// Trying to simplify this results in bugs in LBP...
WRITE(p, " vec3 skinnedpos = (skinMatrix * vec4(position, 1.0)).xyz %s;\n", factor);
WRITE(p, " vec3 worldpos = (u_world * vec4(skinnedpos, 1.0)).xyz;\n");
if (hasNormal) {
WRITE(p, " mediump vec3 skinnednormal = (skinMatrix * vec4(%snormal, 0.0)).xyz %s;\n", flipNormal ? "-" : "", factor);
WRITE(p, " mediump vec3 worldnormal = normalize((u_world * vec4(skinnednormal, 0.0)).xyz);\n");
} else {
WRITE(p, " mediump vec3 worldnormal = (u_world * (skinMatrix * vec4(0.0, 0.0, 1.0, 0.0))).xyz;\n");
}
}
WRITE(p, " vec4 viewPos = u_view * vec4(worldpos, 1.0);\n");
// Final view and projection transforms.
WRITE(p, " gl_Position = u_proj * viewPos;\n");
// TODO: Declare variables for dots for shade mapping if needed.
const char *ambientStr = (gstate.materialupdate & 1) && hasColor ? "color0" : "u_matambientalpha";
const char *diffuseStr = (gstate.materialupdate & 2) && hasColor ? "color0.rgb" : "u_matdiffuse";
const char *specularStr = (gstate.materialupdate & 4) && hasColor ? "color0.rgb" : "u_matspecular.rgb";
bool diffuseIsZero = true;
bool specularIsZero = true;
bool distanceNeeded = false;
if (gstate.isLightingEnabled()) {
WRITE(p, " lowp vec4 lightSum0 = u_ambient * %s + vec4(u_matemissive, 0.0);\n", ambientStr);
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_FULL)
continue;
diffuseIsZero = false;
if (gstate.isUsingSpecularLight(i))
specularIsZero = false;
GELightType type = gstate.getLightType(i);
if (type != GE_LIGHTTYPE_DIRECTIONAL)
distanceNeeded = true;
}
if (!specularIsZero) {
WRITE(p, " lowp vec3 lightSum1 = vec3(0.0);\n");
}
if (!diffuseIsZero) {
WRITE(p, " vec3 toLight;\n");
WRITE(p, " lowp vec3 diffuse;\n");
}
if (distanceNeeded) {
WRITE(p, " float distance;\n");
WRITE(p, " lowp float lightScale;\n");
}
}
// Calculate lights if needed. If shade mapping is enabled, lights may need to be
// at least partially calculated.
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_FULL)
continue;
GELightType type = gstate.getLightType(i);
if (type == GE_LIGHTTYPE_DIRECTIONAL) {
// We prenormalize light positions for directional lights.
WRITE(p, " toLight = u_lightpos%i;\n", i);
} else {
WRITE(p, " toLight = u_lightpos%i - worldpos;\n", i);
WRITE(p, " distance = length(toLight);\n");
WRITE(p, " toLight /= distance;\n");
}
bool doSpecular = gstate.isUsingSpecularLight(i);
bool poweredDiffuse = gstate.isUsingPoweredDiffuseLight(i);
if (poweredDiffuse) {
WRITE(p, " mediump float dot%i = pow(dot(toLight, worldnormal), u_matspecular.a);\n", i);
// Ugly NaN check. pow(0.0, 0.0) may be undefined, but PSP seems to treat it as 1.0.
// Seen in Tales of the World: Radiant Mythology (#2424.)
WRITE(p, " if (!(dot%i < 1.0) && !(dot%i > 0.0))\n", i, i);
WRITE(p, " dot%i = 1.0;\n", i);
} else {
WRITE(p, " mediump float dot%i = dot(toLight, worldnormal);\n", i);
}
const char *timesLightScale = " * lightScale";
// Attenuation
switch (type) {
case GE_LIGHTTYPE_DIRECTIONAL:
timesLightScale = "";
break;
case GE_LIGHTTYPE_POINT:
WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i);
break;
case GE_LIGHTTYPE_SPOT:
case GE_LIGHTTYPE_UNKNOWN:
WRITE(p, " lowp float angle%i = dot(normalize(u_lightdir%i), toLight);\n", i, i);
WRITE(p, " if (angle%i >= u_lightangle%i) {\n", i, i);
WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0) * pow(angle%i, u_lightspotCoef%i);\n", i, i, i);
WRITE(p, " } else {\n");
WRITE(p, " lightScale = 0.0;\n");
WRITE(p, " }\n");
break;
default:
// ILLEGAL
break;
}
WRITE(p, " diffuse = (u_lightdiffuse%i * %s) * max(dot%i, 0.0);\n", i, diffuseStr, i);
if (doSpecular) {
WRITE(p, " dot%i = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n", i);
WRITE(p, " if (dot%i > 0.0)\n", i);
WRITE(p, " lightSum1 += u_lightspecular%i * %s * (pow(dot%i, u_matspecular.a) %s);\n", i, specularStr, i, timesLightScale);
}
WRITE(p, " lightSum0.rgb += (u_lightambient%i * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale);
}
if (gstate.isLightingEnabled()) {
// Sum up ambient, emissive here.
