mirror of
https://github.com/libretro/ppsspp.git
synced 2024-12-05 07:27:02 +00:00
682 lines
20 KiB
C++
682 lines
20 KiB
C++
// Copyright (c) 2013- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
#include "gfx_es2/gl_state.h"
|
|
|
|
#include "Core/Config.h"
|
|
#include "GPU/GPUState.h"
|
|
#include "GPU/Math3D.h"
|
|
#include "GPU/GLES/ShaderManager.h"
|
|
#include "GPU/GLES/TransformPipeline.h"
|
|
|
|
// This is the software transform pipeline, which is necessary for supporting RECT
|
|
// primitives correctly without geometry shaders, and may be easier to use for
|
|
// debugging than the hardware transform pipeline.
|
|
|
|
// There's code here that simply expands transformed RECTANGLES into plain triangles.
|
|
|
|
// We're gonna have to keep software transforming RECTANGLES, unless we use a geom shader which we can't on OpenGL ES 2.0.
|
|
// Usually, though, these primitives don't use lighting etc so it's no biggie performance wise, but it would be nice to get rid of
|
|
// this code.
|
|
|
|
// Actually, if we find the camera-relative right and down vectors, it might even be possible to add the extra points in pre-transformed
|
|
// space and thus make decent use of hardware transform.
|
|
|
|
// Actually again, single quads could be drawn more efficiently using GL_TRIANGLE_STRIP, no need to duplicate verts as for
|
|
// GL_TRIANGLES. Still need to sw transform to compute the extra two corners though.
|
|
//
|
|
|
|
extern const GLuint glprim[8];
|
|
|
|
// Check for max first as clamping to max is more common than min when lighting.
|
|
inline float clamp(float in, float min, float max) {
|
|
return in > max ? max : (in < min ? min : in);
|
|
}
|
|
|
|
// Convenient way to do precomputation to save the parts of the lighting calculation
|
|
// that's common between the many vertices of a draw call.
|
|
class Lighter {
|
|
public:
|
|
Lighter();
|
|
void Light(float colorOut0[4], float colorOut1[4], const float colorIn[4], Vec3f pos, Vec3f normal);
|
|
|
|
private:
|
|
Color4 globalAmbient;
|
|
Color4 materialEmissive;
|
|
Color4 materialAmbient;
|
|
Color4 materialDiffuse;
|
|
Color4 materialSpecular;
|
|
float specCoef_;
|
|
// Vec3f viewer_;
|
|
bool doShadeMapping_;
|
|
int materialUpdate_;
|
|
};
|
|
|
|
Lighter::Lighter() {
|
|
doShadeMapping_ = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP;
|
|
materialEmissive.GetFromRGB(gstate.materialemissive);
|
|
materialEmissive.a = 0.0f;
|
|
globalAmbient.GetFromRGB(gstate.ambientcolor);
|
|
globalAmbient.GetFromA(gstate.ambientalpha);
|
|
materialAmbient.GetFromRGB(gstate.materialambient);
|
|
materialAmbient.GetFromA(gstate.materialalpha);
|
|
materialDiffuse.GetFromRGB(gstate.materialdiffuse);
|
|
materialDiffuse.a = 1.0f;
|
|
materialSpecular.GetFromRGB(gstate.materialspecular);
|
|
materialSpecular.a = 1.0f;
|
|
specCoef_ = getFloat24(gstate.materialspecularcoef);
|
|
// viewer_ = Vec3f(-gstate.viewMatrix[9], -gstate.viewMatrix[10], -gstate.viewMatrix[11]);
|
|
materialUpdate_ = gstate.materialupdate & 7;
|
|
}
|
|
|
|
void Lighter::Light(float colorOut0[4], float colorOut1[4], const float colorIn[4], Vec3f pos, Vec3f norm)
|
|
{
|
|
Color4 in(colorIn);
|
|
|
|
const Color4 *ambient;
|
|
if (materialUpdate_ & 1)
|
|
ambient = ∈
|
|
else
|
|
ambient = &materialAmbient;
|
|
|
|
const Color4 *diffuse;
|
|
if (materialUpdate_ & 2)
|
|
diffuse = ∈
|
|
else
|
|
diffuse = &materialDiffuse;
|
|
|
|
const Color4 *specular;
|
|
if (materialUpdate_ & 4)
|
|
specular = ∈
|
|
else
|
|
specular = &materialSpecular;
|
|
|
|
Color4 lightSum0 = globalAmbient * *ambient + materialEmissive;
|
|
Color4 lightSum1(0, 0, 0, 0);
|
|
|
|
for (int l = 0; l < 4; l++)
|
|
{
|
|
// can we skip this light?
