mirror of
https://github.com/libretro/ppsspp.git
synced 2025-01-07 09:00:40 +00:00
1088 lines
37 KiB
C++
1088 lines
37 KiB
C++
// Copyright (C) 2003 Dolphin Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official SVN repository and contact information can be found at
|
|
// http://code.google.com/p/dolphin-emu/
|
|
|
|
#ifndef _DOLPHIN_INTEL_CODEGEN_
|
|
#define _DOLPHIN_INTEL_CODEGEN_
|
|
|
|
#include "ppsspp_config.h"
|
|
|
|
#include <cstddef>
|
|
#include "Common.h"
|
|
#include "CodeBlock.h"
|
|
|
|
#if PPSSPP_ARCH(64BIT)
|
|
#define PTRBITS 64
|
|
#else
|
|
#define PTRBITS 32
|
|
#endif
|
|
|
|
namespace Gen
|
|
{
|
|
|
|
enum X64Reg : u32
|
|
{
|
|
EAX = 0, EBX = 3, ECX = 1, EDX = 2,
|
|
ESI = 6, EDI = 7, EBP = 5, ESP = 4,
|
|
|
|
RAX = 0, RBX = 3, RCX = 1, RDX = 2,
|
|
RSI = 6, RDI = 7, RBP = 5, RSP = 4,
|
|
R8 = 8, R9 = 9, R10 = 10,R11 = 11,
|
|
R12 = 12,R13 = 13,R14 = 14,R15 = 15,
|
|
|
|
AL = 0, BL = 3, CL = 1, DL = 2,
|
|
SIL = 6, DIL = 7, BPL = 5, SPL = 4,
|
|
AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106,
|
|
|
|
AX = 0, BX = 3, CX = 1, DX = 2,
|
|
SI = 6, DI = 7, BP = 5, SP = 4,
|
|
|
|
XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
|
|
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15,
|
|
|
|
YMM0=0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
|
|
YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15,
|
|
|
|
INVALID_REG = 0xFFFFFFFF
|
|
};
|
|
|
|
enum CCFlags
|
|
{
|
|
CC_O = 0,
|
|
CC_NO = 1,
|
|
CC_B = 2, CC_C = 2, CC_NAE = 2,
|
|
CC_NB = 3, CC_NC = 3, CC_AE = 3,
|
|
CC_Z = 4, CC_E = 4,
|
|
CC_NZ = 5, CC_NE = 5,
|
|
CC_BE = 6, CC_NA = 6,
|
|
CC_NBE = 7, CC_A = 7,
|
|
CC_S = 8,
|
|
CC_NS = 9,
|
|
CC_P = 0xA, CC_PE = 0xA,
|
|
CC_NP = 0xB, CC_PO = 0xB,
|
|
CC_L = 0xC, CC_NGE = 0xC,
|
|
CC_NL = 0xD, CC_GE = 0xD,
|
|
CC_LE = 0xE, CC_NG = 0xE,
|
|
CC_NLE = 0xF, CC_G = 0xF
|
|
};
|
|
|
|
enum
|
|
{
|
|
NUMGPRs = 16,
|
|
NUMXMMs = 16,
|
|
};
|
|
|
|
enum
|
|
{
|
|
SCALE_NONE = 0,
|
|
SCALE_1 = 1,
|
|
SCALE_2 = 2,
|
|
SCALE_4 = 4,
|
|
SCALE_8 = 8,
|
|
SCALE_ATREG = 16,
|
|
//SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
|
|
SCALE_NOBASE_2 = 34,
|
|
SCALE_NOBASE_4 = 36,
|
|
SCALE_NOBASE_8 = 40,
|
|
SCALE_RIP = 0xFF,
|
|
SCALE_IMM8 = 0xF0,
|
|
SCALE_IMM16 = 0xF1,
|
|
SCALE_IMM32 = 0xF2,
|
|
SCALE_IMM64 = 0xF3,
|
|
};
|
|
|
|
enum NormalOp {
|
|
nrmADD,
|
|
nrmADC,
|
|
nrmSUB,
|
|
nrmSBB,
|
|
nrmAND,
|
|
nrmOR ,
|
|
nrmXOR,
|
|
nrmMOV,
|
|
nrmTEST,
|
|
nrmCMP,
|
|
nrmXCHG,
|
|
};
|
|
|
|
enum {
|
|
CMP_EQ = 0,
|
|
CMP_LT = 1,
|
|
CMP_LE = 2,
|
|
CMP_UNORD = 3,
|
|
CMP_NEQ = 4,
|
|
CMP_NLT = 5,
|
|
CMP_NLE = 6,
|
|
CMP_ORD = 7,
|
|
};
|
|
|
|
enum FloatOp {
|
|
floatLD = 0,
|
|
floatST = 2,
|
|
floatSTP = 3,
|
|
floatLD80 = 5,
|
|
floatSTP80 = 7,
|
|
|
|
floatINVALID = -1,
|
|
};
|
|
|
|
enum FloatRound {
|
|
FROUND_NEAREST = 0,
|
|
FROUND_FLOOR = 1,
|
|
FROUND_CEIL = 2,
|
|
FROUND_ZERO = 3,
|
|
FROUND_MXCSR = 4,
|
|
|
|
FROUND_RAISE_PRECISION = 0,
|
|
FROUND_IGNORE_PRECISION = 8,
|
|
};
|
|
|
|
class XEmitter;
|
|
|
|
// RIP addressing does not benefit from micro op fusion on Core arch
|
|
struct OpArg
|
|
{
|
|
OpArg() {} // dummy op arg, used for storage
|
|
OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
|
|
{
|
|
operandReg = 0;
|
|
scale = (u8)_scale;
|
|
offsetOrBaseReg = (u16)rmReg;
|
|
indexReg = (u16)scaledReg;
|
|
//if scale == 0 never mind offsetting
|
|
offset = _offset;
|
|
}
|
|
bool operator==(const OpArg &b) const
|
|
{
|
|
return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg &&
|
|
indexReg == b.indexReg && offset == b.offset;
|
|
}
|
|
void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const;
|
|
void WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W = 0) const;
|
|
void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const;
|
|
void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
|
|
// This one is public - must be written to
|
|
u64 offset; // use RIP-relative as much as possible - 64-bit immediates are not available.
