ppsspp/GPU/Common/TransformCommon.cpp
2014-05-14 23:00:28 +08:00

184 lines
5.5 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <stdio.h>
#include "GPU/GPUState.h"
#include "GPU/Common/TransformCommon.h"
// Check for max first as clamping to max is more common than min when lighting.
inline float clamp(float in, float min, float max) {
return in > max ? max : (in < min ? min : in);
}
Lighter::Lighter(int vertType) {
if (!gstate.isLightingEnabled())
return;
doShadeMapping_ = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP;
materialEmissive.GetFromRGB(gstate.materialemissive);
materialEmissive.a = 0.0f;
globalAmbient.GetFromRGB(gstate.ambientcolor);
globalAmbient.GetFromA(gstate.ambientalpha);
materialAmbient.GetFromRGB(gstate.materialambient);
materialAmbient.GetFromA(gstate.materialalpha);
materialDiffuse.GetFromRGB(gstate.materialdiffuse);
materialDiffuse.a = 1.0f;
materialSpecular.GetFromRGB(gstate.materialspecular);
materialSpecular.a = 1.0f;
specCoef_ = getFloat24(gstate.materialspecularcoef);
// viewer_ = Vec3f(-gstate.viewMatrix[9], -gstate.viewMatrix[10], -gstate.viewMatrix[11]);
bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0;
materialUpdate_ = hasColor ? (gstate.materialupdate & 7) : 0;
for (int l = 0; l < 4; l++) {
lcutoff[l] = getFloat24(gstate.lcutoff[l]);
lconv[l] = getFloat24(gstate.lconv[l]);
int i = l * 3;
if (gstate.isLightChanEnabled(l)) {
lpos[i] = getFloat24(gstate.lpos[i]);
lpos[i + 1] = getFloat24(gstate.lpos[i + 1]);
lpos[i + 2] = getFloat24(gstate.lpos[i + 2]);
ldir[i] = getFloat24(gstate.ldir[i]);
ldir[i + 1] = getFloat24(gstate.ldir[i + 1]);
ldir[i + 2] = getFloat24(gstate.ldir[i + 2]);
latt[i] = getFloat24(gstate.latt[i]);
latt[i + 1] = getFloat24(gstate.latt[i + 1]);
latt[i + 2] = getFloat24(gstate.latt[i + 2]);
for (int t = 0; t < 3; t++) {
u32 data = gstate.lcolor[l * 3 + t] & 0xFFFFFF;
float r = (float)(data & 0xff) * (1.0f / 255.0f);
float g = (float)((data >> 8) & 0xff) * (1.0f / 255.0f);
float b = (float)(data >> 16) * (1.0f / 255.0f);
lcolor[t][l][0] = r;
lcolor[t][l][1] = g;
lcolor[t][l][2] = b;
}
}
}
}
void Lighter::Light(float colorOut0[4], float colorOut1[4], const float colorIn[4], const Vec3f &pos, const Vec3f &norm) {
Color4 in(colorIn);
const Color4 *ambient;
if (materialUpdate_ & 1)
ambient = &in;
else
ambient = &materialAmbient;
const Color4 *diffuse;
if (materialUpdate_ & 2)
diffuse = &in;
else
diffuse = &materialDiffuse;
const Color4 *specular;
if (materialUpdate_ & 4)
specular = &in;
else
specular = &materialSpecular;
Color4 lightSum0 = globalAmbient * *ambient + materialEmissive;
Color4 lightSum1(0, 0, 0, 0);
for (int l = 0; l < 4; l++) {
// can we skip this light?
if (!gstate.isLightChanEnabled(l))
continue;
GELightType type = gstate.getLightType(l);
Vec3f toLight(0, 0, 0);
Vec3f lightDir(0, 0, 0);
if (type == GE_LIGHTTYPE_DIRECTIONAL)
toLight = Vec3f(&lpos[l * 3]); // lightdir is for spotlights
else
toLight = Vec3f(&lpos[l * 3]) - pos;
bool doSpecular = gstate.isUsingSpecularLight(l);
bool poweredDiffuse = gstate.isUsingPoweredDiffuseLight(l);
float distanceToLight = toLight.Length();
float dot = 0.0f;
float angle = 0.0f;
float lightScale = 0.0f;
if (distanceToLight > 0.0f) {
toLight /= distanceToLight;
dot = Dot(toLight, norm);
}
// Clamp dot to zero.
if (dot < 0.0f) dot = 0.0f;
if (poweredDiffuse)
dot = powf(dot, specCoef_);
// Attenuation
switch (type) {
case GE_LIGHTTYPE_DIRECTIONAL:
lightScale = 1.0f;
break;
case GE_LIGHTTYPE_POINT:
lightScale = clamp(1.0f / (latt[l * 3] + latt[l * 3 + 1] * distanceToLight + latt[l * 3 + 2] * distanceToLight*distanceToLight), 0.0f, 1.0f);
break;
case GE_LIGHTTYPE_SPOT:
case GE_LIGHTTYPE_UNKNOWN:
lightDir = Vec3f(&ldir[l * 3]);
angle = Dot(toLight.Normalized(), lightDir.Normalized());
if (angle >= lcutoff[l])
lightScale = clamp(1.0f / (latt[l * 3] + latt[l * 3 + 1] * distanceToLight + latt[l * 3 + 2] * distanceToLight*distanceToLight), 0.0f, 1.0f) * powf(angle, lconv[l]);
break;
default:
// ILLEGAL
break;
}
Color4 lightDiff(lcolor[1][l], 0.0f);
Color4 diff = (lightDiff * *diffuse) * dot;
// Real PSP specular
Vec3f toViewer(0, 0, 1);
// Better specular
// Vec3f toViewer = (viewer - pos).Normalized();
if (doSpecular) {
Vec3f halfVec = (toLight + toViewer);
halfVec.Normalize();
dot = Dot(halfVec, norm);
if (dot > 0.0f) {
Color4 lightSpec(lcolor[2][l], 0.0f);
lightSum1 += (lightSpec * *specular * (powf(dot, specCoef_) * lightScale));
}
}
if (gstate.isLightChanEnabled(l)) {
Color4 lightAmbient(lcolor[0][l], 0.0f);
lightSum0 += (lightAmbient * *ambient + diff) * lightScale;
}
}
// 4?
for (int i = 0; i < 4; i++) {
colorOut0[i] = lightSum0[i] > 1.0f ? 1.0f : lightSum0[i];
colorOut1[i] = lightSum1[i] > 1.0f ? 1.0f : lightSum1[i];
}
}