mirror of
https://github.com/libretro/ppsspp.git
synced 2024-12-12 10:56:45 +00:00
314 lines
8.6 KiB
C++
314 lines
8.6 KiB
C++
// Copyright (c) 2012- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include <PpcEmitter.h>
|
|
#include "PpcRegCacheVPU.h"
|
|
#include "PpcJit.h"
|
|
|
|
using namespace PpcGen;
|
|
|
|
PpcRegCacheVPU::PpcRegCacheVPU(MIPSState *mips, MIPSComp::PpcJitOptions *options) : mips_(mips), options_(options) {
|
|
}
|
|
|
|
void PpcRegCacheVPU::Init(PPCXEmitter *emitter) {
|
|
emit_ = emitter;
|
|
}
|
|
|
|
void PpcRegCacheVPU::Start(MIPSAnalyst::AnalysisResults &stats) {
|
|
for (int i = 0; i < NUM_PPCVPUREG; i++) {
|
|
ar[i].mipsReg = -1;
|
|
ar[i].isDirty = false;
|
|
}
|
|
for (int i = 0; i < NUM_MIPSVPUREG; i++) {
|
|
mr[i].loc = ML_MEM;
|
|
mr[i].reg = INVALID_REG;
|
|
mr[i].imm = -1;
|
|
mr[i].spillLock = false;
|
|
}
|
|
}
|
|
|
|
const PPCReg *PpcRegCacheVPU::GetMIPSAllocationOrder(int &count) const {
|
|
// Note that R0 is reserved as scratch for now.
|
|
// R1 could be used as it's only used for scratch outside "regalloc space" now.
|
|
// R12 is also potentially usable.
|
|
// R4-R7 are registers we could use for static allocation or downcount.
|
|
// R8 is used to preserve flags in nasty branches.
|
|
// R9 and upwards are reserved for jit basics.
|
|
if (options_->downcountInRegister) {
|
|
static const PPCReg allocationOrder[] = {
|
|
/*R14, R15, R16, R17, R18, R19,*/
|
|
R20, R21, R22, R23, R24, R25,
|
|
R26, R27, R28, R29, R30, R31,
|
|
};
|
|
count = sizeof(allocationOrder) / sizeof(const int);
|
|
return allocationOrder;
|
|
} else {
|
|
static const PPCReg allocationOrder2[] = {
|
|
/*R14, R15, R16, R17, R18, R19,*/
|
|
R20, R21, R22, R23, R24, R25,
|
|
R26, R27, R28, R29, R30, R31,
|
|
};
|
|
count = sizeof(allocationOrder2) / sizeof(const int);
|
|
return allocationOrder2;
|
|
}
|
|
}
|
|
|
|
void PpcRegCacheVPU::FlushBeforeCall() {
|
|
// R4-R11 are preserved. Others need flushing.
|
|
/*
|
|
FlushPpcReg(R2);
|
|
FlushPpcReg(R3);
|
|
FlushPpcReg(R12);
|
|
*/
|
|
}
|
|
|
|
// TODO: Somewhat smarter spilling - currently simply spills the first available, should do
|
|
// round robin or FIFO or something.
|
|
PPCReg PpcRegCacheVPU::MapReg(MIPSReg mipsReg, int mapFlags) {
|
|
// Let's see if it's already mapped. If so we just need to update the dirty flag.
|
|
// We don't need to check for ML_NOINIT because we assume that anyone who maps
|
|
// with that flag immediately writes a "known" value to the register.
|
|
if (mr[mipsReg].loc == ML_PPCREG) {
|
|
if (ar[mr[mipsReg].reg].mipsReg != mipsReg) {
|
|
ERROR_LOG(HLE, "Register mapping out of sync! %i", mipsReg);
|
|
}
|
|
if (mapFlags & MAP_DIRTY) {
|
|
ar[mr[mipsReg].reg].isDirty = true;
|
|
}
|
|
return (PPCReg)mr[mipsReg].reg;
|
|
}
|
|
|
|
// Okay, not mapped, so we need to allocate an ARM register.
|
|
|
|
int allocCount;
|
|
const PPCReg *allocOrder = GetMIPSAllocationOrder(allocCount);
|
|
|
|
allocate:
|
|
for (int i = 0; i < allocCount; i++) {
|
|
int reg = allocOrder[i];
|
|
|
|
if (ar[reg].mipsReg == -1) {
|
|
// That means it's free. Grab it, and load the value into it (if requested).
|
|
ar[reg].isDirty = (mapFlags & MAP_DIRTY) ? true : false;
|
|
if (!(mapFlags & MAP_NOINIT)) {
|
|
if (mr[mipsReg].loc == ML_MEM) {
|
|
if (mipsReg != 0) {
|
|
emit_->LWZ((PPCReg)reg, CTXREG, GetMipsRegOffset(mipsReg));
|
|
} else {
|
|
// If we get a request to load the zero register, at least we won't spend
|
|
// time on a memory access...