|
|
u16 operandReg;
|
|
|
|
void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
|
|
bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
|
|
bool IsSimpleReg() const {return scale == SCALE_NONE;}
|
|
bool IsSimpleReg(X64Reg reg) const
|
|
{
|
|
if (!IsSimpleReg())
|
|
return false;
|
|
return GetSimpleReg() == reg;
|
|
}
|
|
|
|
bool CanDoOpWith(const OpArg &other) const
|
|
{
|
|
if (IsSimpleReg()) return true;
|
|
if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false;
|
|
return true;
|
|
}
|
|
|
|
int GetImmBits() const
|
|
{
|
|
switch (scale)
|
|
{
|
|
case SCALE_IMM8: return 8;
|
|
case SCALE_IMM16: return 16;
|
|
case SCALE_IMM32: return 32;
|
|
case SCALE_IMM64: return 64;
|
|
default: return -1;
|
|
}
|
|
}
|
|
|
|
void SetImmBits(int bits) {
|
|
switch (bits)
|
|
{
|
|
case 8: scale = SCALE_IMM8; break;
|
|
case 16: scale = SCALE_IMM16; break;
|
|
case 32: scale = SCALE_IMM32; break;
|
|
case 64: scale = SCALE_IMM64; break;
|
|
}
|
|
}
|
|
|
|
X64Reg GetSimpleReg() const
|
|
{
|
|
if (scale == SCALE_NONE)
|
|
return (X64Reg)offsetOrBaseReg;
|
|
else
|
|
return INVALID_REG;
|
|
}
|
|
|
|
u32 GetImmValue() const {
|
|
return (u32)offset;
|
|
}
|
|
|
|
// For loops.
|
|
void IncreaseOffset(int sz) {
|
|
offset += sz;
|
|
}
|
|
|
|
private:
|
|
u8 scale;
|
|
u16 offsetOrBaseReg;
|
|
u16 indexReg;
|
|
};
|
|
|
|
inline OpArg M(const void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);}
|
|
template <typename T>
|
|
inline OpArg M(const T *ptr) {return OpArg((u64)(const void *)ptr, (int)SCALE_RIP);}
|
|
inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);}
|
|
inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}
|
|
|
|
inline OpArg MDisp(X64Reg value, int offset)
|
|
{
|
|
return OpArg((u32)offset, SCALE_ATREG, value);
|
|
}
|
|
|
|
inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
|
|
{
|
|
return OpArg(offset, scale, base, scaled);
|
|
}
|
|
|
|
inline OpArg MScaled(X64Reg scaled, int scale, int offset)
|
|
{
|
|
if (scale == SCALE_1)
|
|
return OpArg(offset, SCALE_ATREG, scaled);
|
|
else
|
|
return OpArg(offset, scale | 0x20, RAX, scaled);
|
|
}
|
|
|
|
inline OpArg MRegSum(X64Reg base, X64Reg offset)
|
|
{
|
|
return MComplex(base, offset, 1, 0);
|
|
}
|
|
|
|
inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);}
|
|
inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
|
|
inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
|
|
inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);}
|
|
|
|
template<int N> OpArg ImmPtrTpl(const void *imm);
|
|
template<> inline OpArg ImmPtrTpl<8>(const void *imm) {return Imm64((u64)imm);}
|
|
template<> inline OpArg ImmPtrTpl<4>(const void *imm) {return Imm32((u32)(uintptr_t)imm);}
|
|
inline OpArg ImmPtr(const void* imm) {return ImmPtrTpl<sizeof(void*)>(imm);}
|
|
|
|
inline OpArg UImmAuto(u32 imm) {
|
|
return OpArg(imm, imm >= 128 ? SCALE_IMM32 : SCALE_IMM8);
|
|
}
|
|
inline OpArg SImmAuto(s32 imm) {
|
|
return OpArg(imm, (imm >= 128 || imm < -128) ? SCALE_IMM32 : SCALE_IMM8);
|
|
}
|
|
|
|
template<int N> u32 PtrOffsetTpl(const void* ptr, const void* base);
|
|
template<> inline u32 PtrOffsetTpl<8>(const void *ptr, const void* base) {
|
|
s64 distance = (s64)ptr-(s64)base;
|
|
if (distance >= 0x80000000LL ||
|
|
distance < -0x80000000LL)
|
|
{
|
|
_assert_msg_(DYNA_REC, 0, "pointer offset out of range");
|
|
return 0;
|
|
}
|
|
|
|
return (u32)distance;
|
|
}
|
|
template<> inline u32 PtrOffsetTpl<4>(const void *ptr, const void* base) {
|
|
return (u32)(uintptr_t)ptr-(u32)(uintptr_t)base;
|
|
}
|
|
inline u32 PtrOffset(const void* ptr, const void* base) {
|
|
return PtrOffsetTpl<sizeof(void*)>(ptr, base);
|
|
}
|
|
|
|
//usage: int a[]; ARRAY_OFFSET(a,10)
|
|
#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0]))
|
|
//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
|
|
#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))
|
|
|
|
struct FixupBranch
|
|
{
|
|
u8 *ptr;
|
|
int type; //0 = 8bit 1 = 32bit
|
|
};
|
|
|
|
enum SSECompare
