ppsspp/Core/HLE/sceKernelMutex.cpp
2012-12-26 08:52:40 +01:00

855 lines
23 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <algorithm>
#include <map>
#include "HLE.h"
#include "../MIPS/MIPS.h"
#include "../../Core/CoreTiming.h"
#include "sceKernel.h"
#include "sceKernelMutex.h"
#include "sceKernelThread.h"
#define PSP_MUTEX_ATTR_FIFO 0
#define PSP_MUTEX_ATTR_PRIORITY 0x100
#define PSP_MUTEX_ATTR_ALLOW_RECURSIVE 0x200
#define PSP_MUTEX_ATTR_KNOWN (PSP_MUTEX_ATTR_PRIORITY | PSP_MUTEX_ATTR_ALLOW_RECURSIVE)
// Not sure about the names of these
#define PSP_MUTEX_ERROR_NO_SUCH_MUTEX 0x800201C3
#define PSP_MUTEX_ERROR_TRYLOCK_FAILED 0x800201C4
#define PSP_MUTEX_ERROR_NOT_LOCKED 0x800201C5
#define PSP_MUTEX_ERROR_LOCK_OVERFLOW 0x800201C6
#define PSP_MUTEX_ERROR_UNLOCK_UNDERFLOW 0x800201C7
#define PSP_MUTEX_ERROR_ALREADY_LOCKED 0x800201C8
#define PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX 0x800201CA
// Note: used only for _600.
#define PSP_LWMUTEX_ERROR_TRYLOCK_FAILED 0x800201CB
#define PSP_LWMUTEX_ERROR_NOT_LOCKED 0x800201CC
#define PSP_LWMUTEX_ERROR_LOCK_OVERFLOW 0x800201CD
#define PSP_LWMUTEX_ERROR_UNLOCK_UNDERFLOW 0x800201CE
#define PSP_LWMUTEX_ERROR_ALREADY_LOCKED 0x800201CF
// Guesswork - not exposed anyway
struct NativeMutex
{
SceSize size;
char name[KERNELOBJECT_MAX_NAME_LENGTH + 1];
SceUInt attr;
int lockLevel;
int lockThread; // The thread holding the lock
};
struct Mutex : public KernelObject
{
const char *GetName() {return nm.name;}
const char *GetTypeName() {return "Mutex";}
static u32 GetMissingErrorCode() { return PSP_MUTEX_ERROR_NO_SUCH_MUTEX; }
int GetIDType() const { return SCE_KERNEL_TMID_Mutex; }
NativeMutex nm;
std::vector<SceUID> waitingThreads;
};
// Guesswork - not exposed anyway
struct NativeLwMutex
{
SceSize size;
char name[KERNELOBJECT_MAX_NAME_LENGTH + 1];
SceUInt attr;
SceUInt workareaPtr;
};
struct NativeLwMutexWorkarea
{
int lockLevel;
SceUID lockThread;
int attr;
int numWaitThreads;
SceUID uid;
int pad[3];
void init()
{
memset(this, 0, sizeof(NativeLwMutexWorkarea));
}
void clear()
{
lockLevel = 0;
lockThread = -1;
uid = -1;
}
};
struct LwMutex : public KernelObject
{
const char *GetName() {return nm.name;}
const char *GetTypeName() {return "LwMutex";}
static u32 GetMissingErrorCode() { return PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX; }
int GetIDType() const { return SCE_KERNEL_TMID_LwMutex; }
NativeLwMutex nm;
std::vector<SceUID> waitingThreads;
};
static int mutexWaitTimer = 0;
static int lwMutexWaitTimer = 0;
// Thread -> Mutex locks for thread end.
