ppsspp/GPU/GLES/TextureCache.cpp

1420 lines
39 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <map>
#include <algorithm>
#include "Core/MemMap.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h"
#include "GPU/GLES/TextureCache.h"
#include "GPU/GLES/Framebuffer.h"
#include "Core/Config.h"
// If a texture hasn't been seen for this many frames, get rid of it.
#define TEXTURE_KILL_AGE 200
u32 RoundUpToPowerOf2(u32 v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
TextureCache::TextureCache() {
lastBoundTexture = -1;
// TODO: Switch to aligned allocations for alignment. AllocateMemoryPages would do the trick.
// This is 5MB of temporary storage. Might be possible to shrink it.
tmpTexBuf32 = new u32[1024 * 512]; // 2MB
tmpTexBuf16 = new u16[1024 * 512]; // 1MB
tmpTexBufRearrange = new u32[1024 * 512]; // 2MB
clutBuf32 = new u32[4096]; // 4K
clutBuf16 = new u16[4096]; // 4K
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAnisotropyLevel);
}
TextureCache::~TextureCache() {
delete [] tmpTexBuf32;
tmpTexBuf32 = 0;
delete [] tmpTexBuf16;
tmpTexBuf16 = 0;
delete [] tmpTexBufRearrange;
tmpTexBufRearrange = 0;
delete [] clutBuf32;
delete [] clutBuf16;
}
void TextureCache::Clear(bool delete_them) {
glBindTexture(GL_TEXTURE_2D, 0);
if (delete_them) {
for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ++iter) {
DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture);
glDeleteTextures(1, &iter->second.texture);
}
}
if (cache.size()) {
INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)cache.size());
cache.clear();
}
}
// Removes old textures.
void TextureCache::Decimate() {
glBindTexture(GL_TEXTURE_2D, 0);
for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ) {
if (iter->second.lastFrame + TEXTURE_KILL_AGE < gpuStats.numFrames) {
glDeleteTextures(1, &iter->second.texture);
cache.erase(iter++);
}
else
++iter;
}
}
void TextureCache::Invalidate(u32 addr, int size, bool force) {
addr &= 0xFFFFFFF;
u32 addr_end = addr + size;
for (TexCache::iterator iter = cache.begin(), end = cache.end(); iter != end; ++iter) {
u32 texAddr = iter->second.addr;
u32 texEnd = iter->second.addr + iter->second.sizeInRAM;
// Clear if either the addr or clutaddr is in the range.
bool invalidate = (texAddr >= addr && texAddr < addr_end) || (texEnd >= addr && texEnd < addr_end);
invalidate = invalidate || (addr >= texAddr && addr < texEnd) || (addr_end >= texAddr && addr_end < texEnd);
invalidate = invalidate || (iter->second.clutaddr >= addr && iter->second.clutaddr < addr_end);
if (invalidate) {
if (iter->second.status == TexCacheEntry::STATUS_RELIABLE) {
iter->second.status = TexCacheEntry::STATUS_HASHING;
}
if (force) {
gpuStats.numTextureInvalidations++;
// Start it over from 0.
iter->second.numFrames = 0;
iter->second.framesUntilNextFullHash = 0;
} else {
iter->second.invalidHint++;
}
}
}
}
void TextureCache::InvalidateAll(bool force) {
Invalidate(0, 0xFFFFFFFF, force);
}
TextureCache::TexCacheEntry *TextureCache::GetEntryAt(u32 texaddr) {
// If no CLUT, as in framebuffer textures, cache key is simply texaddr.
auto iter = cache.find(texaddr);
if (iter != cache.end() && iter->second.addr == texaddr)
return &iter->second;
else
return 0;
}
void TextureCache::NotifyFramebuffer(u32 address, VirtualFramebuffer *framebuffer) {
// Must be in VRAM so | 0x04000000 it is.
TexCacheEntry *entry = GetEntryAt(address | 0x04000000);
if (entry) {
DEBUG_LOG(HLE, "Render to texture detected at %08x!", address);
if (!entry->framebuffer)
entry->framebuffer = framebuffer;
// TODO: Delete the original non-fbo texture too.
}
}
void TextureCache::NotifyFramebufferDestroyed(u32 address, VirtualFramebuffer *fbo) {
TexCacheEntry *entry = GetEntryAt(address | 0x04000000);
if (entry && entry->framebuffer) {
entry->framebuffer = 0;
}
}
static u32 GetClutAddr(u32 clutEntrySize) {
return ((gstate.clutaddr & 0xFFFFFF) | ((gstate.clutaddrupper << 8) & 0x0F000000)) + ((gstate.clutformat >> 16) & 0x1f) * clutEntrySize;
}
static u32 GetClutIndex(u32 index) {
return ((((gstate.clutformat >> 16) & 0x1f) + index) >> ((gstate.clutformat >> 2) & 0x1f)) & ((gstate.clutformat >> 8) & 0xff);
}
static void ReadClut16(u16 *clutBuf16) {
u32 clutNumEntries = (gstate.loadclut & 0x3f) * 16;
u32 clutAddr = GetClutAddr(2);
if (Memory::IsValidAddress(clutAddr)) {
for (u32 i = ((gstate.clutformat >> 16) & 0x1f); i < clutNumEntries; i++)
clutBuf16[i] = Memory::ReadUnchecked_U16(clutAddr + i * 2);
}
}
static void ReadClut32(u32 *clutBuf32) {
u32 clutNumEntries = (gstate.loadclut & 0x3f) * 8;
u32 clutAddr = GetClutAddr(4);
if (Memory::IsValidAddress(clutAddr)) {
for (u32 i = ((gstate.clutformat >> 16) & 0x1f); i < clutNumEntries; i++)
clutBuf32[i] = Memory::ReadUnchecked_U32(clutAddr + i * 4);
}
}
void *TextureCache::UnswizzleFromMem(u32 texaddr, u32 bytesPerPixel, u32 level) {
u32 addr = texaddr;
u32 rowWidth = (bytesPerPixel > 0) ? ((gstate.texbufwidth[level] & 0x3FF) * bytesPerPixel) : ((gstate.texbufwidth[level] & 0x3FF) / 2);
u32 pitch = rowWidth / 4;
int bxc = rowWidth / 16;