|
|
if (!gstate.isLightChanEnabled(l))
|
|
continue;
|
|
|
|
GELightType type = gstate.getLightType(l);
|
|
|
|
Vec3f toLight(0,0,0);
|
|
Vec3f lightDir(0,0,0);
|
|
|
|
if (type == GE_LIGHTTYPE_DIRECTIONAL)
|
|
toLight = Vec3f(gstate_c.lightpos[l]); // lightdir is for spotlights
|
|
else
|
|
toLight = Vec3f(gstate_c.lightpos[l]) - pos;
|
|
|
|
bool doSpecular = gstate.isUsingSpecularLight(l);
|
|
bool poweredDiffuse = gstate.isUsingPoweredDiffuseLight(l);
|
|
|
|
float distanceToLight = toLight.Length();
|
|
float dot = 0.0f;
|
|
float angle = 0.0f;
|
|
float lightScale = 0.0f;
|
|
|
|
if (distanceToLight > 0.0f) {
|
|
toLight /= distanceToLight;
|
|
dot = Dot(toLight, norm);
|
|
}
|
|
// Clamp dot to zero.
|
|
if (dot < 0.0f) dot = 0.0f;
|
|
|
|
if (poweredDiffuse)
|
|
dot = powf(dot, specCoef_);
|
|
|
|
// Attenuation
|
|
switch (type) {
|
|
case GE_LIGHTTYPE_DIRECTIONAL:
|
|
lightScale = 1.0f;
|
|
break;
|
|
case GE_LIGHTTYPE_POINT:
|
|
lightScale = clamp(1.0f / (gstate_c.lightatt[l][0] + gstate_c.lightatt[l][1]*distanceToLight + gstate_c.lightatt[l][2]*distanceToLight*distanceToLight), 0.0f, 1.0f);
|
|
break;
|
|
case GE_LIGHTTYPE_SPOT:
|
|
case GE_LIGHTTYPE_UNKNOWN:
|
|
lightDir = gstate_c.lightdir[l];
|
|
angle = Dot(toLight.Normalized(), lightDir.Normalized());
|
|
if (angle >= gstate_c.lightangle[l])
|
|
lightScale = clamp(1.0f / (gstate_c.lightatt[l][0] + gstate_c.lightatt[l][1]*distanceToLight + gstate_c.lightatt[l][2]*distanceToLight*distanceToLight), 0.0f, 1.0f) * powf(angle, gstate_c.lightspotCoef[l]);
|
|
break;
|
|
default:
|
|
// ILLEGAL
|
|
break;
|
|
}
|
|
|
|
Color4 lightDiff(gstate_c.lightColor[1][l], 0.0f);
|
|
Color4 diff = (lightDiff * *diffuse) * dot;
|
|
|
|
// Real PSP specular
|
|
Vec3f toViewer(0,0,1);
|
|
// Better specular
|
|
// Vec3f toViewer = (viewer - pos).Normalized();
|
|
|
|
if (doSpecular)
|
|
{
|
|
Vec3f halfVec = (toLight + toViewer);
|
|
halfVec.Normalize();
|
|
|
|
dot = Dot(halfVec, norm);
|
|
if (dot > 0.0f)
|
|
{
|
|
Color4 lightSpec(gstate_c.lightColor[2][l], 0.0f);
|
|
lightSum1 += (lightSpec * *specular * (powf(dot, specCoef_) * lightScale));
|
|
}
|
|
}
|
|
|
|
if (gstate.isLightChanEnabled(l))
|
|
{
|
|
Color4 lightAmbient(gstate_c.lightColor[0][l], 0.0f);
|
|
lightSum0 += (lightAmbient * *ambient + diff) * lightScale;
|
|
}
|
|
}
|
|
|
|
// 4?