|
|
emit_->MOVI2R((PPCReg)reg, 0);
|
|
}
|
|
} else if (mr[mipsReg].loc == ML_IMM) {
|
|
emit_->MOVI2R((PPCReg)reg, mr[mipsReg].imm);
|
|
ar[reg].isDirty = true; // IMM is always dirty.
|
|
}
|
|
}
|
|
ar[reg].mipsReg = mipsReg;
|
|
mr[mipsReg].loc = ML_PPCREG;
|
|
mr[mipsReg].reg = (PPCReg)reg;
|
|
return (PPCReg)reg;
|
|
}
|
|
}
|
|
|
|
// Still nothing. Let's spill a reg and goto 10.
|
|
// TODO: Use age or something to choose which register to spill?
|
|
// TODO: Spill dirty regs first? or opposite?
|
|
int bestToSpill = -1;
|
|
for (int i = 0; i < allocCount; i++) {
|
|
int reg = allocOrder[i];
|
|
if (ar[reg].mipsReg != -1 && mr[ar[reg].mipsReg].spillLock)
|
|
continue;
|
|
bestToSpill = reg;
|
|
break;
|
|
}
|
|
|
|
if (bestToSpill != -1) {
|
|
// ERROR_LOG(JIT, "Out of registers at PC %08x - spills register %i.", mips_->pc, bestToSpill);
|
|
FlushPpcReg((PPCReg)bestToSpill);
|
|
goto allocate;
|
|
}
|
|
|
|
// Uh oh, we have all them spilllocked....
|
|
ERROR_LOG(JIT, "Out of spillable registers at PC %08x!!!", mips_->pc);
|
|
return INVALID_REG;
|
|
}
|
|
|
|
void PpcRegCacheVPU::MapInIn(MIPSReg rd, MIPSReg rs) {
|
|
SpillLock(rd, rs);
|
|
MapReg(rd);
|
|
MapReg(rs);
|
|
ReleaseSpillLocks();
|
|
}
|
|
|
|
void PpcRegCacheVPU::MapDirtyIn(MIPSReg rd, MIPSReg rs, bool avoidLoad) {
|
|
SpillLock(rd, rs);
|
|
bool load = !avoidLoad || rd == rs;
|
|
MapReg(rd, MAP_DIRTY | (load ? 0 : MAP_NOINIT));
|
|
MapReg(rs);
|
|
ReleaseSpillLocks();
|
|
}
|
|
|
|
void PpcRegCacheVPU::MapDirtyInIn(MIPSReg rd, MIPSReg rs, MIPSReg rt, bool avoidLoad) {
|
|
SpillLock(rd, rs, rt);
|
|
bool load = !avoidLoad || (rd == rs || rd == rt);
|
|
MapReg(rd, MAP_DIRTY | (load ? 0 : MAP_NOINIT));
|
|
MapReg(rt);
|
|
MapReg(rs);
|
|
ReleaseSpillLocks();
|
|
}
|
|
|
|
void PpcRegCacheVPU::MapDirtyDirtyInIn(MIPSReg rd1, MIPSReg rd2, MIPSReg rs, MIPSReg rt, bool avoidLoad) {
|
|
SpillLock(rd1, rd2, rs, rt);
|
|
bool load1 = !avoidLoad || (rd1 == rs || rd1 == rt);
|
|
bool load2 = !avoidLoad || (rd2 == rs || rd2 == rt);
|
|
MapReg(rd1, MAP_DIRTY | (load1 ? 0 : MAP_NOINIT));
|
|
MapReg(rd2, MAP_DIRTY | (load2 ? 0 : MAP_NOINIT));
|
|
MapReg(rt);
|
|
MapReg(rs);
|
|
ReleaseSpillLocks();
|
|
}
|
|
|
|
void PpcRegCacheVPU::FlushPpcReg(PPCReg r) {
|
|
if (ar[r].mipsReg == -1) {
|
|
// Nothing to do, reg not mapped.
|
|
return;
|
|
}
|
|
if (ar[r].mipsReg != -1) {
|
|
if (ar[r].isDirty && mr[ar[r].mipsReg].loc == ML_PPCREG)
|
|
emit_->STW(r, CTXREG, GetMipsRegOffset(ar[r].mipsReg));
|
|
// IMMs won't be in an ARM reg.
|
|
mr[ar[r].mipsReg].loc = ML_MEM;
|
|
mr[ar[r].mipsReg].reg = INVALID_REG;
|
|
mr[ar[r].mipsReg].imm = 0;
|
|
} else {
|
|
ERROR_LOG(HLE, "Dirty but no mipsreg?");
|
|
}
|
|
ar[r].isDirty = false;
|
|
ar[r].mipsReg = -1;
|
|
}
|
|
|
|
void PpcRegCacheVPU::FlushR(MIPSReg r) {
|
|
switch (mr[r].loc) {
|
|
case ML_IMM:
|
|
// IMM is always "dirty".