int byc = ((1 << ((gstate.texsize[level] >> 8) & 0xf)) + 7) / 8;
if (byc == 0)
byc = 1;
u32 ydest = 0;
for (int by = 0; by < byc; by++) {
if (rowWidth >= 16) {
u32 xdest = ydest;
for (int bx = 0; bx < bxc; bx++) {
u32 dest = xdest;
for (int n = 0; n < 8; n++) {
for (int k = 0; k < 4; k++) {
tmpTexBuf32[dest + k] = Memory::ReadUnchecked_U32(addr);
addr += 4;
}
dest += pitch;
}
xdest += 4;
}
ydest += (rowWidth * 8) / 4;
} else if (rowWidth == 8) {
for (int n = 0; n < 8; n++, ydest += 2) {
tmpTexBuf32[ydest + 0] = Memory::ReadUnchecked_U32(addr + 0);
tmpTexBuf32[ydest + 1] = Memory::ReadUnchecked_U32(addr + 4);
addr += 16; // skip two u32
}
} else if (rowWidth == 4) {
for (int n = 0; n < 8; n++, ydest++) {
tmpTexBuf32[ydest] = Memory::ReadUnchecked_U32(addr);
addr += 16;
}
} else if (rowWidth == 2) {
for (int n = 0; n < 4; n++, ydest++) {
u16 n1 = Memory::ReadUnchecked_U16(addr + 0);
u16 n2 = Memory::ReadUnchecked_U16(addr + 16);
tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 16);
addr += 32;
}
}
else if (rowWidth == 1) {
for (int n = 0; n < 2; n++, ydest++) {
// This looks wrong, shouldn't it be & 0xFF (that is no mask at all?)
u8 n1 = Memory::ReadUnchecked_U8(addr + 0) & 0xf;
u8 n2 = Memory::ReadUnchecked_U8(addr + 16) & 0xf;
u8 n3 = Memory::ReadUnchecked_U8(addr + 32) & 0xf;
u8 n4 = Memory::ReadUnchecked_U8(addr + 48) & 0xf;
tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 8) | ((u32)n3 << 16) | ((u32)n4 << 24);
}
}
}
return tmpTexBuf32;
}
void *TextureCache::readIndexedTex(int level, u32 texaddr, int bytesPerIndex) {
int length = (gstate.texbufwidth[level] & 0x3FF) * (1 << ((gstate.texsize[level] >> 8) & 0xf));
void *buf = NULL;
switch ((gstate.clutformat & 3)) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
ReadClut16(clutBuf16);
const u16 *clut = clutBuf16;
if (!(gstate.texmode & 1)) {
switch (bytesPerIndex) {
case 1:
for (int i = 0; i < length; i++) {
u8 index = Memory::ReadUnchecked_U8(texaddr + i);
tmpTexBuf16[i] = clut[GetClutIndex(index)];
}
break;
case 2:
for (int i = 0; i < length; i++) {
u16 index = Memory::ReadUnchecked_U16(texaddr + i * 2);
tmpTexBuf16[i] = clut[GetClutIndex(index)];
}
break;
case 4:
for (int i = 0; i < length; i++) {
u32 index = Memory::ReadUnchecked_U32(texaddr + i * 4);
tmpTexBuf16[i] = clut[GetClutIndex(index)];
}
break;
}
} else {
UnswizzleFromMem(texaddr, bytesPerIndex, level);
switch (bytesPerIndex) {
case 1:
for (int i = 0, j = 0; i < length; i += 4, j++) {
u32 n = tmpTexBuf32[j];
u32 k;
for (k = 0; k < 4; k++) {
u8 index = (n >> (k * 8)) & 0xff;
tmpTexBuf16[i + k] = clut[GetClutIndex(index)];
}
}
break;
case 2:
for (int i = 0, j = 0; i < length; i += 2, j++) {
u32 n = tmpTexBuf32[j];
tmpTexBuf16[i + 0] = clut[GetClutIndex(n & 0xffff)];
tmpTexBuf16[i + 1] = clut[GetClutIndex(n >> 16)];
}
break;
case 4:
for (int i = 0; i < length; i++) {
u32 n = tmpTexBuf32[i];
tmpTexBuf16[i] = clut[GetClutIndex(n)];
}
break;
}
}
buf = tmpTexBuf16;
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
ReadClut32(clutBuf32);
const u32 *clut = clutBuf32;
if (!(gstate.texmode & 1)) {
switch (bytesPerIndex) {
case 1:
for (int i = 0; i < length; i++) {
u8 index = Memory::ReadUnchecked_U8(texaddr + i);
tmpTexBuf32[i] = clut[GetClutIndex(index)];
}
break;
case 2:
for (int i = 0; i < length; i++) {
u16 index = Memory::ReadUnchecked_U16(texaddr + i * 2);
tmpTexBuf32[i] = clut[GetClutIndex(index)];
}
break;
case 4:
for (int i = 0; i < length; i++) {
u32 index = Memory::ReadUnchecked_U32(texaddr + i * 4);
tmpTexBuf32[i] = clut[GetClutIndex(index)];
}
break;
}
} else {
UnswizzleFromMem(texaddr, bytesPerIndex, level);
switch (bytesPerIndex) {
case 1:
for (int i = length - 4, j = (length / 4) - 1; i >= 0; i -= 4, j--) {
u32 n = tmpTexBuf32[j];
u32 k;
for (k = 0; k < 4; k++) {
u32 index = (n >> (k * 8)) & 0xff;
tmpTexBuf32[i + k] = clut[GetClutIndex(index)];
}
}
break;
case 2:
for (int i = length - 2, j = (length / 2) - 1; i >= 0; i -= 2, j--) {
u32 n = tmpTexBuf32[j];
tmpTexBuf32[i + 0] = clut[GetClutIndex(n & 0xffff)];
tmpTexBuf32[i + 1] = clut[GetClutIndex(n >> 16)];
}
break;
case 4:
for (int i = 0; i < length; i++) {
u32 n = tmpTexBuf32[i];
tmpTexBuf32[i] = clut[GetClutIndex(n)];
}
break;
}
}
buf = tmpTexBuf32;
}
break;
default:
ERROR_LOG(G3D, "Unhandled clut texture mode %d!!!", (gstate.clutformat & 3));
break;
}
return buf;
}
GLenum getClutDestFormat(GEPaletteFormat format) {
switch (format) {
case GE_CMODE_16BIT_ABGR4444:
return GL_UNSIGNED_SHORT_4_4_4_4;
case GE_CMODE_16BIT_ABGR5551:
return GL_UNSIGNED_SHORT_5_5_5_1;
case GE_CMODE_16BIT_BGR5650:
return GL_UNSIGNED_SHORT_5_6_5;
case GE_CMODE_32BIT_ABGR8888:
return GL_UNSIGNED_BYTE;
}
return 0;
}
static const u8 texByteAlignMap[] = {2, 2, 2, 4};
static const GLuint MinFiltGL[8] = {
GL_NEAREST,
GL_LINEAR,
GL_NEAREST,
GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_LINEAR,
};
static const GLuint MagFiltGL[2] = {
GL_NEAREST,
GL_LINEAR
};
// OpenGL ES 2.0 workaround. This SHOULD be available but is NOT in the headers in Android.