|
|
for (int i = 0; i < 4; i++) {
|
|
colorOut0[i] = lightSum0[i] > 1.0f ? 1.0f : lightSum0[i];
|
|
colorOut1[i] = lightSum1[i] > 1.0f ? 1.0f : lightSum1[i];
|
|
}
|
|
}
|
|
|
|
// The verts are in the order: BR BL TL TR
|
|
static void SwapUVs(TransformedVertex &a, TransformedVertex &b) {
|
|
float tempu = a.u;
|
|
float tempv = a.v;
|
|
a.u = b.u;
|
|
a.v = b.v;
|
|
b.u = tempu;
|
|
b.v = tempv;
|
|
}
|
|
|
|
// 2 3 3 2 0 3 2 1
|
|
// to to or
|
|
// 1 0 0 1 1 2 3 0
|
|
|
|
|
|
// See comment below where this was called before.
|
|
/*
|
|
static void RotateUV(TransformedVertex v[4]) {
|
|
float x1 = v[2].x;
|
|
float x2 = v[0].x;
|
|
float y1 = v[2].y;
|
|
float y2 = v[0].y;
|
|
|
|
if ((x1 < x2 && y1 < y2) || (x1 > x2 && y1 > y2))
|
|
SwapUVs(v[1], v[3]);
|
|
}*/
|
|
|
|
static void RotateUVThrough(TransformedVertex v[4]) {
|
|
float x1 = v[2].x;
|
|
float x2 = v[0].x;
|
|
float y1 = v[2].y;
|
|
float y2 = v[0].y;
|
|
|
|
if ((x1 < x2 && y1 > y2) || (x1 > x2 && y1 < y2))
|
|
SwapUVs(v[1], v[3]);
|
|
}
|
|
|
|
// Clears on the PSP are best done by drawing a series of vertical strips
|
|
// in clear mode. This tries to detect that.
|
|
bool TransformDrawEngine::IsReallyAClear(int numVerts) const {
|
|
if (transformed[0].x != 0.0f || transformed[0].y != 0.0f)
|
|
return false;
|
|
|
|
u32 matchcolor;
|
|
memcpy(&matchcolor, transformed[0].color0, 4);
|
|
float matchz = transformed[0].z;
|
|
|
|
int bufW = gstate_c.curRTWidth;
|
|
int bufH = gstate_c.curRTHeight;
|
|
|
|
float prevX = 0.0f;
|
|
for (int i = 1; i < numVerts; i++) {
|
|
u32 vcolor;
|
|
memcpy(&vcolor, transformed[i].color0, 4);
|
|
if (vcolor != matchcolor || transformed[i].z != matchz)
|
|
return false;
|
|
|
|
if ((i & 1) == 0) {
|
|
// Top left of a rectangle
|
|
if (transformed[i].y != 0)
|
|
return false;
|
|
if (i > 0 && transformed[i].x != transformed[i - 1].x)
|
|
return false;
|
|
} else {
|
|
// Bottom right
|
|
if (transformed[i].y != bufH)
|
|
return false;
|
|
if (transformed[i].x <= transformed[i - 1].x)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// The last vertical strip often extends outside the drawing area.
|
|
if (transformed[numVerts - 1].x < bufW)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void TransformDrawEngine::SoftwareTransformAndDraw(
|
|
int prim, u8 *decoded, LinkedShader *program, int vertexCount, u32 vertType, void *inds, int indexType, const DecVtxFormat &decVtxFormat, int maxIndex) {
|
|
|
|
bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0;
|
|
bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled();
|
|
|
|
// TODO: Split up into multiple draw calls for GLES 2.0 where you can't guarantee support for more than 0x10000 verts.