|
|
{
|
|
EQ = 0,
|
|
LT,
|
|
LE,
|
|
UNORD,
|
|
NEQ,
|
|
NLT,
|
|
NLE,
|
|
ORD,
|
|
};
|
|
|
|
typedef const u8* JumpTarget;
|
|
|
|
class XEmitter
|
|
{
|
|
friend struct OpArg; // for Write8 etc
|
|
private:
|
|
u8 *code;
|
|
bool flags_locked;
|
|
|
|
void CheckFlags();
|
|
|
|
void Rex(int w, int r, int x, int b);
|
|
void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
|
|
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
|
|
void WriteMulDivType(int bits, OpArg src, int ext);
|
|
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
|
|
void WriteShift(int bits, OpArg dest, OpArg &shift, int ext);
|
|
void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext);
|
|
void WriteMXCSR(OpArg arg, int ext);
|
|
void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
|
|
void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
|
|
void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
|
|
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
|
|
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
|
|
void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
|
|
void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
|
|
void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
|
|
void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg);
|
|
void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2);
|
|
|
|
protected:
|
|
inline void Write8(u8 value) {*code++ = value;}
|
|
inline void Write16(u16 value) {*(u16*)code = (value); code += 2;}
|
|
inline void Write32(u32 value) {*(u32*)code = (value); code += 4;}
|
|
inline void Write64(u64 value) {*(u64*)code = (value); code += 8;}
|
|
|
|
public:
|
|
XEmitter() { code = nullptr; flags_locked = false; }
|
|
XEmitter(u8 *code_ptr) { code = code_ptr; flags_locked = false; }
|
|
virtual ~XEmitter() {}
|
|
|
|
void WriteModRM(int mod, int rm, int reg);
|
|
void WriteSIB(int scale, int index, int base);
|
|
|
|
void SetCodePointer(u8 *ptr);
|
|
const u8 *GetCodePointer() const;
|
|
|
|
void ReserveCodeSpace(int bytes);
|
|
const u8 *AlignCode4();
|
|
const u8 *AlignCode16();
|
|
const u8 *AlignCodePage();
|
|
u8 *GetWritableCodePtr();
|
|
|
|
void LockFlags() { flags_locked = true; }
|
|
void UnlockFlags() { flags_locked = false; }
|
|
|
|
// Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
|
|
// INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr.,
|
|
// INC and DEC are slow on Intel Core, but not on AMD. They create a
|
|
// false flag dependency because they only update a subset of the flags.
|
|
// XCHG is SLOW and should be avoided.
|
|
// Actually, REP MOVSB has gotten fast again on recent CPU generations, though it's not all that useful anyway.
|
|
|
|
// Debug breakpoint
|
|
void INT3();
|
|
|
|
// Do nothing
|
|
void NOP(size_t count = 1);
|
|
|
|
// Save energy in wait-loops on P4 only. Probably not too useful.
|
|
void PAUSE();
|
|
|
|
// Flag control
|
|
void STC();
|
|
void CLC();
|
|
void CMC();
|
|
|
|
// These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD!
|
|
void LAHF(); // 3 cycle vector path
|
|
void SAHF(); // direct path fast
|
|
|
|
// Stack control
|
|
void PUSH(X64Reg reg);
|
|
void POP(X64Reg reg);
|
|
void PUSH(int bits, const OpArg ®);
|
|
void POP(int bits, const OpArg ®);
|
|
void PUSHF();
|
|
void POPF();
|
|
|
|
// Flow control
|
|
void RET();
|
|
void RET_FAST();
|
|
void UD2();
|
|
FixupBranch J(bool force5bytes = false);
|
|
|
|
void JMP(const u8 * addr, bool force5Bytes = false);
|
|
void JMP(OpArg arg);
|
|
void JMPptr(const OpArg &arg);
|
|
void JMPself(); //infinite loop!
|
|
#ifdef CALL
|
|
#undef CALL
|
|
#endif
|
|
void CALL(const void *fnptr);
|
|
void CALLptr(OpArg arg);
|
|
|
|
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
|
|
//void J_CC(CCFlags conditionCode, JumpTarget target);
|
|
void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false);
|
|
|
|
void SetJumpTarget(const FixupBranch &branch);
|
|
|
|
void SETcc(CCFlags flag, OpArg dest);
|
|
// Note: CMOV brings small if any benefit on current cpus.
