ppsspp/unittest/UnitTest.cpp
2014-12-12 23:49:23 +01:00

442 lines
12 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
// UnitTests
//
// This is a program to directly test various functions, without going
// through a PSP. Especially useful for things like opcode emitters,
// hashes, and various data conversion utility function.
//
// TODO: Make a test of nice unittest asserts and count successes etc.
// Or just integrate with an existing testing framework.
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <string>
#include <sstream>
#include "base/NativeApp.h"
#include "base/logging.h"
#include "Common/CPUDetect.h"
#include "Common/ArmEmitter.h"
#include "ext/disarm.h"
#include "math/math_util.h"
#include "util/text/parsers.h"
#include "Core/Config.h"
#include "Core/MIPS/MIPSVFPUUtils.h"
#include "unittest/JitHarness.h"
#include "unittest/UnitTest.h"
std::string System_GetProperty(SystemProperty prop) { return ""; }
int System_GetPropertyInt(SystemProperty prop) { return -1; }
#define M_PI_2 1.57079632679489661923
// asin acos atan: https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
// TODO:
// Fast approximate sincos for NEON
// http://blog.julien.cayzac.name/2009/12/fast-sinecosine-for-armv7neon.html
// Fast sincos
// http://www.dspguru.com/dsp/tricks/parabolic-approximation-of-sin-and-cos
// minimax (surprisingly terrible! something must be wrong)
// double asin_plus_sqrtthing = .9998421793 + (1.012386649 + (-.6575341673 + .8999841642 + (-1.669668977 + (1.571945105 - .5860008052 * x) * x) * x) * x) * x;
// VERY good. 6 MAD, one division.
// double asin_plus_sqrtthing = (1.807607311 + (.191900116 + (-2.511278506 + (1.062519236 + (-.3572142480 + .1087063463 * x) * x) * x) * x) * x) / (1.807601897 - 1.615203794 * x);
// float asin_plus_sqrtthing_correct_ends =
// (1.807607311f + (.191900116f + (-2.511278506f + (1.062519236f + (-.3572142480f + .1087063463f * x) * x) * x) * x) * x) / (1.807607311f - 1.615195094 * x);
// Unfortunately this is very serial.
// At least there are only 8 constants needed - load them into two low quads and go to town.
// For every step, VDUP the constant into a new register (out of two alternating), then VMLA or VFMA into it.
// http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/arcsin/
// minimax polynomial rational approx, pretty good, get four digits consistently.
// unfortunately fastasin(1.0) / M_PI_2 != 1.0f, but it's pretty close.
float fastasin(double x) {
float sign = x >= 0.0f ? 1.0f : -1.0f;
x = fabs(x);
float sqrtthing = sqrt(1.0f - x * x);
// note that the sqrt can run parallel while we do the rest
// if the hardware supports it
float y = -.3572142480f + .1087063463f * x;
y = y * x + 1.062519236f;
y = y * x + -2.511278506f;
y = y * x + .191900116f;
y = y * x + 1.807607311f;
y /= (1.807607311f - 1.615195094 * x);
return sign * (y - sqrtthing);
}
double atan_66s(double x) {
const double c1=1.6867629106;
const double c2=0.4378497304;
const double c3=1.6867633134;
double x2; // The input argument squared
x2=x * x;
return (x*(c1 + x2*c2)/(c3 + x2));
}
// Terrible.
double fastasin2(double x) {
return atan_66s(x / sqrt(1 - x * x));
}
// Also terrible.
float fastasin3(float x) {
return x + x * x * x * x * x * 0.4971;
}
// Great! This is the one we'll use. Can be easily rescaled to get the right range for free.
// http://mathforum.org/library/drmath/view/54137.html
// http://www.musicdsp.org/showone.php?id=115
float fastasin4(float x) {
float sign = x >= 0.0f ? 1.0f : -1.0f;
x = fabs(x);
x = M_PI/2 - sqrtf(1.0f - x) * (1.5707288 + -0.2121144*x + 0.0742610*x*x + -0.0187293*x*x*x);
return sign * x;
}
// Or this:
float fastasin5(float x)
{
float sign = x >= 0.0f ? 1.0f : -1.0f;
x = fabs(x);
float fRoot = sqrtf(1.0f - x);
float fResult = 0.0742610f + -0.0187293f * x;
fResult = -0.2121144f + fResult * x;
fResult = 1.5707288f + fResult * x;
fResult = M_PI/2 - fRoot*fResult;
return sign * fResult;
}
// This one is unfortunately not very good. But lets us avoid PI entirely
// thanks to the special arguments of the PSP functions.
