mirror of
https://github.com/libretro/ppsspp.git
synced 2024-12-17 22:29:34 +00:00
281 lines
5.5 KiB
C++
281 lines
5.5 KiB
C++
// Copyright (C) 2003 Dolphin Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official SVN repository and contact information can be found at
|
|
// http://code.google.com/p/dolphin-emu/
|
|
|
|
#include "Common.h"
|
|
#include "MathUtil.h"
|
|
|
|
#include <cmath>
|
|
#include <numeric>
|
|
|
|
namespace {
|
|
#ifdef USE_SSE
|
|
static u32 saved_sse_state = _mm_getcsr();
|
|
static const u32 default_sse_state = _mm_getcsr();
|
|
#endif
|
|
}
|
|
|
|
namespace MathUtil
|
|
{
|
|
|
|
u32 ClassifyDouble(double dvalue)
|
|
{
|
|
// TODO: Optimize the below to be as fast as possible.
|
|
IntDouble value;
|
|
value.d = dvalue;
|
|
u64 sign = value.i & DOUBLE_SIGN;
|
|
u64 exp = value.i & DOUBLE_EXP;
|
|
if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP)
|
|
{
|
|
// Nice normalized number.
|
|
return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
|
|
}
|
|
else
|
|
{
|
|
u64 mantissa = value.i & DOUBLE_FRAC;
|
|
if (mantissa)
|
|
{
|
|
if (exp)
|
|
{
|
|
return PPC_FPCLASS_QNAN;
|
|
}
|
|
else
|
|
{
|
|
// Denormalized number.
|
|
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
|
|
}
|
|
}
|
|
else if (exp)
|
|
{
|
|
//Infinite
|
|
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
|
|
}
|
|
else
|
|
{
|
|
//Zero
|
|
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
|
|
}
|
|
}
|
|
}
|
|
|
|
u32 ClassifyFloat(float fvalue)
|
|
{
|
|
// TODO: Optimize the below to be as fast as possible.
|
|
IntFloat value;
|
|
value.f = fvalue;
|
|
u32 sign = value.i & FLOAT_SIGN;
|
|
u32 exp = value.i & FLOAT_EXP;
|
|
if (exp > FLOAT_ZERO && exp < FLOAT_EXP)
|
|
{
|
|
// Nice normalized number.
|
|
return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
|
|
}
|
|
else
|
|
{
|
|
u32 mantissa = value.i & FLOAT_FRAC;
|
|
if (mantissa)
|
|
{
|
|
if (exp)
|
|
{
|
|
return PPC_FPCLASS_QNAN; // Quiet NAN
|
|
}
|
|
else
|
|
{
|
|
// Denormalized number.
|
|
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
|
|
}
|
|
}
|
|
else if (exp)
|
|
{
|
|
// Infinite
|
|
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
|
|
}
|
|
else
|
|
{
|
|
//Zero
|
|
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
} // namespace
|
|
|
|
void LoadDefaultSSEState()
|
|
{
|
|
#ifdef USE_SSE
|
|
_mm_setcsr(default_sse_state);
|
|
#endif
|
|
}
|
|
|
|
|
|
void LoadSSEState()
|
|
{
|
|
#ifdef USE_SSE
|
|
_mm_setcsr(saved_sse_state);
|
|
#endif
|
|
}
|
|
|
|
|
|
void SaveSSEState()
|
|
{
|
|
#ifdef USE_SSE
|
|
saved_sse_state = _mm_getcsr();
|
|
#endif
|
|
}
|
|
|
|
inline void MatrixMul(int n, const float *a, const float *b, float *result)
|
|
{
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
for (int j = 0; j < n; ++j)
|
|
{
|
|
float temp = 0;
|
|
for (int k = 0; k < n; ++k)
|
|
{
|
|
temp += a[i * n + k] * b[k * n + j];
|
|
}
|
|
result[i * n + j] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate sum of a float list
|
|
float MathFloatVectorSum(const std::vector<float>& Vec)
|
|
{
|
|
return std::accumulate(Vec.begin(), Vec.end(), 0.0f);
|
|
}
|
|
|
|
void Matrix33::LoadIdentity(Matrix33 &mtx)
|
|
{
|
|
memset(mtx.data, 0, sizeof(mtx.data));
|
|
mtx.data[0] = 1.0f;
|
|
mtx.data[4] = 1.0f;
|
|
mtx.data[8] = 1.0f;
|
|
}
|
|
|
|
void Matrix33::RotateX(Matrix33 &mtx, float rad)
|
|
{
|
|
float s = sin(rad);
|
|
float c = cos(rad);
|
|
memset(mtx.data, 0, sizeof(mtx.data));
|
|
mtx.data[0] = 1;
|
|
mtx.data[4] = c;
|
|
mtx.data[5] = -s;
|
|
mtx.data[7] = s;
|
|
mtx.data[8] = c;
|
|
}
|
|
void Matrix33::RotateY(Matrix33 &mtx, float rad)
|
|
{
|
|
float s = sin(rad);
|
|
float c = cos(rad);
|
|
memset(mtx.data, 0, sizeof(mtx.data));
|
|
mtx.data[0] = c;
|
|
mtx.data[2] = s;
|
|
mtx.data[4] = 1;
|
|
mtx.data[6] = -s;
|
|
mtx.data[8] = c;
|
|
}
|
|
|
|
void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result)
|
|
{
|
|
MatrixMul(3, a.data, b.data, result.data);
|
|
}
|
|
|
|
void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3])
|
|
{
|
|
for (int i = 0; i < 3; ++i) {
|
|
result[i] = 0;
|
|
for (int k = 0; k < 3; ++k) {
|
|
result[i] += a.data[i * 3 + k] * vec[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
void Matrix44::LoadIdentity(Matrix44 &mtx)
|
|
{
|
|
memset(mtx.data, 0, sizeof(mtx.data));
|
|
mtx.data[0] = 1.0f;
|
|
mtx.data[5] = 1.0f;
|
|
mtx.data[10] = 1.0f;
|
|
mtx.data[15] = 1.0f;
|
|
}
|
|
|
|
void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33)
|
|
{
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
mtx.data[i * 4 + j] = m33.data[i * 3 + j];
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
mtx.data[i * 4 + 3] = 0;
|
|
mtx.data[i + 12] = 0;
|
|
}
|
|
mtx.data[15] = 1.0f;
|
|
}
|
|
|
|
void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16])
|
|
{
|
|
for(int i = 0; i < 16; ++i)
|
|
{
|
|
mtx.data[i] = mtxArray[i];
|
|
}
|
|
}
|
|
|
|
void Matrix44::Translate(Matrix44 &mtx, const float vec[3])
|
|
{
|
|
LoadIdentity(mtx);
|
|
mtx.data[3] = vec[0];
|
|
mtx.data[7] = vec[1];
|
|
mtx.data[11] = vec[2];
|
|
}
|
|
|
|
void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result)
|
|
{
|
|
MatrixMul(4, a.data, b.data, result.data);
|
|
}
|
|
|
|
int Pow2roundup(int x)
|
|
{
|
|
if (x < 0)
|
|
return 0;
|
|
--x;
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
return x+1;
|
|
}
|
|
|
|
int GetPow2(int x)
|
|
{
|
|
int ret = 0;
|
|
int val = 1;
|
|
while(x > val)
|
|
{
|
|
ret++;
|
|
val *= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
|