typedef std::multimap<SceUID, SceUID> MutexMap;
static MutexMap mutexHeldLocks;
void __KernelMutexInit()
{
mutexWaitTimer = CoreTiming::RegisterEvent("MutexTimeout", &__KernelMutexTimeout);
lwMutexWaitTimer = CoreTiming::RegisterEvent("LwMutexTimeout", &__KernelLwMutexTimeout);
__KernelListenThreadEnd(&__KernelMutexThreadEnd);
}
void __KernelMutexShutdown()
{
mutexHeldLocks.clear();
}
void __KernelMutexAcquireLock(Mutex *mutex, int count, SceUID thread)
{
#if defined(_DEBUG)
std::pair<MutexMap::iterator, MutexMap::iterator> locked = mutexHeldLocks.equal_range(thread);
for (MutexMap::iterator iter = locked.first; iter != locked.second; ++iter)
_dbg_assert_msg_(HLE, (*iter).second != mutex->GetUID(), "Thread %d / mutex %d wasn't removed from mutexHeldLocks properly.", thread, mutex->GetUID());
#endif
mutexHeldLocks.insert(std::make_pair(thread, mutex->GetUID()));
mutex->nm.lockLevel = count;
mutex->nm.lockThread = thread;
}
void __KernelMutexAcquireLock(Mutex *mutex, int count)
{
__KernelMutexAcquireLock(mutex, count, __KernelGetCurThread());
}
void __KernelMutexEraseLock(Mutex *mutex)
{
if (mutex->nm.lockThread != -1)
{
SceUID id = mutex->GetUID();
std::pair<MutexMap::iterator, MutexMap::iterator> locked = mutexHeldLocks.equal_range(mutex->nm.lockThread);
for (MutexMap::iterator iter = locked.first; iter != locked.second; ++iter)
{
if ((*iter).second == id)
{
mutexHeldLocks.erase(iter);
break;
}
}
}
mutex->nm.lockThread = -1;
}
std::vector<SceUID>::iterator __KernelMutexFindPriority(std::vector<SceUID> &waiting)
{
_dbg_assert_msg_(HLE, !waiting.empty(), "__KernelMutexFindPriority: Trying to find best of no threads.");
std::vector<SceUID>::iterator iter, end, best = waiting.end();
u32 best_prio = 0xFFFFFFFF;
for (iter = waiting.begin(), end = waiting.end(); iter != end; ++iter)
{
u32 iter_prio = __KernelGetThreadPrio(*iter);
if (iter_prio < best_prio)
{
best = iter;
best_prio = iter_prio;
}
}
_dbg_assert_msg_(HLE, best != waiting.end(), "__KernelMutexFindPriority: Returning invalid best thread.");
return best;
}
int sceKernelCreateMutex(const char *name, u32 attr, int initialCount, u32 optionsPtr)
{
if (!name)
{
WARN_LOG(HLE, "%08x=sceKernelCreateMutex(): invalid name", SCE_KERNEL_ERROR_ERROR);
return SCE_KERNEL_ERROR_ERROR;
}
if (attr >= 0xC00)
{
WARN_LOG(HLE, "%08x=sceKernelCreateMutex(): invalid attr parameter: %08x", SCE_KERNEL_ERROR_ILLEGAL_ATTR, attr);
return SCE_KERNEL_ERROR_ILLEGAL_ATTR;
}
if (initialCount < 0)
return SCE_KERNEL_ERROR_ILLEGAL_COUNT;
if ((attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && initialCount > 1)
return SCE_KERNEL_ERROR_ILLEGAL_COUNT;
Mutex *mutex = new Mutex();
SceUID id = kernelObjects.Create(mutex);
mutex->nm.size = sizeof(mutex);
strncpy(mutex->nm.name, name, KERNELOBJECT_MAX_NAME_LENGTH);
mutex->nm.name[KERNELOBJECT_MAX_NAME_LENGTH] = 0;
mutex->nm.attr = attr;
if (initialCount == 0)
{
mutex->nm.lockLevel = 0;
mutex->nm.lockThread = -1;
}
else
__KernelMutexAcquireLock(mutex, initialCount);
DEBUG_LOG(HLE, "%i=sceKernelCreateMutex(%s, %08x, %d, %08x)", id, name, attr, initialCount, optionsPtr);
if (optionsPtr != 0)
WARN_LOG(HLE, "sceKernelCreateMutex(%s) unsupported options parameter: %08x", name, optionsPtr);
if ((attr & ~PSP_MUTEX_ATTR_KNOWN) != 0)
WARN_LOG(HLE, "sceKernelCreateMutex(%s) unsupported attr parameter: %08x", name, attr);
return id;
}
bool __KernelUnlockMutexForThread(Mutex *mutex, SceUID threadID, u32 &error, int result)
{
SceUID waitID = __KernelGetWaitID(threadID, WAITTYPE_MUTEX, error);
u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error);
// The waitID may be different after a timeout.