|
|
emit_->MOVI2R(SREG, mr[r].imm);
|
|
emit_->STW(SREG, CTXREG, GetMipsRegOffset(r));
|
|
break;
|
|
|
|
case ML_PPCREG:
|
|
if (mr[r].reg == INVALID_REG) {
|
|
ERROR_LOG(HLE, "FlushMipsReg: MipsReg had bad PpcReg");
|
|
}
|
|
if (ar[mr[r].reg].isDirty) {
|
|
emit_->STW((PPCReg)mr[r].reg, CTXREG, GetMipsRegOffset(r));
|
|
ar[mr[r].reg].isDirty = false;
|
|
}
|
|
ar[mr[r].reg].mipsReg = -1;
|
|
break;
|
|
|
|
case ML_MEM:
|
|
// Already there, nothing to do.
|
|
break;
|
|
|
|
default:
|
|
//BAD
|
|
break;
|
|
}
|
|
mr[r].loc = ML_MEM;
|
|
mr[r].reg = INVALID_REG;
|
|
mr[r].imm = 0;
|
|
}
|
|
|
|
void PpcRegCacheVPU::FlushAll() {
|
|
for (int i = 0; i < NUM_MIPSVPUREG; i++) {
|
|
FlushR(i);
|
|
}
|
|
// Sanity check
|
|
for (int i = 0; i < NUM_PPCVPUREG; i++) {
|
|
if (ar[i].mipsReg != -1) {
|
|
ERROR_LOG(JIT, "Flush fail: ar[%i].mipsReg=%i", i, ar[i].mipsReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PpcRegCacheVPU::SetImm(MIPSReg r, u32 immVal) {
|
|
if (r == 0)
|
|
ERROR_LOG(JIT, "Trying to set immediate %08x to r0", immVal);
|
|
|
|
// Zap existing value if cached in a reg
|
|
if (mr[r].loc == ML_PPCREG) {
|
|
ar[mr[r].reg].mipsReg = -1;
|
|
ar[mr[r].reg].isDirty = false;
|
|
}
|
|
mr[r].loc = ML_IMM;
|
|
mr[r].imm = immVal;
|
|
mr[r].reg = INVALID_REG;
|
|
}
|
|
|
|
bool PpcRegCacheVPU::IsImm(MIPSReg r) const {
|
|
if (r == 0) return true;
|
|
return mr[r].loc == ML_IMM;
|
|
}
|
|
|
|
u32 PpcRegCacheVPU::GetImm(MIPSReg r) const {
|
|
if (r == 0) return 0;
|
|
if (mr[r].loc != ML_IMM) {
|
|
ERROR_LOG(JIT, "Trying to get imm from non-imm register %i", r);
|
|
}
|
|
return mr[r].imm;
|
|
}
|
|
|
|
int PpcRegCacheVPU::GetMipsRegOffset(MIPSReg r) {
|
|
if (r < 32)
|
|
return r * 4;
|
|
switch (r) {
|
|
case MIPSREG_HI:
|
|
return offsetof(MIPSState, hi);
|
|
case MIPSREG_LO:
|
|
return offsetof(MIPSState, lo);
|
|
}
|
|
ERROR_LOG(JIT, "bad mips register %i", r);
|
|
return 0; // or what?
|
|
}
|
|
|
|
void PpcRegCacheVPU::SpillLock(MIPSReg r1, MIPSReg r2, MIPSReg r3, MIPSReg r4) {
|
|
mr[r1].spillLock = true;
|
|
if (r2 != -1) mr[r2].spillLock = true;
|
|
if (r3 != -1) mr[r3].spillLock = true;
|
|
if (r4 != -1) mr[r4].spillLock = true;
|
|
}
|
|
|
|
void PpcRegCacheVPU::ReleaseSpillLocks() {
|
|
for (int i = 0; i < NUM_MIPSVPUREG; i++) {
|
|
mr[i].spillLock = false;
|
|
}
|
|
}
|
|
|
|
void PpcRegCacheVPU::ReleaseSpillLock(MIPSReg reg) {
|
|
mr[reg].spillLock = false;
|
|
}
|
|
|
|
PPCReg PpcRegCacheVPU::R(int mipsReg) {
|
|
if (mr[mipsReg].loc == ML_PPCREG) {
|
|
return (PPCReg)mr[mipsReg].reg;
|
|
} else {
|
|
ERROR_LOG(JIT, "Reg %i not in ppc reg. compilerPC = %08x", mipsReg, compilerPC_);
|
|
return INVALID_REG; // BAAAD
|
|
}
|
|
}
|