ppsspp/Core/CwCheat.cpp
The Dax b3018eb37f Allow Win32 to store its saves, config files, etc., elsewhere.
If installed.txt exists(or the executable directory is read-only), use the user's My Documents(XP) or Documents(7/8/8.1) directory to search for everything. If it doesn't, or we can't determine the directory for some reason, use the old behaviour.
2013-10-13 16:45:59 -04:00

532 lines
14 KiB
C++

#include "CwCheat.h"
#include "../Core/CoreTiming.h"
#include "../Core/CoreParameter.h"
#include "StringUtils.h"
#include "Common/FileUtil.h"
#include "Config.h"
#include "MIPS/MIPS.h"
#include "Core/Config.h"
const static std::string CHEATS_DIR = "cheats";
static int CheatEvent = -1;
std::string gameTitle;
std::string activeCheatFile;
static CWCheatEngine *cheatEngine;
void hleCheat(u64 userdata, int cyclesLate);
void trim2(std::string& str);
void __CheatInit() {
gameTitle = g_paramSFO.GetValueString("DISC_ID");
#if defined(ANDROID) || defined(__SYMBIAN32__) || defined(_WIN32)
activeCheatFile = g_Config.memCardDirectory + "PSP/Cheats/" + gameTitle + ".ini";
#else
activeCheatFile = CHEATS_DIR + "/" + gameTitle + ".ini";
#endif
CheatEvent = CoreTiming::RegisterEvent("CheatEvent", &hleCheat);
File::CreateFullPath(CHEATS_DIR);
if (g_Config.bEnableCheats) {
if (!File::Exists(activeCheatFile)) {
File::CreateEmptyFile(activeCheatFile);
}
cheatEngine = new CWCheatEngine();
cheatEngine->CreateCodeList();
g_Config.bReloadCheats = false;
CoreTiming::ScheduleEvent(msToCycles(77), CheatEvent, 0);
}
}
void __CheatShutdown() {
if (cheatEngine != 0) {
cheatEngine->Exit();
delete cheatEngine;
cheatEngine = 0;
}
}
void __CheatDoState(PointerWrap &p) {
auto s = p.Section("CwCheat", 0, 1);
if (!s) {
return;
}
p.Do(CheatEvent);
CoreTiming::RestoreRegisterEvent(CheatEvent, "CheatEvent", &hleCheat);
}
void hleCheat(u64 userdata, int cyclesLate) {
CoreTiming::ScheduleEvent(msToCycles(77), CheatEvent, 0);
if (!cheatEngine)
return;
if (g_Config.bReloadCheats) { //Checks if the "reload cheats" button has been pressed.
cheatEngine->CreateCodeList();
g_Config.bReloadCheats = false;
}
if (g_Config.bEnableCheats) {
cheatEngine->Run();
}
}
CWCheatEngine::CWCheatEngine() {
}
void CWCheatEngine::Exit() {
exit2 = true;
}
void CWCheatEngine::CreateCodeList() { //Creates code list to be used in function GetNextCode
initialCodesList = GetCodesList();
std::string currentcode, codename;
std::vector<std::string> codelist;
for (size_t i = 0; i < initialCodesList.size(); i ++) {
if (initialCodesList[i].substr(0,2) == "_S") {
continue; //Line indicates Disc ID, not needed for cheats
}
if (initialCodesList[i].substr(0,2) == "_G") {
continue; //Line indicates game Title, also not needed for cheats.
}
if (initialCodesList[i].substr(0,3) == "_C1") {
cheatEnabled = true;
codename = initialCodesList[i];
codename.erase (codename.begin(), codename.begin()+4);
codeNameList.push_back(codename); //Import names for GUI, will be implemented later.
continue;
}
if (initialCodesList[i].substr(0,2) == "_L") {
if (cheatEnabled == true) {
currentcode = initialCodesList[i];
currentcode.erase(currentcode.begin(), currentcode.begin() + 3);
codelist.push_back(currentcode);
}
continue;
}
if (initialCodesList[i].substr(0,3) == "_C0") {
cheatEnabled = false;
codename = initialCodesList[i];
codename.erase (codename.begin(), codename.begin()+4);
codeNameList.push_back(codename); //Import names for GUI, will be implemented later.