// Let's see if this hackery works.
#ifndef GL_TEXTURE_LOD_BIAS
#define GL_TEXTURE_LOD_BIAS 0x8501
#endif
#ifndef GL_TEXTURE_MAX_LOD
#define GL_TEXTURE_MAX_LOD 0x813B
#endif
// This should not have to be done per texture! OpenGL is silly yo
// TODO: Dirty-check this against the current texture.
void TextureCache::UpdateSamplingParams(TexCacheEntry &entry, bool force) {
int minFilt = gstate.texfilter & 0x7;
int magFilt = (gstate.texfilter>>8) & 1;
bool sClamp = gstate.texwrap & 1;
bool tClamp = (gstate.texwrap>>8) & 1;
if (entry.maxLevel == 0) {
// Enforce no mip filtering, for safety.
minFilt &= 1; // no mipmaps yet
} else {
// TODO: Is this a signed value? Which direction?
float lodBias = 0.0; // -(float)((gstate.texlevel >> 16) & 0xFF) / 16.0f;
if (force || entry.lodBias != lodBias) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_LOD_BIAS, lodBias);
entry.lodBias = lodBias;
}
}
if (g_Config.bLinearFiltering) {
magFilt |= 1;
minFilt |= 1;
}
if (force || entry.minFilt != minFilt) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, MinFiltGL[minFilt]);
entry.minFilt = minFilt;
}
if (force || entry.magFilt != magFilt) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, MagFiltGL[magFilt]);
entry.magFilt = magFilt;
}
if (force || entry.sClamp != sClamp) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, sClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT);
entry.sClamp = sClamp;
}
if (force || entry.tClamp != tClamp) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, tClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT);
entry.tClamp = tClamp;
}
}
// All these DXT structs are in the reverse order, as compared to PC.
// On PC, alpha comes before color, and interpolants are before the tile data.
struct DXT1Block {
u8 lines[4];
u16 color1;
u16 color2;
};
struct DXT3Block {
DXT1Block color;
u16 alphaLines[4];
};
struct DXT5Block {
DXT1Block color;
u32 alphadata2;
u16 alphadata1;
u8 alpha1; u8 alpha2;
};
static inline u32 makecol(int r, int g, int b, int a) {
return (a << 24) | (r << 16) | (g << 8) | b;
}
// This could probably be done faster by decoding two or four blocks at a time with SSE/NEON.
static void decodeDXT1Block(u32 *dst, const DXT1Block *src, int pitch, bool ignore1bitAlpha = false) {
// S3TC Decoder
// Needs more speed and debugging.
u16 c1 = (src->color1);
u16 c2 = (src->color2);
int red1 = Convert5To8(c1 & 0x1F);
int red2 = Convert5To8(c2 & 0x1F);
int green1 = Convert6To8((c1 >> 5) & 0x3F);
int green2 = Convert6To8((c2 >> 5) & 0x3F);
int blue1 = Convert5To8((c1 >> 11) & 0x1F);
int blue2 = Convert5To8((c2 >> 11) & 0x1F);
u32 colors[4];
colors[0] = makecol(red1, green1, blue1, 255);
colors[1] = makecol(red2, green2, blue2, 255);
if (c1 > c2 || ignore1bitAlpha) {
int blue3 = ((blue2 - blue1) >> 1) - ((blue2 - blue1) >> 3);
int green3 = ((green2 - green1) >> 1) - ((green2 - green1) >> 3);
int red3 = ((red2 - red1) >> 1) - ((red2 - red1) >> 3);
colors[2] = makecol(red1 + red3, green1 + green3, blue1 + blue3, 255);
colors[3] = makecol(red2 - red3, green2 - green3, blue2 - blue3, 255);
} else {
colors[2] = makecol((red1 + red2 + 1) / 2, // Average
(green1 + green2 + 1) / 2,
(blue1 + blue2 + 1) / 2, 255);
colors[3] = makecol(red2, green2, blue2, 0); // Color2 but transparent
}
for (int y = 0; y < 4; y++) {
int val = src->lines[y];
for (int x = 0; x < 4; x++) {
dst[x] = colors[val & 3];
val >>= 2;
}
dst += pitch;
}
}
static void decodeDXT3Block(u32 *dst, const DXT3Block *src, int pitch)
{
decodeDXT1Block(dst, &src->color, pitch, true);
// Alpha: TODO
}
static inline u8 lerp8(const DXT5Block *src, int n) {
float d = n / 7.0f;
return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d);
}
static inline u8 lerp6(const DXT5Block *src, int n) {
float d = n / 5.0f;
return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d);
}
// The alpha channel is not 100% correct
static void decodeDXT5Block(u32 *dst, const DXT5Block *src, int pitch) {
decodeDXT1Block(dst, &src->color, pitch, true);
u8 alpha[8];
alpha[0] = src->alpha1;
alpha[1] = src->alpha2;
if (alpha[0] > alpha[1]) {
alpha[2] = lerp8(src, 6);
alpha[3] = lerp8(src, 5);
alpha[4] = lerp8(src, 4);
alpha[5] = lerp8(src, 3);
alpha[6] = lerp8(src, 2);
alpha[7] = lerp8(src, 1);
} else {
alpha[2] = lerp6(src, 4);
alpha[3] = lerp6(src, 3);
alpha[4] = lerp6(src, 2);
alpha[5] = lerp6(src, 1);
alpha[6] = 0;
alpha[7] = 255;
}
u64 data = ((u64)src->alphadata1 << 32) | src->alphadata2;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
dst[x] = (dst[x] & 0xFFFFFF) | (alpha[data & 7] << 24);
data >>= 3;
}
dst += pitch;
}
}
static void convertColors(u8 *finalBuf, GLuint dstFmt, int numPixels) {
// TODO: All these can be further sped up with SSE or NEON.