|
|
|
|
#if defined(USING_GLES2)
|
|
if (vertexCount > 0x10000/3)
|
|
vertexCount = 0x10000/3;
|
|
#endif
|
|
|
|
float uscale = 1.0f;
|
|
float vscale = 1.0f;
|
|
bool scaleUV = false;
|
|
if (throughmode) {
|
|
uscale /= gstate_c.curTextureWidth;
|
|
vscale /= gstate_c.curTextureHeight;
|
|
} else {
|
|
scaleUV = !g_Config.bPrescaleUV;
|
|
}
|
|
|
|
|
|
bool skinningEnabled = vertTypeIsSkinningEnabled(vertType);
|
|
|
|
int w = gstate.getTextureWidth(0);
|
|
int h = gstate.getTextureHeight(0);
|
|
float widthFactor = (float) w / (float) gstate_c.curTextureWidth;
|
|
float heightFactor = (float) h / (float) gstate_c.curTextureHeight;
|
|
|
|
Lighter lighter;
|
|
float fog_end = getFloat24(gstate.fog1);
|
|
float fog_slope = getFloat24(gstate.fog2);
|
|
|
|
VertexReader reader(decoded, decVtxFormat, vertType);
|
|
for (int index = 0; index < maxIndex; index++) {
|
|
reader.Goto(index);
|
|
|
|
float v[3] = {0, 0, 0};
|
|
float c0[4] = {1, 1, 1, 1};
|
|
float c1[4] = {0, 0, 0, 0};
|
|
float uv[3] = {0, 0, 1};
|
|
float fogCoef = 1.0f;
|
|
|
|
if (throughmode) {
|
|
// Do not touch the coordinates or the colors. No lighting.
|
|
reader.ReadPos(v);
|
|
if (reader.hasColor0()) {
|
|
reader.ReadColor0(c0);
|
|
for (int j = 0; j < 4; j++) {
|
|
c1[j] = 0.0f;
|
|
}
|
|
} else {
|
|
c0[0] = gstate.getMaterialAmbientR() / 255.f;
|
|
c0[1] = gstate.getMaterialAmbientG() / 255.f;
|
|
c0[2] = gstate.getMaterialAmbientB() / 255.f;
|
|
c0[3] = gstate.getMaterialAmbientA() / 255.f;
|
|
}
|
|
|
|
if (reader.hasUV()) {
|
|
reader.ReadUV(uv);
|
|
|
|
uv[0] *= uscale;
|
|
uv[1] *= vscale;
|
|
}
|
|
fogCoef = 1.0f;
|
|
// Scale UV?
|
|
} else {
|
|
// We do software T&L for now
|
|
float out[3], norm[3];
|
|
float pos[3], nrm[3];
|
|
Vec3f normal(0, 0, 1);
|
|
reader.ReadPos(pos);
|
|
if (reader.hasNormal())
|
|
reader.ReadNrm(nrm);
|
|
|
|
if (!skinningEnabled) {
|
|
Vec3ByMatrix43(out, pos, gstate.worldMatrix);
|
|
if (reader.hasNormal()) {
|
|
Norm3ByMatrix43(norm, nrm, gstate.worldMatrix);
|
|
normal = Vec3f(norm).Normalized();
|
|
}
|
|
} else {
|
|
float weights[8];
|
|
reader.ReadWeights(weights);
|
|
// Skinning
|
|
Vec3f psum(0,0,0);
|
|
Vec3f nsum(0,0,0);
|
|
for (int i = 0; i < vertTypeGetNumBoneWeights(vertType); i++) {
|
|
if (weights[i] != 0.0f) {
|
|
Vec3ByMatrix43(out, pos, gstate.boneMatrix+i*12);
|
|
Vec3f tpos(out);
|
|
psum += tpos * weights[i];
|
|
if (reader.hasNormal()) {
|
|
Norm3ByMatrix43(norm, nrm, gstate.boneMatrix+i*12);
|
|
Vec3f tnorm(norm);
|
|
nsum += tnorm * weights[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Yes, we really must multiply by the world matrix too.
|
|
Vec3ByMatrix43(out, psum.AsArray(), gstate.worldMatrix);
|
|
if (reader.hasNormal()) {
|
|
Norm3ByMatrix43(norm, nsum.AsArray(), gstate.worldMatrix);
|
|
normal = Vec3f(norm).Normalized();
|
|
}
|
|
}
|
|
|
|
// Perform lighting here if enabled. don't need to check through, it's checked above.