if (waitID != mutex->GetUID())
return false;
// If result is an error code, we're just letting it go.
if (result == 0)
{
int wVal = (int)__KernelGetWaitValue(threadID, error);
__KernelMutexAcquireLock(mutex, wVal, threadID);
}
if (timeoutPtr != 0 && mutexWaitTimer != 0)
{
// Remove any event for this thread.
u64 cyclesLeft = CoreTiming::UnscheduleEvent(mutexWaitTimer, threadID);
Memory::Write_U32((u32) cyclesToUs(cyclesLeft), timeoutPtr);
}
__KernelResumeThreadFromWait(threadID, result);
return true;
}
int sceKernelDeleteMutex(SceUID id)
{
DEBUG_LOG(HLE,"sceKernelDeleteMutex(%i)", id);
u32 error;
Mutex *mutex = kernelObjects.Get<Mutex>(id, error);
if (mutex)
{
bool wokeThreads = false;
std::vector<SceUID>::iterator iter, end;
for (iter = mutex->waitingThreads.begin(), end = mutex->waitingThreads.end(); iter != end; ++iter)
wokeThreads |= __KernelUnlockMutexForThread(mutex, *iter, error, SCE_KERNEL_ERROR_WAIT_DELETE);
if (mutex->nm.lockThread != -1)
__KernelMutexEraseLock(mutex);
mutex->waitingThreads.clear();
if (wokeThreads)
hleReSchedule("mutex deleted");
return kernelObjects.Destroy<Mutex>(id);
}
else
return error;
}
bool __KernelLockMutex(Mutex *mutex, int count, u32 &error)
{
if (!error)
{
if (count <= 0)
error = SCE_KERNEL_ERROR_ILLEGAL_COUNT;
else if (count > 1 && !(mutex->nm.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE))
error = SCE_KERNEL_ERROR_ILLEGAL_COUNT;
// Two positive ints will always overflow to negative.
else if (count + mutex->nm.lockLevel < 0)
error = PSP_MUTEX_ERROR_LOCK_OVERFLOW;
}
if (error)
return false;
if (mutex->nm.lockLevel == 0)
{
__KernelMutexAcquireLock(mutex, count);
// Nobody had it locked - no need to block
return true;
}
if (mutex->nm.lockThread == __KernelGetCurThread())
{
// Recursive mutex, let's just increase the lock count and keep going
if (mutex->nm.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE)
{
mutex->nm.lockLevel += count;
return true;
}
else
{
error = PSP_MUTEX_ERROR_ALREADY_LOCKED;
return false;
}
}
return false;
}
bool __KernelUnlockMutex(Mutex *mutex, u32 &error)
{
__KernelMutexEraseLock(mutex);
bool wokeThreads = false;
std::vector<SceUID>::iterator iter;
while (!wokeThreads && !mutex->waitingThreads.empty())
{
if ((mutex->nm.attr & PSP_MUTEX_ATTR_PRIORITY) != 0)
iter = __KernelMutexFindPriority(mutex->waitingThreads);
else
iter = mutex->waitingThreads.begin();
wokeThreads |= __KernelUnlockMutexForThread(mutex, *iter, error, 0);
mutex->waitingThreads.erase(iter);
}
if (!wokeThreads)
mutex->nm.lockThread = -1;
return wokeThreads;
}
void __KernelMutexTimeout(u64 userdata, int cyclesLate)
{
SceUID threadID = (SceUID)userdata;
u32 error;
u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error);
if (timeoutPtr != 0)
Memory::Write_U32(0, timeoutPtr);
__KernelResumeThreadFromWait(threadID, SCE_KERNEL_ERROR_WAIT_TIMEOUT);
// We intentionally don't remove from waitingThreads here yet.
// The reason is, if it times out, but what it was waiting on is DELETED prior to it
// actually running, it will get a DELETE result instead of a TIMEOUT.
// So, we need to remember it or we won't be able to mark it DELETE instead later.
}
void __KernelMutexThreadEnd(SceUID threadID)
{
u32 error;
// If it was waiting on the mutex, it should finish now.