switch (dstFmt) {
case GL_UNSIGNED_SHORT_4_4_4_4:
{
u32 *p = (u32 *)finalBuf;
for (int i = 0; i < (numPixels + 1) / 2; i++) {
u32 c = p[i];
p[i] = ((c >> 12) & 0x000F000F) |
((c >> 4) & 0x00F000F0) |
((c << 4) & 0x0F000F00) |
((c << 12) & 0xF000F000);
}
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
{
u32 *p = (u32 *)finalBuf;
for (int i = 0; i < (numPixels + 1) / 2; i++) {
u32 c = p[i];
p[i] = ((c >> 15) & 0x00010001) |
((c >> 9) & 0x003E003E) |
((c << 1) & 0x07C007C0) |
((c << 11) & 0xF800F800);
}
}
break;
case GL_UNSIGNED_SHORT_5_6_5:
{
u32 *p = (u32 *)finalBuf;
for (int i = 0; i < (numPixels + 1) / 2; i++) {
u32 c = p[i];
p[i] = ((c >> 11) & 0x001F001F) |
(c & 0x07E007E0) |
((c << 11) & 0xF800F800);
}
}
break;
default:
{
// No need to convert RGBA8888, right order already
}
break;
}
}
void TextureCache::StartFrame() {
lastBoundTexture = -1;
Decimate();
}
static const u8 bitsPerPixel[11] = {
16, //GE_TFMT_5650=16,
16, //GE_TFMT_5551=16,
16, //GE_TFMT_4444=16,
32, //GE_TFMT_8888=3,
4, //GE_TFMT_CLUT4=4,
8, //GE_TFMT_CLUT8=5,
16, //GE_TFMT_CLUT16=6,
32, //GE_TFMT_CLUT32=7,
4, //GE_TFMT_DXT1=4,
8, //GE_TFMT_DXT3=8,
8, //GE_TFMT_DXT5=8,
};
static const bool formatUsesClut[11] = {
false,
false,
false,
false,
true,
true,
true,
true,
false,
false,
false,
};
static inline u32 MiniHash(const u32 *ptr) {
return ptr[0];
}
static inline u32 QuickTexHash(u32 addr, int bufw, int w, int h, u32 format) {
u32 sizeInRAM = (bitsPerPixel[format < 11 ? format : 0] * bufw * h / 2) / 8;
const u32 *checkp = (const u32 *) Memory::GetPointer(addr);
u32 check = 0;
for (u32 i = 0; i < (sizeInRAM * 2) / 4; ++i)
check += *checkp++;
return check;
}
void TextureCache::SetTexture() {
u32 texaddr = (gstate.texaddr[0] & 0xFFFFF0) | ((gstate.texbufwidth[0]<<8) & 0x0F000000);
if (!Memory::IsValidAddress(texaddr)) {
// Bind a null texture and return.
glBindTexture(GL_TEXTURE_2D, 0);
return;
}
u32 format = gstate.texformat & 0xF;
if (format >= 11) {
ERROR_LOG(G3D, "Unknown texture format %i", format);
format = 0;
}
bool hasClut = formatUsesClut[format];
u64 cachekey = texaddr;
u32 clutformat, clutaddr;
if (hasClut) {
clutformat = gstate.clutformat & 3;
clutaddr = GetClutAddr(clutformat == GE_CMODE_32BIT_ABGR8888 ? 4 : 2);
cachekey |= (u64)clutaddr << 32;
} else {
clutaddr = 0;
}
int maxLevel = ((gstate.texmode >> 16) & 0x7);
u32 texhash = MiniHash((const u32 *)Memory::GetPointer(texaddr));
TexCache::iterator iter = cache.find(cachekey);
TexCacheEntry *entry = NULL;
gstate_c.flipTexture = false;
gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE;
if (iter != cache.end()) {
entry = &iter->second;
// Check for FBO - slow!
if (g_Config.bBufferedRendering && entry->framebuffer) {
entry->framebuffer->usageFlags |= FB_USAGE_TEXTURE;
if (entry->framebuffer->fbo){
fbo_bind_color_as_texture(entry->framebuffer->fbo, 0);
} else {
glBindTexture(GL_TEXTURE_2D, 0);
gstate_c.skipDrawReason |= SKIPDRAW_BAD_FB_TEXTURE;
}
UpdateSamplingParams(*entry, false);
// This isn't right.