|
|
float unlitColor[4] = {1, 1, 1, 1};
|
|
if (reader.hasColor0()) {
|
|
reader.ReadColor0(unlitColor);
|
|
} else {
|
|
unlitColor[0] = gstate.getMaterialAmbientR() / 255.f;
|
|
unlitColor[1] = gstate.getMaterialAmbientG() / 255.f;
|
|
unlitColor[2] = gstate.getMaterialAmbientB() / 255.f;
|
|
unlitColor[3] = gstate.getMaterialAmbientA() / 255.f;
|
|
}
|
|
float litColor0[4];
|
|
float litColor1[4];
|
|
lighter.Light(litColor0, litColor1, unlitColor, out, normal);
|
|
|
|
if (gstate.isLightingEnabled()) {
|
|
// Don't ignore gstate.lmode - we should send two colors in that case
|
|
for (int j = 0; j < 4; j++) {
|
|
c0[j] = litColor0[j];
|
|
}
|
|
if (lmode) {
|
|
// Separate colors
|
|
for (int j = 0; j < 4; j++) {
|
|
c1[j] = litColor1[j];
|
|
}
|
|
} else {
|
|
// Summed color into c0
|
|
for (int j = 0; j < 4; j++) {
|
|
c0[j] = ((c0[j] + litColor1[j]) > 1.0f) ? 1.0f : (c0[j] + litColor1[j]);
|
|
}
|
|
}
|
|
} else {
|
|
if (reader.hasColor0()) {
|
|
for (int j = 0; j < 4; j++) {
|
|
c0[j] = unlitColor[j];
|
|
}
|
|
} else {
|
|
c0[0] = gstate.getMaterialAmbientR() / 255.f;
|
|
c0[1] = gstate.getMaterialAmbientG() / 255.f;
|
|
c0[2] = gstate.getMaterialAmbientB() / 255.f;
|
|
c0[3] = gstate.getMaterialAmbientA() / 255.f;
|
|
}
|
|
if (lmode) {
|
|
for (int j = 0; j < 4; j++) {
|
|
c1[j] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
float ruv[2] = {0.0f, 0.0f};
|
|
if (reader.hasUV())
|
|
reader.ReadUV(ruv);
|
|
|
|
// Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights.
|
|
switch (gstate.getUVGenMode()) {
|
|
case GE_TEXMAP_TEXTURE_COORDS: // UV mapping
|
|
case GE_TEXMAP_UNKNOWN: // Seen in Riviera. Unsure of meaning, but this works.
|
|
// Texture scale/offset is only performed in this mode.
|
|
if (scaleUV) {
|
|
uv[0] = ruv[0]*gstate_c.uv.uScale + gstate_c.uv.uOff;
|
|
uv[1] = ruv[1]*gstate_c.uv.vScale + gstate_c.uv.vOff;
|
|
} else {
|
|
uv[0] = ruv[0];
|
|
uv[1] = ruv[1];
|
|
}
|
|
uv[2] = 1.0f;
|
|
break;
|
|
|
|
case GE_TEXMAP_TEXTURE_MATRIX:
|
|
{
|
|
// Projection mapping
|
|
Vec3f source;
|
|
switch (gstate.getUVProjMode()) {
|
|
case GE_PROJMAP_POSITION: // Use model space XYZ as source
|
|
source = pos;
|
|
break;
|
|
|
|
case GE_PROJMAP_UV: // Use unscaled UV as source
|
|
source = Vec3f(ruv[0], ruv[1], 0.0f);
|
|
break;
|
|
|
|
case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized normal as source
|
|
if (reader.hasNormal()) {
|
|
source = Vec3f(norm).Normalized();
|
|
} else {
|
|
ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?");
|
|
source = Vec3f(0.0f, 0.0f, 1.0f);
|
|
}
|
|
break;
|
|
|
|
case GE_PROJMAP_NORMAL: // Use non-normalized normal as source!
|
|
if (reader.hasNormal()) {
|
|
source = Vec3f(norm);
|
|
} else {
|
|
ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?");
|
|
source = Vec3f(0.0f, 0.0f, 1.0f);
|
|
}
|
|
break;
|
|
}
|
|
|
|
float uvw[3];
|
|
Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix);
|
|
uv[0] = uvw[0];
|
|
uv[1] = uvw[1];
|
|
uv[2] = uvw[2];
|
|
}
|
|
break;
|
|
|
|
case GE_TEXMAP_ENVIRONMENT_MAP:
|
|
// Shade mapping - use two light sources to generate U and V.