|
|
void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
|
|
|
|
// Fences
|
|
void LFENCE();
|
|
void MFENCE();
|
|
void SFENCE();
|
|
|
|
// Bit scan
|
|
void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit
|
|
void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit
|
|
|
|
// Cache control
|
|
enum PrefetchLevel
|
|
{
|
|
PF_NTA, //Non-temporal (data used once and only once)
|
|
PF_T0, //All cache levels
|
|
PF_T1, //Levels 2+ (aliased to T0 on AMD)
|
|
PF_T2, //Levels 3+ (aliased to T0 on AMD)
|
|
};
|
|
void PREFETCH(PrefetchLevel level, OpArg arg);
|
|
void MOVNTI(int bits, OpArg dest, X64Reg src);
|
|
void MOVNTDQ(OpArg arg, X64Reg regOp);
|
|
void MOVNTPS(OpArg arg, X64Reg regOp);
|
|
void MOVNTPD(OpArg arg, X64Reg regOp);
|
|
|
|
// Multiplication / division
|
|
void MUL(int bits, OpArg src); //UNSIGNED
|
|
void IMUL(int bits, OpArg src); //SIGNED
|
|
void IMUL(int bits, X64Reg regOp, OpArg src);
|
|
void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm);
|
|
void DIV(int bits, OpArg src);
|
|
void IDIV(int bits, OpArg src);
|
|
|
|
// Shift
|
|
void ROL(int bits, OpArg dest, OpArg shift);
|
|
void ROR(int bits, OpArg dest, OpArg shift);
|
|
void RCL(int bits, OpArg dest, OpArg shift);
|
|
void RCR(int bits, OpArg dest, OpArg shift);
|
|
void SHL(int bits, OpArg dest, OpArg shift);
|
|
void SHR(int bits, OpArg dest, OpArg shift);
|
|
void SAR(int bits, OpArg dest, OpArg shift);
|
|
|
|
// Bit Test
|
|
void BT(int bits, OpArg dest, OpArg index);
|
|
void BTS(int bits, OpArg dest, OpArg index);
|
|
void BTR(int bits, OpArg dest, OpArg index);
|
|
void BTC(int bits, OpArg dest, OpArg index);
|
|
|
|
// Double-Precision Shift
|
|
void SHRD(int bits, OpArg dest, OpArg src, OpArg shift);
|
|
void SHLD(int bits, OpArg dest, OpArg src, OpArg shift);
|
|
|
|
// Extend EAX into EDX in various ways
|
|
void CWD(int bits = 16);
|
|
inline void CDQ() {CWD(32);}
|
|
inline void CQO() {CWD(64);}
|
|
void CBW(int bits = 8);
|
|
inline void CWDE() {CBW(16);}
|
|
inline void CDQE() {CBW(32);}
|
|
|
|
// Load effective address
|
|
void LEA(int bits, X64Reg dest, OpArg src);
|
|
|
|
// Integer arithmetic
|
|
void NEG (int bits, OpArg src);
|
|
void ADD (int bits, const OpArg &a1, const OpArg &a2);
|
|
void ADC (int bits, const OpArg &a1, const OpArg &a2);
|
|
void SUB (int bits, const OpArg &a1, const OpArg &a2);
|
|
void SBB (int bits, const OpArg &a1, const OpArg &a2);
|
|
void AND (int bits, const OpArg &a1, const OpArg &a2);
|
|
void CMP (int bits, const OpArg &a1, const OpArg &a2);
|
|
|
|
// Bit operations
|
|
void NOT (int bits, OpArg src);
|
|
void OR (int bits, const OpArg &a1, const OpArg &a2);
|
|
void XOR (int bits, const OpArg &a1, const OpArg &a2);
|
|
void MOV (int bits, const OpArg &a1, const OpArg &a2);
|
|
void TEST(int bits, const OpArg &a1, const OpArg &a2);
|
|
|
|
// Are these useful at all? Consider removing.
|
|
void XCHG(int bits, const OpArg &a1, const OpArg &a2);
|
|
void XCHG_AHAL();
|
|
|
|
// Byte swapping (32 and 64-bit only).
|
|
void BSWAP(int bits, X64Reg reg);
|
|
|
|
// Sign/zero extension
|
|
void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary
|
|
void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
|
|
|
|
// Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE.
|
|
void MOVBE(int dbits, const OpArg& dest, const OpArg& src);
|
|
|
|
// Available only on AMD >= Phenom or Intel >= Haswell
|
|
void LZCNT(int bits, X64Reg dest, OpArg src);
|
|
// Note: this one is actually part of BMI1
|
|
void TZCNT(int bits, X64Reg dest, OpArg src);
|
|
|
|
// WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
|
|
void STMXCSR(OpArg memloc);
|
|
void LDMXCSR(OpArg memloc);
|
|
|
|
// Prefixes
|
|
void LOCK();
|
|
void REP();
|
|
void REPNE();
|
|
void FSOverride();
|
|
void GSOverride();
|
|
|
|
// x87
|
|
enum x87StatusWordBits {
|
|
x87_InvalidOperation = 0x1,
|
|
x87_DenormalizedOperand = 0x2,
|
|
x87_DivisionByZero = 0x4,
|
|
x87_Overflow = 0x8,
|
|
x87_Underflow = 0x10,
|
|
x87_Precision = 0x20,
|
|
x87_StackFault = 0x40,
|
|
x87_ErrorSummary = 0x80,
|
|
x87_C0 = 0x100,
|
|
x87_C1 = 0x200,
|
|
x87_C2 = 0x400,
|
|
x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
|
|
x87_C3 = 0x4000,
|
|
x87_FPUBusy = 0x8000,
|
|
};
|
|
|
|
void FLD(int bits, OpArg src);
|
|
void FST(int bits, OpArg dest);
|
|
void FSTP(int bits, OpArg dest);