gstate_c.curTextureWidth = entry->framebuffer->width;
gstate_c.curTextureHeight = entry->framebuffer->height;
int h = 1 << ((gstate.texsize[0] >> 8) & 0xf);
gstate_c.actualTextureHeight = h;
gstate_c.flipTexture = true;
entry->lastFrame = gpuStats.numFrames;
return;
}
//Validate the texture here (width, height etc)
int dim = gstate.texsize[0] & 0xF0F;
bool match = true;
bool rehash = entry->status == TexCacheEntry::STATUS_UNRELIABLE;
//TODO: Check more texture parameters, compute real texture hash
if (dim != entry->dim ||
entry->hash != texhash ||
entry->format != format ||
entry->maxLevel != maxLevel ||
(hasClut &&
(entry->clutformat != clutformat ||
entry->clutaddr != clutaddr ||
entry->cluthash != Memory::Read_U32(entry->clutaddr))))
match = false;
if (match) {
if (entry->lastFrame != gpuStats.numFrames) {
entry->numFrames++;
}
if (entry->framesUntilNextFullHash == 0) {
// Exponential backoff up to 2048 frames. Textures are often reused.
entry->framesUntilNextFullHash = std::min(2048, entry->numFrames);
rehash = true;
} else {
--entry->framesUntilNextFullHash;
}
}
// If it's not huge or has been invalidated many times, recheck the whole texture.
if (entry->invalidHint > 180 || (entry->invalidHint > 15 && dim <= 0x909)) {
entry->invalidHint = 0;
rehash = true;
}
if (rehash && entry->status != TexCacheEntry::STATUS_RELIABLE) {
int w = 1 << (gstate.texsize[0] & 0xf);
int h = 1 << ((gstate.texsize[0] >> 8) & 0xf);
int bufw = gstate.texbufwidth[0] & 0x3ff;
u32 check = QuickTexHash(texaddr, bufw, w, h, format);
if (check != entry->fullhash) {
match = false;
gpuStats.numTextureInvalidations++;
entry->status = TexCacheEntry::STATUS_UNRELIABLE;
entry->numFrames = 0;
} else if (entry->status == TexCacheEntry::STATUS_UNRELIABLE && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) {
entry->status = TexCacheEntry::STATUS_HASHING;
}
}
if (match) {
// TODO: Mark the entry reliable if it's been safe for long enough?
//got one!
entry->lastFrame = gpuStats.numFrames;
if (entry->texture != lastBoundTexture) {
glBindTexture(GL_TEXTURE_2D, entry->texture);
lastBoundTexture = entry->texture;
}
UpdateSamplingParams(*entry, false);
DEBUG_LOG(G3D, "Texture at %08x Found in Cache, applying", texaddr);
return; //Done!
} else {
INFO_LOG(G3D, "Texture different or overwritten, reloading at %08x", texaddr);
if (entry->texture == lastBoundTexture)
lastBoundTexture = -1;
glDeleteTextures(1, &entry->texture);
if (entry->status == TexCacheEntry::STATUS_RELIABLE) {
entry->status = TexCacheEntry::STATUS_HASHING;
}
}
} else {
INFO_LOG(G3D,"No texture in cache, decoding...");
TexCacheEntry entryNew = {0};
cache[cachekey] = entryNew;
entry = &cache[cachekey];
entry->status = TexCacheEntry::STATUS_HASHING;
}
int w = 1 << (gstate.texsize[0] & 0xf);
int h = 1 << ((gstate.texsize[0] >> 8) & 0xf);
int bufw = gstate.texbufwidth[0] & 0x3ff;
//we have to decode it
entry->addr = texaddr;
entry->hash = texhash;
entry->format = format;
entry->lastFrame = gpuStats.numFrames;
entry->framebuffer = 0;
entry->maxLevel = maxLevel;
entry->lodBias = 0.0f;
if (hasClut) {
entry->clutformat = clutformat;
entry->clutaddr = clutaddr;
entry->cluthash = Memory::Read_U32(entry->clutaddr);
} else {
entry->clutaddr = 0;
}
entry->dim = gstate.texsize[0] & 0xF0F;
// This would overestimate the size in many case so we underestimate instead
// to avoid excessive clearing caused by cache invalidations.
entry->sizeInRAM = (bitsPerPixel[format < 11 ? format : 0] * bufw * h / 2) / 8;
entry->fullhash = QuickTexHash(texaddr, bufw, w, h, format);
gstate_c.curTextureWidth = w;
gstate_c.curTextureHeight = h;
glGenTextures(1, &entry->texture);
glBindTexture(GL_TEXTURE_2D, entry->texture);
lastBoundTexture = entry->texture;
// Adjust maxLevel to actually present levels..
for (int i = 0; i <= maxLevel; i++) {
// If encountering levels pointing to nothing, adjust max level.
u32 levelTexaddr = (gstate.texaddr[i] & 0xFFFFF0) | ((gstate.texbufwidth[i] << 8) & 0x0F000000);
if (!Memory::IsValidAddress(levelTexaddr)) {
maxLevel = i - 1;
break;
}
}
#ifdef USING_GLES2
// GLES2 doesn't have support for a "Max lod" which is critical as PSP games often
// don't specify mips all the way down. As a result, we either need to manually generate
// the bottom few levels or rely on OpenGL's autogen mipmaps instead, which might not
// be as good quality as the game's own (might even be better in some cases though).
// For now, I choose to use autogen mips on GLES2 and the game's own on other platforms.
// As is usual, GLES3 will solve this problem nicely but wide distribution of that is
// years away.
LoadTextureLevel(*entry, 0);
if (maxLevel > 0)
glGenerateMipmap(GL_TEXTURE_2D);
#else
for (int i = 0; i <= maxLevel; i++) {
LoadTextureLevel(*entry, i);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, maxLevel);
#endif
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_LOD, (float)maxLevel);
float anisotropyLevel = (float) g_Config.iAnisotropyLevel > maxAnisotropyLevel ? maxAnisotropyLevel : (float) g_Config.iAnisotropyLevel;
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropyLevel);
// NOTICE_LOG(G3D,"AnisotropyLevel = %0.1f , MaxAnisotropyLevel = %0.1f ", anisotropyLevel, maxAnisotropyLevel );
UpdateSamplingParams(*entry, true);
//glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
//glPixelStorei(GL_PACK_ROW_LENGTH, 0);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
}
void TextureCache::LoadTextureLevel(TexCacheEntry &entry, int level)
{
void *finalBuf = NULL;
// TODO: only do this once
u32 texByteAlign = 1;
// TODO: Look into using BGRA for 32-bit textures when the GL_EXT_texture_format_BGRA8888 extension is available, as it's faster than RGBA on some chips.