SceUID waitingMutexID = __KernelGetWaitID(threadID, WAITTYPE_MUTEX, error);
if (waitingMutexID)
{
Mutex *mutex = kernelObjects.Get<Mutex>(waitingMutexID, error);
if (mutex)
mutex->waitingThreads.erase(std::remove(mutex->waitingThreads.begin(), mutex->waitingThreads.end(), threadID), mutex->waitingThreads.end());
}
// Unlock all mutexes the thread had locked.
std::pair<MutexMap::iterator, MutexMap::iterator> locked = mutexHeldLocks.equal_range(threadID);
for (MutexMap::iterator iter = locked.first; iter != locked.second; )
{
// Need to increment early so erase() doesn't invalidate.
SceUID mutexID = (*iter++).second;
Mutex *mutex = kernelObjects.Get<Mutex>(mutexID, error);
if (mutex)
{
mutex->nm.lockLevel = 0;
__KernelUnlockMutex(mutex, error);
}
}
}
void __KernelWaitMutex(Mutex *mutex, u32 timeoutPtr)
{
if (timeoutPtr == 0 || mutexWaitTimer == 0)
return;
int micro = (int) Memory::Read_U32(timeoutPtr);
// This happens to be how the hardware seems to time things.
if (micro <= 3)
micro = 15;
else if (micro <= 249)
micro = 250;
// This should call __KernelMutexTimeout() later, unless we cancel it.
CoreTiming::ScheduleEvent(usToCycles(micro), mutexWaitTimer, __KernelGetCurThread());
}
// int sceKernelLockMutex(SceUID id, int count, int *timeout)
int sceKernelLockMutex(SceUID id, int count, u32 timeoutPtr)
{
DEBUG_LOG(HLE, "sceKernelLockMutex(%i, %i, %08x)", id, count, timeoutPtr);
u32 error;
Mutex *mutex = kernelObjects.Get<Mutex>(id, error);
if (__KernelLockMutex(mutex, count, error))
return 0;
else if (error)
return error;
else
{
mutex->waitingThreads.push_back(__KernelGetCurThread());
__KernelWaitMutex(mutex, timeoutPtr);
__KernelWaitCurThread(WAITTYPE_MUTEX, id, count, timeoutPtr, false);
// Return value will be overwritten by wait.
return 0;
}
}
// int sceKernelLockMutexCB(SceUID id, int count, int *timeout)
int sceKernelLockMutexCB(SceUID id, int count, u32 timeoutPtr)
{
DEBUG_LOG(HLE, "sceKernelLockMutexCB(%i, %i, %08x)", id, count, timeoutPtr);
u32 error;
Mutex *mutex = kernelObjects.Get<Mutex>(id, error);
if (__KernelLockMutex(mutex, count, error))
{
hleCheckCurrentCallbacks();
return 0;
}
else if (error)
return error;
else
{
mutex->waitingThreads.push_back(__KernelGetCurThread());
__KernelWaitMutex(mutex, timeoutPtr);
__KernelWaitCurThread(WAITTYPE_MUTEX, id, count, timeoutPtr, true);
// Return value will be overwritten by wait.