|
|
void FNSTSW_AX();
|
|
void FWAIT();
|
|
|
|
// SSE/SSE2: Floating point arithmetic
|
|
void ADDSS(X64Reg regOp, OpArg arg);
|
|
void ADDSD(X64Reg regOp, OpArg arg);
|
|
void SUBSS(X64Reg regOp, OpArg arg);
|
|
void SUBSD(X64Reg regOp, OpArg arg);
|
|
void MULSS(X64Reg regOp, OpArg arg);
|
|
void MULSD(X64Reg regOp, OpArg arg);
|
|
void DIVSS(X64Reg regOp, OpArg arg);
|
|
void DIVSD(X64Reg regOp, OpArg arg);
|
|
void MINSS(X64Reg regOp, OpArg arg);
|
|
void MINSD(X64Reg regOp, OpArg arg);
|
|
void MAXSS(X64Reg regOp, OpArg arg);
|
|
void MAXSD(X64Reg regOp, OpArg arg);
|
|
void SQRTSS(X64Reg regOp, OpArg arg);
|
|
void SQRTSD(X64Reg regOp, OpArg arg);
|
|
void RCPSS(X64Reg regOp, OpArg& arg);
|
|
void RSQRTSS(X64Reg regOp, OpArg arg);
|
|
|
|
// SSE/SSE2: Floating point bitwise (yes)
|
|
void CMPSS(X64Reg regOp, OpArg arg, u8 compare);
|
|
void CMPSD(X64Reg regOp, OpArg arg, u8 compare);
|
|
|
|
inline void CMPEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_EQ); }
|
|
inline void CMPLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LT); }
|
|
inline void CMPLESS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LE); }
|
|
inline void CMPUNORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_UNORD); }
|
|
inline void CMPNEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NEQ); }
|
|
inline void CMPNLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NLT); }
|
|
inline void CMPORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_ORD); }
|
|
|
|
// SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
|
|
void ADDPS(X64Reg regOp, OpArg arg);
|
|
void ADDPD(X64Reg regOp, OpArg arg);
|
|
void SUBPS(X64Reg regOp, OpArg arg);
|
|
void SUBPD(X64Reg regOp, OpArg arg);
|
|
void CMPPS(X64Reg regOp, OpArg arg, u8 compare);
|
|
void CMPPD(X64Reg regOp, OpArg arg, u8 compare);
|
|
void MULPS(X64Reg regOp, OpArg arg);
|
|
void MULPD(X64Reg regOp, OpArg arg);
|
|
void DIVPS(X64Reg regOp, OpArg arg);
|
|
void DIVPD(X64Reg regOp, OpArg arg);
|
|
void MINPS(X64Reg regOp, OpArg arg);
|
|
void MINPD(X64Reg regOp, OpArg arg);
|
|
void MAXPS(X64Reg regOp, OpArg arg);
|
|
void MAXPD(X64Reg regOp, OpArg arg);
|
|
void SQRTPS(X64Reg regOp, OpArg arg);
|
|
void SQRTPD(X64Reg regOp, OpArg arg);
|
|
void RCPPS(X64Reg regOp, OpArg& arg);
|
|
void RSQRTPS(X64Reg regOp, OpArg arg);
|
|
|
|
// SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
|
|
void ANDPS(X64Reg regOp, OpArg arg);
|
|
void ANDPD(X64Reg regOp, OpArg arg);
|
|
void ANDNPS(X64Reg regOp, OpArg arg);
|
|
void ANDNPD(X64Reg regOp, OpArg arg);
|
|
void ORPS(X64Reg regOp, OpArg arg);
|
|
void ORPD(X64Reg regOp, OpArg arg);
|
|
void XORPS(X64Reg regOp, OpArg arg);
|
|
void XORPD(X64Reg regOp, OpArg arg);
|
|
|
|
// SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
|
|
void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle);
|
|
void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle);
|
|
|
|
// SSE/SSE2: Useful alternative to shuffle in some cases.
|
|
void MOVDDUP(X64Reg regOp, OpArg arg);
|
|
|
|
// TODO: Actually implement
|
|
#if 0
|
|
// SSE3: Horizontal operations in SIMD registers. Could be useful for various VFPU things like dot products...
|
|
void ADDSUBPS(X64Reg dest, OpArg src);
|
|
void ADDSUBPD(X64Reg dest, OpArg src);
|
|
void HADDPD(X64Reg dest, OpArg src);
|
|
void HSUBPS(X64Reg dest, OpArg src);
|
|
void HSUBPD(X64Reg dest, OpArg src);
|
|
|
|
// SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
|
|
void DPPD(X64Reg dest, OpArg src, u8 arg);
|
|
|
|
// These are probably useful for VFPU emulation.
|
|
void INSERTPS(X64Reg dest, OpArg src, u8 arg);
|
|
void EXTRACTPS(OpArg dest, X64Reg src, u8 arg);
|
|
#endif
|
|
|
|
// SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily on Ivy.
|
|
void HADDPS(X64Reg dest, OpArg src);
|
|
|
|
// SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
|
|
void DPPS(X64Reg dest, OpArg src, u8 arg);
|
|
|
|
void UNPCKLPS(X64Reg dest, OpArg src);
|
|
void UNPCKHPS(X64Reg dest, OpArg src);
|
|
void UNPCKLPD(X64Reg dest, OpArg src);
|
|
void UNPCKHPD(X64Reg dest, OpArg src);
|
|
|
|
// SSE/SSE2: Compares.
|
|
void COMISS(X64Reg regOp, OpArg arg);
|
|
void COMISD(X64Reg regOp, OpArg arg);
|
|
void UCOMISS(X64Reg regOp, OpArg arg);
|
|
void UCOMISD(X64Reg regOp, OpArg arg);
|
|
|
|
// SSE/SSE2: Moves. Use the right data type for your data, in most cases.