// http://www.dspguru.com/dsp/tricks/parabolic-approximation-of-sin-and-cos
#define C 0.70710678118654752440f // 1.0f / sqrt(2.0f)
// Some useful constants (PI and <math.h> are not part of algo)
#define BITSPERQUARTER (20)
void fcs(float angle, float &sinout, float &cosout) {
int phasein = angle * (1 << BITSPERQUARTER);
// Modulo phase into quarter, convert to float 0..1
float modphase = (phasein & ((1<<BITSPERQUARTER)-1)) * (1.0f / (1<<BITSPERQUARTER));
// Extract quarter bits
int quarter = phasein >> BITSPERQUARTER;
// Recognize quarter
if (!quarter) {
// First quarter, angle = 0 .. pi/2
float x = modphase - 0.5f; // 1 sub
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
sinout = temp + x; // 1 add
cosout = temp - x; // 1 sub
} else if (quarter == 1) {
// Second quarter, angle = pi/2 .. pi
float x = 0.5f - modphase; // 1 sub
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
sinout = x + temp; // 1 add
cosout = x - temp; // 1 sub
} else if (quarter == 2) {
// Third quarter, angle = pi .. 1.5pi
float x = modphase - 0.5f; // 1 sub
float temp = (4*C - 2)*x*x - C; // 2 mul, 1 sub
sinout = temp - x; // 1 sub
cosout = temp + x; // 1 add
} else if (quarter == 3) {
// Fourth quarter, angle = 1.5pi..2pi
float x = modphase - 0.5f; // 1 sub
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
sinout = x - temp; // 1 sub
cosout = x + temp; // 1 add
}
}
#undef C
const float PI_SQR = 9.86960440108935861883449099987615114f;
//https://code.google.com/p/math-neon/source/browse/trunk/math_floorf.c?r=18
// About 2 correct decimals. Not great.
void fcs2(float theta, float &outsine, float &outcosine) {
float gamma = theta + 1;
gamma += 2;
gamma /= 4;
theta += 2;
theta /= 4;
//theta -= (float)(int)theta;
//gamma -= (float)(int)gamma;
theta -= floorf(theta);
gamma -= floorf(gamma);
theta *= 4;
theta -= 2;
gamma *= 4;
gamma -= 2;
const float B = 2;
float x = 2 * gamma - gamma * abs(gamma);
float y = 2 * theta - theta * abs(theta);
const float P = 0.225;
outsine = P * (y * abs(y) - y) + y; // Q * y + P * y * abs(y)
outcosine = P * (x * abs(x) - x) + x; // Q * y + P * y * abs(y)
}
void fastsincos(float x, float &sine, float &cosine) {
fcs2(x, sine, cosine);
}
bool TestSinCos() {
for (int i = -100; i <= 100; i++) {
float f = i / 30.0f;
// The PSP sin/cos take as argument angle * M_PI_2.
// We need to match that.
float slowsin = sinf(f * M_PI_2), slowcos = cosf(f * M_PI_2);
float fastsin, fastcos;
fastsincos(f, fastsin, fastcos);
printf("%f: slow: %0.8f, %0.8f fast: %0.8f, %0.8f\n", f, slowsin, slowcos, fastsin, fastcos);
}
return true;
}
bool TestAsin() {
for (int i = -100; i <= 100; i++) {
float f = i / 100.0f;
float slowval = asinf(f) / M_PI_2;
float fastval = fastasin5(f) / M_PI_2;
printf("slow: %0.16f fast: %0.16f\n", slowval, fastval);
float diff = fabsf(slowval - fastval);
// EXPECT_TRUE(diff < 0.0001f);
}
// EXPECT_TRUE(fastasin(1.0) / M_PI_2 <= 1.0f);
return true;
}
bool TestMathUtil() {
EXPECT_FALSE(my_isinf(1.0));
volatile float zero = 0.0f;
EXPECT_TRUE(my_isinf(1.0f/zero));
EXPECT_FALSE(my_isnan(1.0f/zero));
return true;
}
bool TestParsers() {
const char *macstr = "01:02:03:ff:fe:fd";
uint8_t mac[6];
ParseMacAddress(macstr, mac);
EXPECT_TRUE(mac[0] == 1);
EXPECT_TRUE(mac[1] == 2);
EXPECT_TRUE(mac[2] == 3);
EXPECT_TRUE(mac[3] == 255);
EXPECT_TRUE(mac[4] == 254);
EXPECT_TRUE(mac[5] == 253);
return true;
}
bool TestVFPUSinCos() {
float sine, cosine;
vfpu_sincos(0.0f, sine, cosine);
EXPECT_EQ_FLOAT(sine, 0.0f);
EXPECT_EQ_FLOAT(cosine, 1.0f);
vfpu_sincos(1.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, 1.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