return 0;
}
}
// int sceKernelTryLockMutex(SceUID id, int count)
int sceKernelTryLockMutex(SceUID id, int count)
{
DEBUG_LOG(HLE, "sceKernelTryLockMutex(%i, %i)", id, count);
u32 error;
Mutex *mutex = kernelObjects.Get<Mutex>(id, error);
if (__KernelLockMutex(mutex, count, error))
return 0;
else if (error)
return error;
else
return PSP_MUTEX_ERROR_TRYLOCK_FAILED;
}
// int sceKernelUnlockMutex(SceUID id, int count)
int sceKernelUnlockMutex(SceUID id, int count)
{
DEBUG_LOG(HLE, "sceKernelUnlockMutex(%i, %i)", id, count);
u32 error;
Mutex *mutex = kernelObjects.Get<Mutex>(id, error);
if (error)
return error;
if (count <= 0)
return SCE_KERNEL_ERROR_ILLEGAL_COUNT;
if ((mutex->nm.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && count > 1)
return SCE_KERNEL_ERROR_ILLEGAL_COUNT;
if (mutex->nm.lockLevel == 0 || mutex->nm.lockThread != __KernelGetCurThread())
return PSP_MUTEX_ERROR_NOT_LOCKED;
if (mutex->nm.lockLevel < count)
return PSP_MUTEX_ERROR_UNLOCK_UNDERFLOW;
mutex->nm.lockLevel -= count;
if (mutex->nm.lockLevel == 0)
{
if (__KernelUnlockMutex(mutex, error))
hleReSchedule("mutex unlocked");
}
return 0;
}
int sceKernelCreateLwMutex(u32 workareaPtr, const char *name, u32 attr, int initialCount, u32 optionsPtr)
{
if (!name)
{
WARN_LOG(HLE, "%08x=sceKernelCreateLwMutex(): invalid name", SCE_KERNEL_ERROR_ERROR);
return SCE_KERNEL_ERROR_ERROR;
}
if (attr >= 0x400)
{
WARN_LOG(HLE, "%08x=sceKernelCreateLwMutex(): invalid attr parameter: %08x", SCE_KERNEL_ERROR_ILLEGAL_ATTR, attr);
return SCE_KERNEL_ERROR_ILLEGAL_ATTR;
}
if (initialCount < 0)
return SCE_KERNEL_ERROR_ILLEGAL_COUNT;
if ((attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && initialCount > 1)
return SCE_KERNEL_ERROR_ILLEGAL_COUNT;
LwMutex *mutex = new LwMutex();
SceUID id = kernelObjects.Create(mutex);
mutex->nm.size = sizeof(mutex);
strncpy(mutex->nm.name, name, KERNELOBJECT_MAX_NAME_LENGTH);
mutex->nm.name[KERNELOBJECT_MAX_NAME_LENGTH] = 0;
mutex->nm.attr = attr;
mutex->nm.workareaPtr = workareaPtr;
NativeLwMutexWorkarea workarea;
workarea.init();
workarea.lockLevel = initialCount;
if (initialCount == 0)
workarea.lockThread = 0;
else
workarea.lockThread = __KernelGetCurThread();
workarea.attr = attr;
workarea.uid = id;
Memory::WriteStruct(workareaPtr, &workarea);
DEBUG_LOG(HLE, "sceKernelCreateLwMutex(%08x, %s, %08x, %d, %08x)", workareaPtr, name, attr, initialCount, optionsPtr);
if (optionsPtr != 0)
WARN_LOG(HLE, "sceKernelCreateLwMutex(%s) unsupported options parameter: %08x", name, optionsPtr);
if ((attr & ~PSP_MUTEX_ATTR_KNOWN) != 0)
WARN_LOG(HLE, "sceKernelCreateLwMutex(%s) unsupported attr parameter: %08x", name, attr);
return 0;
}
bool __KernelUnlockLwMutexForThread(LwMutex *mutex, NativeLwMutexWorkarea &workarea, SceUID threadID, u32 &error, int result)
{
SceUID waitID = __KernelGetWaitID(threadID, WAITTYPE_LWMUTEX, error);
u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error);
// The waitID may be different after a timeout.
if (waitID != mutex->GetUID())
return false;
// If result is an error code, we're just letting it go.
if (result == 0)
{
workarea.lockLevel = (int) __KernelGetWaitValue(threadID, error);
workarea.lockThread = threadID;
}
if (timeoutPtr != 0 && lwMutexWaitTimer != 0)
{
// Remove any event for this thread.
u64 cyclesLeft = CoreTiming::UnscheduleEvent(lwMutexWaitTimer, threadID);
Memory::Write_U32((u32) cyclesToUs(cyclesLeft), timeoutPtr);
}
__KernelResumeThreadFromWait(threadID, result);
return true;
}
int sceKernelDeleteLwMutex(u32 workareaPtr)
{
DEBUG_LOG(HLE, "sceKernelDeleteLwMutex(%08x)", workareaPtr);
if (!workareaPtr || !Memory::IsValidAddress(workareaPtr))
return SCE_KERNEL_ERROR_ILLEGAL_ADDR;
NativeLwMutexWorkarea workarea;
Memory::ReadStruct(workareaPtr, &workarea);
u32 error;
LwMutex *mutex = kernelObjects.Get<LwMutex>(workarea.uid, error);
if (mutex)
{
bool wokeThreads = false;
std::vector<SceUID>::iterator iter, end;
for (iter = mutex->waitingThreads.begin(), end = mutex->waitingThreads.end(); iter != end; ++iter)
wokeThreads |= __KernelUnlockLwMutexForThread(mutex, workarea, *iter, error, SCE_KERNEL_ERROR_WAIT_DELETE);
mutex->waitingThreads.clear();
workarea.clear();
Memory::WriteStruct(workareaPtr, &workarea);
if (wokeThreads)
hleReSchedule("lwmutex deleted");
return kernelObjects.Destroy<LwMutex>(mutex->GetUID());
}
else
return error;
}
bool __KernelLockLwMutex(NativeLwMutexWorkarea &workarea, int count, u32 &error)
{
if (!error)
{
if (count <= 0)
error = SCE_KERNEL_ERROR_ILLEGAL_COUNT;
else if (count > 1 && !(workarea.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE))
error = SCE_KERNEL_ERROR_ILLEGAL_COUNT;
// Two positive ints will always overflow to negative.