continue;
}
}
parts = makeCodeParts(codelist);
}
inline std::vector<std::string> makeCodeParts(std::vector<std::string> CodesList) { //Takes a single code line and creates a two-part vector for each code. Feeds to CreateCodeList
std::string currentcode;
std::vector<std::string> finalList;
char split_char = '\n';
char empty = ' ';
for (size_t i = 0; i < CodesList.size(); i++) {
currentcode = CodesList[i];
for (size_t j=0; j < currentcode.length(); j++) {
if (currentcode[j] == empty) {
currentcode[j] = '\n';
}
}
trim2(currentcode);
std::istringstream iss(currentcode);
std::string each;
while (std::getline(iss, each, split_char)) {
finalList.push_back(each);
}
}
return finalList;
}
std::vector<int> CWCheatEngine::GetNextCode() { // Feeds a size-2 vector of ints to Run() which contains the address and value of one cheat.
std::string code1;
std::string code2;
std::vector<std::string> splitCode;
std::vector<int> finalCode;
std::string modifier2 = "0";
while (true) {
if (currentCode >= parts.size()) {
code1.clear();
code2.clear();
break;
}
code1 = parts[currentCode++];
trim2(code1);
code2 = parts[currentCode++];
trim2(code2);
splitCode.push_back(code1);
splitCode.push_back(code2);
int var1 = (int) parseHexLong(splitCode[0]);
int var2 = (int) parseHexLong(splitCode[1]);
finalCode.push_back(var1);
finalCode.push_back(var2);
if (splitCode[0].substr(0,1) == modifier2) {
break;
}
}
return finalCode;
}
void CWCheatEngine::SkipCodes(int count) {
for (int i = 0; i < count; i ++) {
if (GetNextCode()[0] == 0) {
break;
}
}
}
void CWCheatEngine::SkipAllCodes() {
currentCode = codes.size();
}
int CWCheatEngine::GetAddress(int value) { //Returns static address used by ppsspp. Some games may not like this, and causes cheats to not work without offset
int address = (value + 0x08800000) & 0x3FFFFFFF;
if (gameTitle == "ULUS10563" || gameTitle == "ULJS-00351" || gameTitle == "NPJH50352" ) //Offset to make God Eater Burst codes work
address -= 0x7EF00;
return address;
}
inline void trim2(std::string& str) {
size_t pos = str.find_last_not_of(' ');
if(pos != std::string::npos) {
str.erase(pos + 1);
pos = str.find_first_not_of(' ');
if(pos != std::string::npos) str.erase(0, pos);
}
else str.erase(str.begin(), str.end());
}
std::vector<std::string> CWCheatEngine::GetCodesList() { //Reads the entire cheat list from the appropriate .ini.
std::string line;
std::vector<std::string> codesList; // Read from INI here
std::ifstream list(activeCheatFile.c_str());
for (int i = 0; !list.eof(); i ++) {
getline(list, line, '\n');
if (line.length() > 3 && line.substr(0,1) == "_"){
codesList.push_back(line);
}
}
for(size_t i = 0; i < codesList.size(); i++) {
trim2(codesList[i]);
}
return codesList;
}
void CWCheatEngine::Run() {
exit2 = false;
while (!exit2) {
currentCode = 0;
while (true) {
std::vector<int> code = GetNextCode();
if (code.size() < 2) {
Exit();
break;
}
int value;
unsigned int comm = code[0];
int arg = code[1];
int addr = GetAddress(comm & 0x0FFFFFFF);
switch (comm >> 28) {
case 0: // 8-bit write.