|
|
void MOVAPS(X64Reg regOp, OpArg arg);
|
|
void MOVAPD(X64Reg regOp, OpArg arg);
|
|
void MOVAPS(OpArg arg, X64Reg regOp);
|
|
void MOVAPD(OpArg arg, X64Reg regOp);
|
|
|
|
void MOVUPS(X64Reg regOp, OpArg arg);
|
|
void MOVUPD(X64Reg regOp, OpArg arg);
|
|
void MOVUPS(OpArg arg, X64Reg regOp);
|
|
void MOVUPD(OpArg arg, X64Reg regOp);
|
|
|
|
void MOVDQA(X64Reg regOp, OpArg arg);
|
|
void MOVDQA(OpArg arg, X64Reg regOp);
|
|
void MOVDQU(X64Reg regOp, OpArg arg);
|
|
void MOVDQU(OpArg arg, X64Reg regOp);
|
|
|
|
void MOVSS(X64Reg regOp, OpArg arg);
|
|
void MOVSD(X64Reg regOp, OpArg arg);
|
|
void MOVSS(OpArg arg, X64Reg regOp);
|
|
void MOVSD(OpArg arg, X64Reg regOp);
|
|
|
|
void MOVLPS(X64Reg regOp, OpArg arg);
|
|
void MOVLPD(X64Reg regOp, OpArg arg);
|
|
void MOVLPS(OpArg arg, X64Reg regOp);
|
|
void MOVLPD(OpArg arg, X64Reg regOp);
|
|
|
|
void MOVHPS(X64Reg regOp, OpArg arg);
|
|
void MOVHPD(X64Reg regOp, OpArg arg);
|
|
void MOVHPS(OpArg arg, X64Reg regOp);
|
|
void MOVHPD(OpArg arg, X64Reg regOp);
|
|
|
|
void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
|
|
void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
|
|
|
|
void MOVD_xmm(X64Reg dest, const OpArg &arg);
|
|
void MOVQ_xmm(X64Reg dest, OpArg arg);
|
|
void MOVD_xmm(const OpArg &arg, X64Reg src);
|
|
void MOVQ_xmm(OpArg arg, X64Reg src);
|
|
|
|
// SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
|
|
void MOVMSKPS(X64Reg dest, OpArg arg);
|
|
void MOVMSKPD(X64Reg dest, OpArg arg);
|
|
|
|
// SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
|
|
void MASKMOVDQU(X64Reg dest, X64Reg src);
|
|
void LDDQU(X64Reg dest, OpArg src);
|
|
|
|
// SSE/SSE2: Data type conversions.
|
|
void CVTPS2PD(X64Reg dest, OpArg src);
|
|
void CVTPD2PS(X64Reg dest, OpArg src);
|
|
void CVTSS2SD(X64Reg dest, OpArg src);
|
|
void CVTSI2SS(X64Reg dest, OpArg src);
|
|
void CVTSD2SS(X64Reg dest, OpArg src);
|
|
void CVTSI2SD(X64Reg dest, OpArg src);
|
|
void CVTDQ2PD(X64Reg regOp, OpArg arg);
|
|
void CVTPD2DQ(X64Reg regOp, OpArg arg);
|
|
void CVTDQ2PS(X64Reg regOp, OpArg arg);
|
|
void CVTPS2DQ(X64Reg regOp, OpArg arg);
|
|
|
|
void CVTTPS2DQ(X64Reg regOp, OpArg arg);
|
|
void CVTTPD2DQ(X64Reg regOp, OpArg arg);
|
|
|
|
// Destinations are X64 regs (rax, rbx, ...) for these instructions.
|
|
void CVTSS2SI(X64Reg xregdest, OpArg src);
|
|
void CVTSD2SI(X64Reg xregdest, OpArg src);
|
|
void CVTTSS2SI(X64Reg xregdest, OpArg arg);
|
|
void CVTTSD2SI(X64Reg xregdest, OpArg arg);
|
|
|
|
// SSE2: Packed integer instructions
|
|
void PACKSSDW(X64Reg dest, OpArg arg);
|
|
void PACKSSWB(X64Reg dest, OpArg arg);
|
|
void PACKUSDW(X64Reg dest, OpArg arg);
|
|
void PACKUSWB(X64Reg dest, OpArg arg);
|
|
|
|
void PUNPCKLBW(X64Reg dest, const OpArg &arg);
|
|
void PUNPCKLWD(X64Reg dest, const OpArg &arg);
|
|
void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
|
|
void PUNPCKLQDQ(X64Reg dest, const OpArg &arg);
|
|
|
|
void PUNPCKHBW(X64Reg dest, const OpArg &arg);
|
|
void PUNPCKHWD(X64Reg dest, const OpArg &arg);
|
|
void PUNPCKHDQ(X64Reg dest, const OpArg &arg);
|
|
void PUNPCKHQDQ(X64Reg dest, const OpArg &arg);
|
|
|
|
void PTEST(X64Reg dest, OpArg arg);
|
|
void PAND(X64Reg dest, OpArg arg);
|
|
void PANDN(X64Reg dest, OpArg arg);
|
|
void PXOR(X64Reg dest, OpArg arg);
|
|
void POR(X64Reg dest, OpArg arg);
|
|
|
|
void PADDB(X64Reg dest, OpArg arg);
|
|
void PADDW(X64Reg dest, OpArg arg);