else if (count + workarea.lockLevel < 0)
error = PSP_LWMUTEX_ERROR_LOCK_OVERFLOW;
else if (workarea.uid == -1)
error = PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX;
}
if (error)
return false;
if (workarea.lockLevel == 0)
{
if (workarea.lockThread != 0)
{
// Validate that it actually exists so we can return an error if not.
kernelObjects.Get<LwMutex>(workarea.uid, error);
if (error)
return false;
}
workarea.lockLevel = count;
workarea.lockThread = __KernelGetCurThread();
return true;
}
if (workarea.lockThread == __KernelGetCurThread())
{
// Recursive mutex, let's just increase the lock count and keep going
if (workarea.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE)
{
workarea.lockLevel += count;
return true;
}
else
{
error = PSP_LWMUTEX_ERROR_ALREADY_LOCKED;
return false;
}
}
return false;
}
bool __KernelUnlockLwMutex(NativeLwMutexWorkarea &workarea, u32 &error)
{
LwMutex *mutex = kernelObjects.Get<LwMutex>(workarea.uid, error);
if (error)
{
workarea.lockThread = 0;
return false;
}
bool wokeThreads = false;
std::vector<SceUID>::iterator iter;
while (!wokeThreads && !mutex->waitingThreads.empty())
{
if ((mutex->nm.attr & PSP_MUTEX_ATTR_PRIORITY) != 0)
iter = __KernelMutexFindPriority(mutex->waitingThreads);
else
iter = mutex->waitingThreads.begin();
wokeThreads |= __KernelUnlockLwMutexForThread(mutex, workarea, *iter, error, 0);
mutex->waitingThreads.erase(iter);
}
if (!wokeThreads)
workarea.lockThread = 0;
return wokeThreads;
}
void __KernelLwMutexTimeout(u64 userdata, int cyclesLate)
{
SceUID threadID = (SceUID)userdata;
u32 error;
u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error);
if (timeoutPtr != 0)
Memory::Write_U32(0, timeoutPtr);
__KernelResumeThreadFromWait(threadID, SCE_KERNEL_ERROR_WAIT_TIMEOUT);
// We intentionally don't remove from waitingThreads here yet.
// The reason is, if it times out, but what it was waiting on is DELETED prior to it
// actually running, it will get a DELETE result instead of a TIMEOUT.
// So, we need to remember it or we won't be able to mark it DELETE instead later.
}
void __KernelWaitLwMutex(LwMutex *mutex, u32 timeoutPtr)
{
if (timeoutPtr == 0 || lwMutexWaitTimer == 0)
return;
int micro = (int) Memory::Read_U32(timeoutPtr);
// This happens to be how the hardware seems to time things.
if (micro <= 3)
micro = 15;
else if (micro <= 249)
micro = 250;
// This should call __KernelLwMutexTimeout() later, unless we cancel it.