GLenum dstFmt = 0;
// TODO: Actually decode the mipmaps.
u32 texaddr = (gstate.texaddr[level] & 0xFFFFF0) | ((gstate.texbufwidth[level] << 8) & 0x0F000000);
int bufw = gstate.texbufwidth[level] & 0x3ff;
int w = 1 << (gstate.texsize[level] & 0xf);
int h = 1 << ((gstate.texsize[level] >> 8) & 0xf);
const u8 *texptr = Memory::GetPointer(texaddr);
switch (entry.format)
{
case GE_TFMT_CLUT4:
dstFmt = getClutDestFormat((GEPaletteFormat)(entry.clutformat));
switch (entry.clutformat) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
ReadClut16(clutBuf16);
const u16 *clut = clutBuf16;
u32 clutSharingOffset = 0; //(gstate.mipmapShareClut & 1) ? 0 : level * 16;
texByteAlign = 2;
if (!(gstate.texmode & 1)) {
const u8 *addr = Memory::GetPointer(texaddr);
for (int i = 0; i < bufw * h; i += 2)
{
u8 index = *addr++;
tmpTexBuf16[i + 0] = clut[GetClutIndex((index >> 0) & 0xf) + clutSharingOffset];
tmpTexBuf16[i + 1] = clut[GetClutIndex((index >> 4) & 0xf) + clutSharingOffset];
}
} else {
UnswizzleFromMem(texaddr, 0, level);
for (int i = 0, j = 0; i < bufw * h; i += 8, j++)
{
u32 n = tmpTexBuf32[j];
u32 k, index;
for (k = 0; k < 8; k++) {
index = (n >> (k * 4)) & 0xf;
tmpTexBuf16[i + k] = clut[GetClutIndex(index) + clutSharingOffset];
}
}
}
finalBuf = tmpTexBuf16;
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
ReadClut32(clutBuf32);
const u32 *clut = clutBuf32;
u32 clutSharingOff = 0;//gstate.mipmapShareClut ? 0 : level * 16;
if (!(gstate.texmode & 1)) {
const u8 *addr = Memory::GetPointer(texaddr);
for (int i = 0; i < bufw * h; i += 2)
{
u8 index = *addr++;
tmpTexBuf32[i + 0] = clut[GetClutIndex((index >> 0) & 0xf) + clutSharingOff];
tmpTexBuf32[i + 1] = clut[GetClutIndex((index >> 4) & 0xf) + clutSharingOff];
}
} else {
u32 pixels = bufw * h;
UnswizzleFromMem(texaddr, 0, level);
for (int i = pixels - 8, j = (pixels / 8) - 1; i >= 0; i -= 8, j--) {
u32 n = tmpTexBuf32[j];
for (int k = 0; k < 8; k++) {
u32 index = (n >> (k * 4)) & 0xf;
tmpTexBuf32[i + k] = clut[GetClutIndex(index) + clutSharingOff];
}
}
}
finalBuf = tmpTexBuf32;
}
break;
default:
ERROR_LOG(G3D, "Unknown CLUT4 texture mode %d", (gstate.clutformat & 3));
return;
}
break;
case GE_TFMT_CLUT8:
finalBuf = readIndexedTex(level, texaddr, 1);
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
texByteAlign = texByteAlignMap[(gstate.clutformat & 3)];
break;
case GE_TFMT_CLUT16:
finalBuf = readIndexedTex(level, texaddr, 2);
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
texByteAlign = texByteAlignMap[(gstate.clutformat & 3)];
break;
case GE_TFMT_CLUT32:
finalBuf = readIndexedTex(level, texaddr, 4);
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
texByteAlign = texByteAlignMap[(gstate.clutformat & 3)];
break;
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
if (entry.format == GE_TFMT_4444)
dstFmt = GL_UNSIGNED_SHORT_4_4_4_4;
else if (entry.format == GE_TFMT_5551)
dstFmt = GL_UNSIGNED_SHORT_5_5_5_1;
else if (entry.format == GE_TFMT_5650)
dstFmt = GL_UNSIGNED_SHORT_5_6_5;
texByteAlign = 2;
if (!(gstate.texmode & 1)) {
int len = std::max(bufw, w) * h;
for (int i = 0; i < len; i++)
tmpTexBuf16[i] = Memory::ReadUnchecked_U16(texaddr + i * 2);
finalBuf = tmpTexBuf16;
}
else
finalBuf = UnswizzleFromMem(texaddr, 2, level);
break;
case GE_TFMT_8888:
dstFmt = GL_UNSIGNED_BYTE;
if (!(gstate.texmode & 1)) {
int len = bufw * h;
for (int i = 0; i < len; i++)
tmpTexBuf32[i] = Memory::ReadUnchecked_U32(texaddr + i * 4);
finalBuf = tmpTexBuf32;
}
else
finalBuf = UnswizzleFromMem(texaddr, 4, level);
break;
case GE_TFMT_DXT1:
dstFmt = GL_UNSIGNED_BYTE;
{
u32 *dst = tmpTexBuf32;
DXT1Block *src = (DXT1Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < std::min(bufw, w); x += 4) {
decodeDXT1Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
finalBuf = tmpTexBuf32;
w = (w + 3) & ~3;
}
break;
case GE_TFMT_DXT3:
dstFmt = GL_UNSIGNED_BYTE;
{
u32 *dst = tmpTexBuf32;
DXT3Block *src = (DXT3Block*)texptr;
// Alpha is off
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < std::min(bufw, w); x += 4) {
decodeDXT3Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
w = (w + 3) & ~3;
finalBuf = tmpTexBuf32;
}
break;
case GE_TFMT_DXT5:
ERROR_LOG(G3D, "Unhandled compressed texture, format %i! swizzle=%i", entry.format, gstate.texmode & 1);
dstFmt = GL_UNSIGNED_BYTE;
{
u32 *dst = tmpTexBuf32;
DXT5Block *src = (DXT5Block*)texptr;
// Alpha is almost right
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < std::min(bufw, w); x += 4) {
decodeDXT5Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
w = (w + 3) & ~3;
finalBuf = tmpTexBuf32;
}
break;
default:
ERROR_LOG(G3D, "Unknown Texture Format %d!!!", entry.format);
finalBuf = tmpTexBuf32;
return;
}
if (!finalBuf) {
ERROR_LOG(G3D, "NO finalbuf! Will crash!");
}
convertColors((u8*)finalBuf, dstFmt, bufw * h);
if (w != bufw) {
int pixelSize;
switch (dstFmt) {
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_5_6_5:
pixelSize = 2;
break;
default:
pixelSize = 4;
break;
}
// Need to rearrange the buffer to simulate GL_UNPACK_ROW_LENGTH etc.