if (lmode) {
WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n");
// v_color1 only exists when lmode = 1.
if (specularIsZero) {
WRITE(p, " v_color1 = vec3(0.0);\n");
} else {
WRITE(p, " v_color1 = clamp(lightSum1, 0.0, 1.0);\n");
}
} else {
if (specularIsZero) {
WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n");
} else {
WRITE(p, " v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + vec4(lightSum1, 0.0), 0.0, 1.0);\n");
}
}
} else {
// Lighting doesn't affect color.
if (hasColor) {
WRITE(p, " v_color0 = color0;\n");
} else {
WRITE(p, " v_color0 = u_matambientalpha;\n");
}
if (lmode)
WRITE(p, " v_color1 = vec3(0.0);\n");
}
// Step 3: UV generation
if (doTexture) {
switch (gstate.getUVGenMode()) {
case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy.
case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works.
if (prescale && !flipV) {
if (hasTexcoord) {
WRITE(p, " v_texcoord = texcoord;\n");
} else {
WRITE(p, " v_texcoord = vec2(0.0);\n");
}
} else {
if (hasTexcoord) {
WRITE(p, " v_texcoord = texcoord * u_uvscaleoffset.xy + u_uvscaleoffset.zw;\n");
} else {
WRITE(p, " v_texcoord = u_uvscaleoffset.zw;\n");
}
}
break;
case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping.
{
std::string temp_tc;
switch (gstate.getUVProjMode()) {
case GE_PROJMAP_POSITION: // Use model space XYZ as source
temp_tc = "vec4(position.xyz, 1.0)";
break;
case GE_PROJMAP_UV: // Use unscaled UV as source
{
// prescale is false here.
if (hasTexcoord) {
static const char *rescaleuv[4] = {"", " * 1.9921875", " * 1.999969482421875", ""}; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f};
const char *factor = rescaleuv[(vertType & GE_VTYPE_TC_MASK) >> GE_VTYPE_TC_SHIFT];
temp_tc = StringFromFormat("vec4(texcoord.xy %s, 0.0, 1.0)", factor);
} else {
temp_tc = "vec4(0.0, 0.0, 0.0, 1.0)";
}
}
break;
case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source
if (hasNormal)
temp_tc = flipNormal ? "vec4(normalize(-normal), 1.0)" : "vec4(normalize(normal), 1.0)";
else
temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)";
break;
case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source
if (hasNormal)
temp_tc = flipNormal ? "vec4(-normal, 1.0)" : "vec4(normal, 1.0)";
else
temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)";
break;
}
// Transform by texture matrix. XYZ as we are doing projection mapping.
WRITE(p, " v_texcoord = (u_texmtx * %s).xyz * vec3(u_uvscaleoffset.xy, 1.0);\n", temp_tc.c_str());
}
break;
case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources.
WRITE(p, " v_texcoord = u_uvscaleoffset.xy * vec2(1.0 + dot(normalize(u_lightpos%i), worldnormal), 1.0 + dot(normalize(u_lightpos%i), worldnormal)) * 0.5;\n", gstate.getUVLS0(), gstate.getUVLS1());
break;
default:
// ILLEGAL
break;
}
// Will flip in the fragment for GE_TEXMAP_TEXTURE_MATRIX.
if (flipV && gstate.getUVGenMode() != GE_TEXMAP_TEXTURE_MATRIX)
WRITE(p, " v_texcoord.y = 1.0 - v_texcoord.y;\n");
}
// Compute fogdepth
if (enableFog)
WRITE(p, " v_fogdepth = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n");
}
WRITE(p, "}\n");
}