|
|
void PADDD(X64Reg dest, OpArg arg);
|
|
void PADDQ(X64Reg dest, OpArg arg);
|
|
|
|
void PADDSB(X64Reg dest, OpArg arg);
|
|
void PADDSW(X64Reg dest, OpArg arg);
|
|
void PADDUSB(X64Reg dest, OpArg arg);
|
|
void PADDUSW(X64Reg dest, OpArg arg);
|
|
|
|
void PSUBB(X64Reg dest, OpArg arg);
|
|
void PSUBW(X64Reg dest, OpArg arg);
|
|
void PSUBD(X64Reg dest, OpArg arg);
|
|
void PSUBQ(X64Reg dest, OpArg arg);
|
|
|
|
void PSUBSB(X64Reg dest, OpArg arg);
|
|
void PSUBSW(X64Reg dest, OpArg arg);
|
|
void PSUBUSB(X64Reg dest, OpArg arg);
|
|
void PSUBUSW(X64Reg dest, OpArg arg);
|
|
|
|
void PAVGB(X64Reg dest, OpArg arg);
|
|
void PAVGW(X64Reg dest, OpArg arg);
|
|
|
|
void PCMPEQB(X64Reg dest, OpArg arg);
|
|
void PCMPEQW(X64Reg dest, OpArg arg);
|
|
void PCMPEQD(X64Reg dest, OpArg arg);
|
|
|
|
void PCMPGTB(X64Reg dest, OpArg arg);
|
|
void PCMPGTW(X64Reg dest, OpArg arg);
|
|
void PCMPGTD(X64Reg dest, OpArg arg);
|
|
|
|
void PEXTRW(X64Reg dest, OpArg arg, u8 subreg);
|
|
void PINSRW(X64Reg dest, OpArg arg, u8 subreg);
|
|
|
|
void PMADDWD(X64Reg dest, OpArg arg);
|
|
void PSADBW(X64Reg dest, OpArg arg);
|
|
|
|
void PMAXSW(X64Reg dest, OpArg arg);
|
|
void PMAXUB(X64Reg dest, OpArg arg);
|
|
void PMINSW(X64Reg dest, OpArg arg);
|
|
void PMINUB(X64Reg dest, OpArg arg);
|
|
// SSE4: More MAX/MIN instructions.
|
|
void PMINSB(X64Reg dest, OpArg arg);
|
|
void PMINSD(X64Reg dest, OpArg arg);
|
|
void PMINUW(X64Reg dest, OpArg arg);
|
|
void PMINUD(X64Reg dest, OpArg arg);
|
|
void PMAXSB(X64Reg dest, OpArg arg);
|
|
void PMAXSD(X64Reg dest, OpArg arg);
|
|
void PMAXUW(X64Reg dest, OpArg arg);
|
|
void PMAXUD(X64Reg dest, OpArg arg);
|
|
|
|
void PMOVMSKB(X64Reg dest, OpArg arg);
|
|
void PSHUFD(X64Reg dest, OpArg arg, u8 shuffle);
|
|
void PSHUFB(X64Reg dest, OpArg arg);
|
|
|
|
void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle);
|
|
void PSHUFHW(X64Reg dest, OpArg arg, u8 shuffle);
|
|
|
|
void PSRLW(X64Reg reg, int shift);
|
|
void PSRLD(X64Reg reg, int shift);
|
|
void PSRLQ(X64Reg reg, int shift);
|
|
void PSRLQ(X64Reg reg, OpArg arg);
|
|
void PSRLDQ(X64Reg reg, int shift);
|
|
|
|
void PSLLW(X64Reg reg, int shift);
|
|
void PSLLD(X64Reg reg, int shift);
|
|
void PSLLQ(X64Reg reg, int shift);
|
|
void PSLLDQ(X64Reg reg, int shift);
|
|
|
|
void PSRAW(X64Reg reg, int shift);
|
|
void PSRAD(X64Reg reg, int shift);
|
|
|
|
void PMULLW(X64Reg dest, const OpArg &arg);
|
|
void PMULHW(X64Reg dest, const OpArg &arg);
|
|
void PMULHUW(X64Reg dest, const OpArg &arg);
|
|
void PMULUDQ(X64Reg dest, const OpArg &arg);
|
|
|
|
// SSE4: data type conversions
|
|
void PMOVSXBW(X64Reg dest, OpArg arg);
|
|
void PMOVSXBD(X64Reg dest, OpArg arg);
|
|
void PMOVSXBQ(X64Reg dest, OpArg arg);
|
|
void PMOVSXWD(X64Reg dest, OpArg arg);
|
|
void PMOVSXWQ(X64Reg dest, OpArg arg);
|
|
void PMOVSXDQ(X64Reg dest, OpArg arg);
|
|
void PMOVZXBW(X64Reg dest, OpArg arg);
|
|
void PMOVZXBD(X64Reg dest, OpArg arg);
|
|
void PMOVZXBQ(X64Reg dest, OpArg arg);
|
|
void PMOVZXWD(X64Reg dest, OpArg arg);
|
|
void PMOVZXWQ(X64Reg dest, OpArg arg);
|
|
void PMOVZXDQ(X64Reg dest, OpArg arg);
|
|
|
|
// SSE4: variable blend instructions (xmm0 implicit argument)
|
|
void PBLENDVB(X64Reg dest, OpArg arg);
|
|
void BLENDVPS(X64Reg dest, OpArg arg);
|
|
void BLENDVPD(X64Reg dest, OpArg arg);
|
|
|
|
// SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.)