CoreTiming::ScheduleEvent(usToCycles(micro), lwMutexWaitTimer, __KernelGetCurThread());
}
int sceKernelTryLockLwMutex(u32 workareaPtr, int count)
{
DEBUG_LOG(HLE, "sceKernelTryLockLwMutex(%08x, %i)", workareaPtr, count);
NativeLwMutexWorkarea workarea;
Memory::ReadStruct(workareaPtr, &workarea);
u32 error = 0;
if (__KernelLockLwMutex(workarea, count, error))
{
Memory::WriteStruct(workareaPtr, &workarea);
return 0;
}
// Unlike sceKernelTryLockLwMutex_600, this always returns the same error.
else if (error)
return PSP_MUTEX_ERROR_TRYLOCK_FAILED;
else
return PSP_MUTEX_ERROR_TRYLOCK_FAILED;
}
int sceKernelTryLockLwMutex_600(u32 workareaPtr, int count)
{
DEBUG_LOG(HLE, "sceKernelTryLockLwMutex_600(%08x, %i)", workareaPtr, count);
NativeLwMutexWorkarea workarea;
Memory::ReadStruct(workareaPtr, &workarea);
u32 error = 0;
if (__KernelLockLwMutex(workarea, count, error))
{
Memory::WriteStruct(workareaPtr, &workarea);
return 0;
}
else if (error)
return error;
else
return PSP_LWMUTEX_ERROR_TRYLOCK_FAILED;
}
int sceKernelLockLwMutex(u32 workareaPtr, int count, u32 timeoutPtr)
{
DEBUG_LOG(HLE, "sceKernelLockLwMutex(%08x, %i, %08x)", workareaPtr, count, timeoutPtr);
NativeLwMutexWorkarea workarea;
Memory::ReadStruct(workareaPtr, &workarea);
u32 error = 0;
if (__KernelLockLwMutex(workarea, count, error))
{
Memory::WriteStruct(workareaPtr, &workarea);
return 0;
}
else if (error)
return error;
else
{
LwMutex *mutex = kernelObjects.Get<LwMutex>(workarea.uid, error);
if (mutex)
{
mutex->waitingThreads.push_back(__KernelGetCurThread());
__KernelWaitLwMutex(mutex, timeoutPtr);
__KernelWaitCurThread(WAITTYPE_LWMUTEX, workarea.uid, count, timeoutPtr, false);
// Return value will be overwritten by wait.
return 0;
}
else
return error;
}
}
int sceKernelLockLwMutexCB(u32 workareaPtr, int count, u32 timeoutPtr)
{
DEBUG_LOG(HLE, "sceKernelLockLwMutexCB(%08x, %i, %08x)", workareaPtr, count, timeoutPtr);
NativeLwMutexWorkarea workarea;
Memory::ReadStruct(workareaPtr, &workarea);
u32 error = 0;
if (__KernelLockLwMutex(workarea, count, error))
{
Memory::WriteStruct(workareaPtr, &workarea);
hleCheckCurrentCallbacks();
return 0;
}
else if (error)
return error;
else
{
LwMutex *mutex = kernelObjects.Get<LwMutex>(workarea.uid, error);
if (mutex)
{
mutex->waitingThreads.push_back(__KernelGetCurThread());
__KernelWaitLwMutex(mutex, timeoutPtr);
__KernelWaitCurThread(WAITTYPE_LWMUTEX, workarea.uid, count, timeoutPtr, true);
// Return value will be overwritten by wait.
return 0;
}
else
return error;
}
}
int sceKernelUnlockLwMutex(u32 workareaPtr, int count)
{
DEBUG_LOG(HLE, "sceKernelUnlockLwMutex(%08x, %i)", workareaPtr, count);
NativeLwMutexWorkarea workarea;
Memory::ReadStruct(workareaPtr, &workarea);
if (workarea.uid == -1)
return PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX;
else if (count <= 0)
return SCE_KERNEL_ERROR_ILLEGAL_COUNT;
else if ((workarea.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && count > 1)
return SCE_KERNEL_ERROR_ILLEGAL_COUNT;
else if (workarea.lockLevel == 0 || workarea.lockThread != __KernelGetCurThread())
return PSP_LWMUTEX_ERROR_NOT_LOCKED;
else if (workarea.lockLevel < count)
return PSP_LWMUTEX_ERROR_UNLOCK_UNDERFLOW;
workarea.lockLevel -= count;
if (workarea.lockLevel == 0)
{
u32 error;
if (__KernelUnlockLwMutex(workarea, error))
hleReSchedule("lwmutex unlocked");
Memory::WriteStruct(workareaPtr, &workarea);
}
else
Memory::WriteStruct(workareaPtr, &workarea);
return 0;
}