if (Memory::IsValidAddress(addr)){
Memory::Write_U8((u8) arg, addr);
}
break;
case 0x1: // 16-bit write
if (Memory::IsValidAddress(addr)){
Memory::Write_U16((u16) arg, addr);
}
break;
case 0x2: // 32-bit write
if (Memory::IsValidAddress(addr)){
Memory::Write_U32((u32) arg, addr);
}
break;
case 0x3: // Increment/Decrement
{
addr = GetAddress(arg & 0x0FFFFFFF);
value = 0;
int increment = 0;
// Read value from memory
switch ((comm >> 20) & 0xF) {
case 1:
case 2: // 8-bit
value = Memory::Read_U8(addr);
increment = comm & 0xFF;
break;
case 3:
case 4: // 16-bit
value = Memory::Read_U16(addr);
increment = comm & 0xFFFF;
break;
case 5:
case 6: // 32-bit
value = Memory::Read_U32(addr);
code = GetNextCode();
if (code[0] != 0) {
increment = code[0];
}
break;
}
// Increment/Decrement value
switch ((comm >> 20) & 0xF) {
case 1:
case 3:
case 5: // increment
value += increment;
break;
case 2:
case 4:
case 6: // Decrement
value -= increment;
break;
}
// Write value back to memory
switch ((comm >> 20) & 0xF) {
case 1:
case 2: // 8-bit
Memory::Write_U8((u8) value, addr);
break;
case 3:
case 4: // 16-bit
Memory::Write_U16((u16) value, addr);
break;
case 5:
case 6: // 32-bit
Memory::Write_U32((u32) value, addr);
break;
}
break;
}
case 0x4: // 32-bit patch code
code = GetNextCode();
if (true) {
int data = code[0];
int dataAdd = code[1];
int maxAddr = (arg >> 16) & 0xFFFF;
int stepAddr = (arg & 0xFFFF) * 4;
for (int a = 0; a < maxAddr; a++) {
if (Memory::IsValidAddress(addr)) {
Memory::Write_U32((u32) data, addr);
}
addr += stepAddr;
data += dataAdd;
}
}
break;
case 0x5: // Memcpy command
code = GetNextCode();
if (true) {
int destAddr = GetAddress(code[0]);
if (Memory::IsValidAddress(addr) && Memory::IsValidAddress(destAddr)) {
Memory::Memcpy(destAddr, Memory::GetPointer(addr), arg);
}
}
break;
case 0x6: // Pointer commands
code = GetNextCode();
if (true) {
int arg2 = code[0];
int offset = code[1];
int baseOffset = (arg2 >> 20) * 4;
int base = Memory::Read_U32(addr + baseOffset);
int count = arg2 & 0xFFFF;
int type = (arg2 >> 16) & 0xF;
for (int i = 1; i < count; i ++ ) {
if (i+1 < count) {
code = GetNextCode();
int arg3 = code[0];
int arg4 = code[1];
int comm3 = arg3 >> 28;
switch (comm3) {
case 0x1: // type copy byte
{
int srcAddr = Memory::Read_U32(addr) + offset;
int dstAddr = Memory::Read_U16(addr + baseOffset) + (arg3 & 0x0FFFFFFF);
Memory::Memcpy(dstAddr, Memory::GetPointer(srcAddr), arg);
type = -1; //Done
break; }
case 0x2:
case 0x3: // type pointer walk
{
int walkOffset = arg3 & 0x0FFFFFFF;
if (comm3 == 0x3) {
walkOffset = -walkOffset;
}
base = Memory::Read_U32(base + walkOffset);
int comm4 = arg4 >> 28;
switch (comm4) {
case 0x2:
case 0x3: // type pointer walk
walkOffset = arg4 & 0x0FFFFFFF;
if (comm4 == 0x3) {
walkOffset = -walkOffset;
}
base = Memory::Read_U32(base + walkOffset);
break;
}
break; }
case 0x9: // type multi address write
base += arg3 & 0x0FFFFFFF;
arg += arg4;
break;
default:
break;
}
}
}
switch (type) {
case 0: // 8 bit write
Memory::Write_U8((u8) arg, base + offset);
break;
case 1: // 16-bit write
Memory::Write_U16((u16) arg, base + offset);
break;
case 2: // 32-bit write
Memory::Write_U32((u32) arg, base + offset);
break;
case 3: // 8 bit inverse write
Memory::Write_U8((u8) arg, base - offset);
break;
case 4: // 16-bit inverse write
Memory::Write_U16((u16) arg, base - offset);
break;
case 5: // 32-bit inverse write
Memory::Write_U32((u32) arg, base - offset);
break;
case -1: // Operation already performed, nothing to do
break;
}
}
break;
case 0x7: // Boolean commands.