|
|
void ROUNDSS(X64Reg dest, OpArg arg, u8 mode);
|
|
void ROUNDSD(X64Reg dest, OpArg arg, u8 mode);
|
|
void ROUNDPS(X64Reg dest, OpArg arg, u8 mode);
|
|
void ROUNDPD(X64Reg dest, OpArg arg, u8 mode);
|
|
|
|
inline void ROUNDNEARSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_NEAREST); }
|
|
inline void ROUNDFLOORSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_FLOOR); }
|
|
inline void ROUNDCEILSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_CEIL); }
|
|
inline void ROUNDZEROSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_ZERO); }
|
|
|
|
inline void ROUNDNEARSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_NEAREST); }
|
|
inline void ROUNDFLOORSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_FLOOR); }
|
|
inline void ROUNDCEILSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_CEIL); }
|
|
inline void ROUNDZEROSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_ZERO); }
|
|
|
|
inline void ROUNDNEARPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_NEAREST); }
|
|
inline void ROUNDFLOORPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_FLOOR); }
|
|
inline void ROUNDCEILPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_CEIL); }
|
|
inline void ROUNDZEROPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_ZERO); }
|
|
|
|
inline void ROUNDNEARPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_NEAREST); }
|
|
inline void ROUNDFLOORPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_FLOOR); }
|
|
inline void ROUNDCEILPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_CEIL); }
|
|
inline void ROUNDZEROPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_ZERO); }
|
|
|
|
// AVX
|
|
void VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle);
|
|
void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
|
|
void VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
|
|
void VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
|
|
// FMA3
|
|
void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
|
|
// VEX GPR instructions
|
|
void SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
|
|
void SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
|
|
void SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
|
|
void RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate);
|
|
void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
void BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
|
|
void BLSR(int bits, X64Reg regOp, OpArg arg);
|
|
void BLSMSK(int bits, X64Reg regOp, OpArg arg);
|
|
void BLSI(int bits, X64Reg regOp, OpArg arg);
|
|
void BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
|
|
void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
|
|
|
|
void RDTSC();
|
|
|
|
// Utility functions
|
|
// The difference between this and CALL is that this aligns the stack
|
|
// where appropriate.
|
|
void ABI_CallFunction(const void *func);
|
|
template <typename T>
|
|
void ABI_CallFunction(T (*func)()) {
|
|
ABI_CallFunction((const void *)func);
|
|
}
|
|
|
|
void ABI_CallFunction(const u8 *func) {
|
|
ABI_CallFunction((const void *)func);
|
|
}
|
|
void ABI_CallFunctionC16(const void *func, u16 param1);
|
|
void ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2);
|
|
|
|
|
|
// These only support u32 parameters, but that's enough for a lot of uses.
|
|
// These will destroy the 1 or 2 first "parameter regs".
|
|
void ABI_CallFunctionC(const void *func, u32 param1);
|
|
void ABI_CallFunctionCC(const void *func, u32 param1, u32 param2);
|
|
void ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3);
|
|
void ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3);
|
|
void ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4);
|
|
void ABI_CallFunctionP(const void *func, void *param1);
|
|
void ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2);
|
|
void ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3);
|
|
void ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3);
|
|
void ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2);
|
|
void ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3);
|
|
void ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1);
|
|
void ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2);
|
|
|
|
// Pass a register as a parameter.
|
|
void ABI_CallFunctionR(const void *func, X64Reg reg1);
|
|
void ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2);
|
|
|
|
template <typename Tr, typename T1>
|
|
void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) {
|
|
ABI_CallFunctionC((const void *)func, param1);
|
|
}
|
|
|
|
// A function that doesn't have any control over what it will do to regs,
|
|
// such as the dispatcher, should be surrounded by these.
|
|
void ABI_PushAllCalleeSavedRegsAndAdjustStack();
|
|
void ABI_PopAllCalleeSavedRegsAndAdjustStack();
|
|
|
|
// A function that doesn't know anything about it's surroundings, should
|
|
// be surrounded by these to establish a safe environment, where it can roam free.
|
|
// An example is a backpatch injected function.
|
|
void ABI_PushAllCallerSavedRegsAndAdjustStack();
|
|
void ABI_PopAllCallerSavedRegsAndAdjustStack();
|
|
|
|
unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize);
|
|
void ABI_AlignStack(unsigned int frameSize);
|
|
void ABI_RestoreStack(unsigned int frameSize);
|
|
|
|
// Sets up a __cdecl function.
|
|
// Only x64 really needs the parameter count.
|
|
void ABI_EmitPrologue(int maxCallParams);
|
|
void ABI_EmitEpilogue(int maxCallParams);
|
|
|
|
#ifdef _M_IX86
|
|
inline int ABI_GetNumXMMRegs() { return 8; }
|
|
#else
|
|
inline int ABI_GetNumXMMRegs() { return 16; }
|
|
#endif
|
|
}; // class XEmitter
|
|
|
|
|
|
// Everything that needs to generate X86 code should inherit from this.
|
|
// You get memory management for free, plus, you can use all the MOV etc functions without
|
|
// having to prefix them with gen-> or something similar.
|
|
|
|
class XCodeBlock : public CodeBlock<XEmitter> {
|
|
public:
|
|
void PoisonMemory(int offset) override;
|
|
bool RipAccessible(const void *ptr) const {
|
|
// For debugging
|
|
// return false;
|
|
#ifdef _M_IX86
|
|
return true;
|
|
#else
|
|
ptrdiff_t diff = GetCodePtr() - (const uint8_t *)ptr;
|
|
return diff > -0x7FFFFFE0 && diff < 0x7FFFFFE0;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
#endif
|