|
|
{
|
|
Vec3f lightpos0 = Vec3f(gstate_c.lightpos[gstate.getUVLS0()]).Normalized();
|
|
Vec3f lightpos1 = Vec3f(gstate_c.lightpos[gstate.getUVLS1()]).Normalized();
|
|
|
|
uv[0] = (1.0f + Dot(lightpos0, normal))/2.0f;
|
|
uv[1] = (1.0f - Dot(lightpos1, normal))/2.0f;
|
|
uv[2] = 1.0f;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// Illegal
|
|
ERROR_LOG_REPORT(G3D, "Impossible UV gen mode? %d", gstate.getUVGenMode());
|
|
break;
|
|
}
|
|
|
|
uv[0] = uv[0] * widthFactor;
|
|
uv[1] = uv[1] * heightFactor;
|
|
|
|
// Transform the coord by the view matrix.
|
|
Vec3ByMatrix43(v, out, gstate.viewMatrix);
|
|
fogCoef = (v[2] + fog_end) * fog_slope;
|
|
}
|
|
|
|
// TODO: Write to a flexible buffer, we don't always need all four components.
|
|
memcpy(&transformed[index].x, v, 3 * sizeof(float));
|
|
transformed[index].fog = fogCoef;
|
|
memcpy(&transformed[index].u, uv, 3 * sizeof(float));
|
|
if (gstate_c.flipTexture) {
|
|
transformed[index].v = 1.0f - transformed[index].v;
|
|
}
|
|
for (int i = 0; i < 4; i++) {
|
|
transformed[index].color0[i] = c0[i] * 255.0f;
|
|
}
|
|
for (int i = 0; i < 3; i++) {
|
|
transformed[index].color1[i] = c1[i] * 255.0f;
|
|
}
|
|
}
|
|
|
|
// Here's the best opportunity to try to detect rectangles used to clear the screen, and
|
|
// replace them with real OpenGL clears. This can provide a speedup on certain mobile chips.
|
|
// Disabled for now - depth does not come out exactly the same.
|
|
//
|
|
// An alternative option is to simply ditch all the verts except the first and last to create a single
|
|
// rectangle out of many. Quite a small optimization though.
|
|
if (false && maxIndex > 1 && gstate.isModeClear() && prim == GE_PRIM_RECTANGLES && IsReallyAClear(maxIndex)) {
|
|
u32 clearColor;
|
|
memcpy(&clearColor, transformed[0].color0, 4);
|
|
float clearDepth = transformed[0].z;
|
|
const float col[4] = {
|
|
((clearColor & 0xFF)) / 255.0f,
|
|
((clearColor & 0xFF00) >> 8) / 255.0f,
|
|
((clearColor & 0xFF0000) >> 16) / 255.0f,
|
|
((clearColor & 0xFF000000) >> 24) / 255.0f,
|
|
};
|
|
|
|
bool colorMask = gstate.isClearModeColorMask();
|
|
bool alphaMask = gstate.isClearModeAlphaMask();
|
|
glstate.colorMask.set(colorMask, colorMask, colorMask, alphaMask);
|
|
if (alphaMask) {
|
|
glstate.stencilTest.set(true);
|
|
// Clear stencil
|
|
// TODO: extract the stencilValue properly, see below
|
|
int stencilValue = 0;
|
|
glstate.stencilFunc.set(GL_ALWAYS, stencilValue, 255);
|
|
} else {
|
|
// Don't touch stencil
|
|
glstate.stencilTest.set(false);
|
|
}
|
|
glstate.scissorTest.set(false);
|
|
bool depthMask = gstate.isClearModeDepthMask();
|
|
|
|
int target = 0;
|
|
if (colorMask || alphaMask) target |= GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT;
|
|
if (depthMask) target |= GL_DEPTH_BUFFER_BIT;
|
|
|
|
glClearColor(col[0], col[1], col[2], col[3]);
|
|
#ifdef USING_GLES2
|
|
glClearDepthf(clearDepth);
|
|
#else
|
|
glClearDepth(clearDepth);
|
|
#endif
|
|
glClearStencil(0); // TODO - take from alpha?