switch (arg >> 16) {
case 0x0000: // 8-bit OR.
if (Memory::IsValidAddress(addr)) {
int val1 = (int) (arg & 0xFF);
int val2 = (int) Memory::Read_U8(addr);
Memory::Write_U8((u8) (val1 | val2), addr);
}
break;
case 0x0002: // 8-bit AND.
if (Memory::IsValidAddress(addr)) {
int val1 = (int) (arg & 0xFF);
int val2 = (int) Memory::Read_U8(addr);
Memory::Write_U8((u8) (val1 & val2), addr);
}
break;
case 0x0004: // 8-bit XOR.
if (Memory::IsValidAddress(addr)) {
int val1 = (int) (arg & 0xFF);
int val2 = (int) Memory::Read_U8(addr);
Memory::Write_U8((u8) (val1 ^ val2), addr);
}
break;
case 0x0001: // 16-bit OR.
if (Memory::IsValidAddress(addr)) {
short val1 = (short) (arg & 0xFFFF);
short val2 = (short) Memory::Read_U16(addr);
Memory::Write_U16((u16) (val1 | val2), addr);
}
break;
case 0x0003: // 16-bit AND.
if (Memory::IsValidAddress(addr)) {
short val1 = (short) (arg & 0xFFFF);
short val2 = (short) Memory::Read_U16(addr);
Memory::Write_U16((u16) (val1 & val2), addr);
}
break;
case 0x0005: // 16-bit OR.
if (Memory::IsValidAddress(addr)) {
short val1 = (short) (arg & 0xFFFF);
short val2 = (short) Memory::Read_U16(addr);
Memory::Write_U16((u16) (val1 ^ val2), addr);
}
break;
}
break;
case 0x8: // 8-bit and 16-bit patch code
code = GetNextCode();
if (true) {
int data = code[0];
int dataAdd = code[1];
bool is8Bit = (data >> 16) == 0x0000;
int maxAddr = (arg >> 16) & 0xFFFF;
int stepAddr = (arg & 0xFFFF) * (is8Bit ? 1 : 2);
for (int a = 0; a < maxAddr; a++) {
if (Memory::IsValidAddress(addr)) {
if (is8Bit) {
Memory::Write_U8((u8) (data & 0xFF), addr);
}
else {
Memory::Write_U16((u16) (data & 0xFFFF), addr);
}
}
addr += stepAddr;
data += dataAdd;
}
}
break;
case 0xB: // Time command (not sure what to do?)
break;
case 0xC: // Code stopper
if (Memory::IsValidAddress(addr)) {
value = Memory::Read_U32(addr);
if (value != arg) {
SkipAllCodes();
}
}
break;
case 0xD: // Test commands & Jocker codes ( Someone will have to help me with these)
break;
case 0xE: // Test commands, multiple skip
{
bool is8Bit = (comm >> 24) == 0xE1;
addr = GetAddress(arg & 0x0FFFFFFF);
if (Memory::IsValidAddress(addr)) {
int memoryValue = is8Bit ? Memory::Read_U8(addr) : Memory::Read_U16(addr);
int testValue = comm & (is8Bit ? 0xFF : 0xFFFF);
bool executeNextLines = false;
switch ( arg >> 28) {
case 0x0: // Equal
executeNextLines = memoryValue == testValue;
break;
case 0x1: // Not Equal
executeNextLines = memoryValue != testValue;
break;
case 0x2: // Less Than
executeNextLines = memoryValue < testValue;
break;
case 0x3: // Greater Than
executeNextLines = memoryValue > testValue;
break;
}
if (!executeNextLines) {
int skip = (comm >> 16) & (is8Bit ? 0xFF : 0xFFF);
SkipCodes(skip);
}
}
break;
}
default:
{
break;
}
}
}
}
// exiting...
Exit();
}