vfpu_sincos(2.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, 0.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, -1.0f);
vfpu_sincos(3.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, -1.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
vfpu_sincos(4.0f, sine, cosine);
EXPECT_EQ_FLOAT(sine, 0.0f);
EXPECT_EQ_FLOAT(cosine, 1.0f);
vfpu_sincos(5.0f, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, 1.0f);
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
for (float angle = -10.0f; angle < 10.0f; angle++) {
vfpu_sincos(angle, sine, cosine);
EXPECT_APPROX_EQ_FLOAT(sine, sinf(angle * M_PI_2));
EXPECT_APPROX_EQ_FLOAT(cosine, cosf(angle * M_PI_2));
}
return true;
}
bool TestMatrixTranspose() {
MatrixSize sz = M_4x4;
int matrix = 0; // M000
u8 cols[4];
u8 rows[4];
GetMatrixColumns(matrix, sz, cols);
GetMatrixRows(matrix, sz, rows);
int transposed = Xpose(matrix);
u8 x_cols[4];
u8 x_rows[4];
GetMatrixColumns(transposed, sz, x_cols);
GetMatrixRows(transposed, sz, x_rows);
for (int i = 0; i < GetMatrixSide(sz); i++) {
EXPECT_EQ_INT(cols[i], x_rows[i]);
EXPECT_EQ_INT(x_cols[i], rows[i]);
}
return true;
}
void TestGetMatrix(int matrix, MatrixSize sz) {
ILOG("Testing matrix %s", GetMatrixNotation(matrix, sz));
u8 fullMatrix[16];
u8 cols[4];
u8 rows[4];
GetMatrixColumns(matrix, sz, cols);
GetMatrixRows(matrix, sz, rows);
GetMatrixRegs(fullMatrix, sz, matrix);
int n = GetMatrixSide(sz);
VectorSize vsz = GetVectorSize(sz);
for (int i = 0; i < n; i++) {
// int colName = GetColumnName(matrix, sz, i, 0);
// int rowName = GetRowName(matrix, sz, i, 0);
int colName = cols[i];
int rowName = rows[i];
ILOG("Column %i: %s", i, GetVectorNotation(colName, vsz));
ILOG("Row %i: %s", i, GetVectorNotation(rowName, vsz));
u8 colRegs[4];
u8 rowRegs[4];
GetVectorRegs(colRegs, vsz, colName);
GetVectorRegs(rowRegs, vsz, rowName);
// Check that the individual regs are the expected ones.
std::stringstream a, b, c, d;
for (int j = 0; j < n; j++) {
a.clear();
b.clear();
a << (int)fullMatrix[i * 4 + j] << " ";
b << (int)colRegs[j] << " ";
c.clear();
d.clear();
c << (int)fullMatrix[j * 4 + i] << " ";
d << (int)rowRegs[j] << " ";
}
ILOG("Col: %s vs %s", a.str().c_str(), b.str().c_str());
if (a.str() != b.str())
ILOG("WRONG!");
ILOG("Row: %s vs %s", c.str().c_str(), d.str().c_str());
if (c.str() != d.str())
ILOG("WRONG!");
}
}
typedef bool (*TestFunc)();
struct TestItem {
const char *name;
TestFunc func;
};
#define TEST_ITEM(name) { #name, &Test ##name, }
bool TestArmEmitter();
bool TestX64Emitter();
TestItem availableTests[] = {
TEST_ITEM(Asin),
TEST_ITEM(SinCos),
TEST_ITEM(ArmEmitter),
#ifndef ARM
TEST_ITEM(X64Emitter),
#endif
TEST_ITEM(VFPUSinCos),
TEST_ITEM(MathUtil),
TEST_ITEM(Parsers),
TEST_ITEM(Jit),
TEST_ITEM(MatrixTranspose)
};
int main(int argc, const char *argv[]) {
cpu_info.bNEON = true;
cpu_info.bVFP = true;
cpu_info.bVFPv3 = true;
cpu_info.bVFPv4 = true;
g_Config.bEnableLogging = true;
bool allTests = false;
TestFunc testFunc = nullptr;
if (argc >= 2) {
if (!strcasecmp(argv[1], "all")) {
allTests = true;
}
for (auto f : availableTests) {
if (!strcasecmp(argv[1], f.name)) {
testFunc = f.func;
break;
}
}
}
if (allTests) {
int passes = 0;
int fails = 0;
for (auto f : availableTests) {
if (f.func()) {
++passes;
} else {
printf("%s: FAILED\n", f.name);
++fails;
}
}
if (passes > 0) {
printf("%d tests passed.\n", passes);
}
if (fails > 0) {
return 2;
}
} else if (testFunc == nullptr) {
fprintf(stderr, "You may select a test to run by passing an argument.\n");
fprintf(stderr, "\n");
fprintf(stderr, "Available tests:\n");
for (auto f : availableTests) {
fprintf(stderr, " * %s\n", f.name);
}
return 1;
} else {
if (!testFunc()) {
return 2;
}
}
return 0;
}