ppsspp/Core/CoreTiming.h
Unknown W. Brackets d3f2d9d10b Use u64 here to avoid warnings, better precision.
The timeout value is u32 anyway, so an int was already a loss.
2012-11-22 16:40:26 -08:00

114 lines
3.3 KiB
C++

// Copyright (c) 2012- PPSSPP Project / Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#ifndef _CORETIMING_H
#define _CORETIMING_H
// This is a system to schedule events into the emulated machine's future. Time is measured
// in main CPU clock cycles.
// To schedule an event, you first have to register its type. This is where you pass in the
// callback. You then schedule events using the type id you get back.
// See HW/SystemTimers.cpp for the main part of Dolphin's usage of this scheduler.
// The int cyclesLate that the callbacks get is how many cycles late it was.
// So to schedule a new event on a regular basis:
// inside callback:
// ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
#include "../Globals.h"
#include <string>
//const int CPU_HZ = 222000000;
extern int CPU_HZ;
inline int msToCycles(int ms) {
return CPU_HZ / 1000 * ms;
}
inline int msToCycles(float ms) {
return (int)(CPU_HZ * ms * (0.001f));
}
inline int msToCycles(double ms) {
return (int)(CPU_HZ * ms * (0.001));
}
inline int usToCycles(float us) {
return (int)(CPU_HZ * us * (0.000001f));
}
inline int usToCycles(int us) {
return (int)(CPU_HZ / 1000000 * us);
}
inline u64 cyclesToUs(u64 cycles) {
return cycles / (CPU_HZ / 1000000);
}
namespace CoreTiming
{
void Init();
void Shutdown();
typedef void (*TimedCallback)(u64 userdata, int cyclesLate);
u64 GetTicks();
u64 GetIdleTicks();
// Returns the event_type identifier.
int RegisterEvent(const char *name, TimedCallback callback);
void UnregisterAllEvents();
// userdata MAY NOT CONTAIN POINTERS. userdata might get written and reloaded from disk,
// when we implement state saves.
void ScheduleEvent(int cyclesIntoFuture, int event_type, u64 userdata=0);
void ScheduleEvent_Threadsafe(int cyclesIntoFuture, int event_type, u64 userdata=0);
void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata=0);
u64 UnscheduleEvent(int event_type, u64 userdata);
void RemoveEvent(int event_type);
void RemoveThreadsafeEvent(int event_type);
void RemoveAllEvents(int event_type);
bool IsScheduled(int event_type);
void Advance();
void MoveEvents();
void ProcessFifoWaitEvents();
// Pretend that the main CPU has executed enough cycles to reach the next event.
void Idle(int maxIdle = 0);
// Clear all pending events. This should ONLY be done on exit or state load.
void ClearPendingEvents();
void LogPendingEvents();
void RegisterAdvanceCallback(void (*callback)(int cyclesExecuted));
std::string GetScheduledEventsSummary();
void SetClockFrequencyMHz(int cpuMhz);
int GetClockFrequencyMHz();
extern int downcount;
extern int slicelength;
}; // end of namespace
#endif