int inRowBytes = bufw * pixelSize;
int outRowBytes = w * pixelSize;
const u8 *read = (const u8 *)finalBuf;
u8 *write = 0;
if (w > bufw) {
write = (u8 *)tmpTexBufRearrange;
finalBuf = tmpTexBufRearrange;
} else {
write = (u8 *)finalBuf;
}
for (int y = 0; y < h; y++) {
memmove(write, read, outRowBytes);
read += inRowBytes;
write += outRowBytes;
}
}
gpuStats.numTexturesDecoded++;
// Can restore these and remove the above fixup on some platforms.
//glPixelStorei(GL_UNPACK_ROW_LENGTH, bufw);
glPixelStorei(GL_UNPACK_ALIGNMENT, texByteAlign);
//glPixelStorei(GL_PACK_ROW_LENGTH, bufw);
glPixelStorei(GL_PACK_ALIGNMENT, texByteAlign);
// INFO_LOG(G3D, "Creating texture level %i/%i from %08x: %i x %i (stride: %i). fmt: %i", level, entry.maxLevel, texaddr, w, h, bufw, entry.format);
GLuint components = dstFmt == GL_UNSIGNED_SHORT_5_6_5 ? GL_RGB : GL_RGBA;
glTexImage2D(GL_TEXTURE_2D, level, components, w, h, 0, components, dstFmt, finalBuf);
}
bool TextureCache::DecodeTexture(u8* output, GPUgstate state)
{
GPUgstate oldState = gstate;
gstate = state;
u32 texaddr = (gstate.texaddr[0] & 0xFFFFF0) | ((gstate.texbufwidth[0]<<8) & 0x0F000000);
if (!Memory::IsValidAddress(texaddr)) {
return false;
}
u8 level = 0;
u32 format = gstate.texformat & 0xF;
if (format >= 11) {
ERROR_LOG(G3D, "Unknown texture format %i", format);
format = 0;
}
u32 clutformat = gstate.clutformat & 3;
const u8 *texptr = Memory::GetPointer(texaddr);
int bufw = gstate.texbufwidth[0] & 0x3ff;
int w = 1 << (gstate.texsize[0] & 0xf);
int h = 1 << ((gstate.texsize[0]>>8) & 0xf);
GLenum dstFmt = 0;
u32 texByteAlign = 1;
void *finalBuf = NULL;
// TODO: Look into using BGRA for 32-bit textures when the GL_EXT_texture_format_BGRA8888 extension is available, as it's faster than RGBA on some chips.
switch (format)
{
case GE_TFMT_CLUT4:
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
switch (clutformat) {
case GE_CMODE_16BIT_BGR5650:
case GE_CMODE_16BIT_ABGR5551:
case GE_CMODE_16BIT_ABGR4444:
{
ReadClut16(clutBuf16);
const u16 *clut = clutBuf16;
u32 clutSharingOff = 0;//gstate.mipmapShareClut ? 0 : level * 16;
texByteAlign = 2;
if (!(gstate.texmode & 1)) {
const u8 *addr = Memory::GetPointer(texaddr);
for (int i = 0; i < bufw * h; i += 2)
{
u8 index = *addr++;
tmpTexBuf16[i + 0] = clut[GetClutIndex((index >> 0) & 0xf) + clutSharingOff];
tmpTexBuf16[i + 1] = clut[GetClutIndex((index >> 4) & 0xf) + clutSharingOff];
}
} else {
UnswizzleFromMem(texaddr, 0, level);
for (int i = 0, j = 0; i < bufw * h; i += 8, j++)
{
u32 n = tmpTexBuf32[j];
u32 k, index;
for (k = 0; k < 8; k++) {
index = (n >> (k * 4)) & 0xf;
tmpTexBuf16[i + k] = clut[GetClutIndex(index) + clutSharingOff];
}
}
}
finalBuf = tmpTexBuf16;
}
break;
case GE_CMODE_32BIT_ABGR8888:
{
ReadClut32(clutBuf32);
const u32 *clut = clutBuf32;
u32 clutSharingOff = 0;//gstate.mipmapShareClut ? 0 : level * 16;
if (!(gstate.texmode & 1)) {
const u8 *addr = Memory::GetPointer(texaddr);
for (int i = 0; i < bufw * h; i += 2)
{
u8 index = *addr++;
tmpTexBuf32[i + 0] = clut[GetClutIndex((index >> 0) & 0xf) + clutSharingOff];
tmpTexBuf32[i + 1] = clut[GetClutIndex((index >> 4) & 0xf) + clutSharingOff];
}
} else {
u32 pixels = bufw * h;
UnswizzleFromMem(texaddr, 0, level);
for (int i = pixels - 8, j = (pixels / 8) - 1; i >= 0; i -= 8, j--) {
u32 n = tmpTexBuf32[j];
for (int k = 0; k < 8; k++) {
u32 index = (n >> (k * 4)) & 0xf;
tmpTexBuf32[i + k] = clut[GetClutIndex(index) + clutSharingOff];
}
}
}
finalBuf = tmpTexBuf32;
}
break;
default:
ERROR_LOG(G3D, "Unknown CLUT4 texture mode %d", (gstate.clutformat & 3));
return false;
}
break;
case GE_TFMT_CLUT8:
finalBuf = readIndexedTex(level, texaddr, 1);
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
texByteAlign = texByteAlignMap[(gstate.clutformat & 3)];
break;
case GE_TFMT_CLUT16:
finalBuf = readIndexedTex(level, texaddr, 2);
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
texByteAlign = texByteAlignMap[(gstate.clutformat & 3)];
break;
case GE_TFMT_CLUT32:
finalBuf = readIndexedTex(level, texaddr, 4);
dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3));
texByteAlign = texByteAlignMap[(gstate.clutformat & 3)];
break;
case GE_TFMT_4444:
case GE_TFMT_5551:
case GE_TFMT_5650:
if (format == GE_TFMT_4444)
dstFmt = GL_UNSIGNED_SHORT_4_4_4_4;
else if (format == GE_TFMT_5551)
dstFmt = GL_UNSIGNED_SHORT_5_5_5_1;
else if (format == GE_TFMT_5650)
dstFmt = GL_UNSIGNED_SHORT_5_6_5;
texByteAlign = 2;
if (!(gstate.texmode & 1)) {
int len = std::max(bufw, w) * h;
for (int i = 0; i < len; i++)
tmpTexBuf16[i] = Memory::ReadUnchecked_U16(texaddr + i * 2);
finalBuf = tmpTexBuf16;
}
else
finalBuf = UnswizzleFromMem(texaddr, 2, level);
break;
case GE_TFMT_8888:
dstFmt = GL_UNSIGNED_BYTE;
if (!(gstate.texmode & 1)) {
int len = bufw * h;
for (int i = 0; i < len; i++)
tmpTexBuf32[i] = Memory::ReadUnchecked_U32(texaddr + i * 4);
finalBuf = tmpTexBuf32;
}
else
finalBuf = UnswizzleFromMem(texaddr, 4, level);
break;
case GE_TFMT_DXT1:
dstFmt = GL_UNSIGNED_BYTE;
{
u32 *dst = tmpTexBuf32;
DXT1Block *src = (DXT1Block*)texptr;
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < std::min(bufw, w); x += 4) {
decodeDXT1Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
finalBuf = tmpTexBuf32;
w = (w + 3) & ~3;
}
break;
case GE_TFMT_DXT3:
dstFmt = GL_UNSIGNED_BYTE;
{
u32 *dst = tmpTexBuf32;
DXT3Block *src = (DXT3Block*)texptr;
// Alpha is off
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < std::min(bufw, w); x += 4) {
decodeDXT3Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
w = (w + 3) & ~3;
finalBuf = tmpTexBuf32;
}
break;
case GE_TFMT_DXT5:
ERROR_LOG(G3D, "Unhandled compressed texture, format %i! swizzle=%i", format, gstate.texmode & 1);
dstFmt = GL_UNSIGNED_BYTE;
{
u32 *dst = tmpTexBuf32;
DXT5Block *src = (DXT5Block*)texptr;
// Alpha is almost right
for (int y = 0; y < h; y += 4) {
u32 blockIndex = (y / 4) * (bufw / 4);
for (int x = 0; x < std::min(bufw, w); x += 4) {
decodeDXT5Block(dst + bufw * y + x, src + blockIndex, bufw);
blockIndex++;
}
}
w = (w + 3) & ~3;
finalBuf = tmpTexBuf32;
}
break;
default:
ERROR_LOG(G3D, "Unknown Texture Format %d!!!", format);
finalBuf = tmpTexBuf32;
return false;
}
if (!finalBuf) {
ERROR_LOG(G3D, "NO finalbuf! Will crash!");
}
convertColors((u8*)finalBuf, dstFmt, bufw * h);
if(dstFmt == GL_UNSIGNED_SHORT_4_4_4_4)
{
for(int x = 0; x < h; x++)
for(int y = 0; y < bufw; y++)
{
u32 val = ((u16*)finalBuf)[x*bufw + y];
u32 a = (val & 0xF) * 255 / 15;
u32 r = ((val & 0xF) >> 24) * 255 / 15;
u32 g = ((val & 0xF) >> 16) * 255 / 15;
u32 b = ((val & 0xF) >> 8) * 255 / 15;
((u32*)output)[x*w + y] = (a << 24) | (r << 16) | (g << 8) | b;
}
}
else if(dstFmt == GL_UNSIGNED_SHORT_5_5_5_1)
{
for(int x = 0; x < h; x++)
for(int y = 0; y < bufw; y++)
{
u32 val = ((u16*)finalBuf)[x*bufw + y];
u32 a = (val & 0x1) * 255;
u32 r = ((val & 0x1F) >> 11) * 255 / 31;
u32 g = ((val & 0x1F) >> 6) * 255 / 31;
u32 b = ((val & 0x1F) >> 1) * 255 / 31;
((u32*)output)[x*w + y] = (a << 24) | (r << 16) | (g << 8) | b;
}
}
else if(dstFmt == GL_UNSIGNED_SHORT_5_6_5)
{
for(int x = 0; x < h; x++)
for(int y = 0; y < bufw; y++)
{
u32 val = ((u16*)finalBuf)[x*bufw + y];
u32 a = 0xFF;
u32 r = ((val & 0x1F) >> 11) * 255 / 31;
u32 g = ((val & 0x3F) >> 6) * 255 / 63;
u32 b = ((val & 0x1F)) * 255 / 31;
((u32*)output)[x*w + y] = (a << 24) | (r << 16) | (g << 8) | b;
}
}
else
{
for(int x = 0; x < h; x++)
for(int y = 0; y < bufw; y++)
{
u32 val = ((u32*)finalBuf)[x*bufw + y];
((u32*)output)[x*w + y] = ((val & 0xFF000000)) | ((val & 0x00FF0000)>>16) | ((val & 0x0000FF00)) | ((val & 0x000000FF)<<16);
}
}
gstate = oldState;
return true;
}