|
|
glClear(target);
|
|
return;
|
|
}
|
|
|
|
// Step 2: expand rectangles.
|
|
const TransformedVertex *drawBuffer = transformed;
|
|
int numTrans = 0;
|
|
|
|
bool drawIndexed = false;
|
|
|
|
if (prim != GE_PRIM_RECTANGLES) {
|
|
// We can simply draw the unexpanded buffer.
|
|
numTrans = vertexCount;
|
|
drawIndexed = true;
|
|
} else {
|
|
numTrans = 0;
|
|
drawBuffer = transformedExpanded;
|
|
TransformedVertex *trans = &transformedExpanded[0];
|
|
TransformedVertex saved;
|
|
u32 stencilValue;
|
|
for (int i = 0; i < vertexCount; i += 2) {
|
|
int index = ((const u16*)inds)[i];
|
|
saved = transformed[index];
|
|
int index2 = ((const u16*)inds)[i + 1];
|
|
TransformedVertex &transVtx = transformed[index2];
|
|
if (i == 0)
|
|
stencilValue = transVtx.color0[3];
|
|
// We have to turn the rectangle into two triangles, so 6 points. Sigh.
|
|
|
|
// bottom right
|
|
trans[0] = transVtx;
|
|
|
|
// bottom left
|
|
trans[1] = transVtx;
|
|
trans[1].y = saved.y;
|
|
trans[1].v = saved.v;
|
|
|
|
// top left
|
|
trans[2] = transVtx;
|
|
trans[2].x = saved.x;
|
|
trans[2].y = saved.y;
|
|
trans[2].u = saved.u;
|
|
trans[2].v = saved.v;
|
|
|
|
// top right
|
|
trans[3] = transVtx;
|
|
trans[3].x = saved.x;
|
|
trans[3].u = saved.u;
|
|
|
|
// That's the four corners. Now process UV rotation.
|
|
if (throughmode)
|
|
RotateUVThrough(trans);
|
|
|
|
// Apparently, non-through RotateUV just breaks things.
|
|
// If we find a game where it helps, we'll just have to figure out how they differ.
|
|
// Possibly, it has something to do with flipped viewport Y axis, which a few games use.
|
|
// One game might be one of the Metal Gear ones, can't find the issue right now though.
|
|
// else
|
|
// RotateUV(trans);
|
|
|
|
// bottom right
|
|
trans[4] = trans[0];
|
|
|
|
// top left
|
|
trans[5] = trans[2];
|
|
trans += 6;
|
|
|
|
numTrans += 6;
|
|
}
|
|
|
|
// We don't know the color until here, so we have to do it now, instead of in StateMapping.
|
|
// Might want to reconsider the order of things later...
|
|
if (gstate.isModeClear() && gstate.isClearModeAlphaMask()) {
|
|
glstate.stencilFunc.set(GL_ALWAYS, stencilValue, 255);
|
|
}
|
|
}
|
|
|
|
// TODO: Add a post-transform cache here for multi-RECTANGLES only.
|
|
// Might help for text drawing.
|
|
|
|
// these spam the gDebugger log.
|
|
const int vertexSize = sizeof(transformed[0]);
|
|
|
|
bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX;
|
|
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
|
glVertexAttribPointer(ATTR_POSITION, 4, GL_FLOAT, GL_FALSE, vertexSize, drawBuffer);
|
|
int attrMask = program->attrMask;
|
|
if (attrMask & (1 << ATTR_TEXCOORD)) glVertexAttribPointer(ATTR_TEXCOORD, doTextureProjection ? 3 : 2, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)drawBuffer) + 4 * 4);
|
|
if (attrMask & (1 << ATTR_COLOR0)) glVertexAttribPointer(ATTR_COLOR0, 4, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, ((uint8_t*)drawBuffer) + 7 * 4);
|
|
if (attrMask & (1 << ATTR_COLOR1)) glVertexAttribPointer(ATTR_COLOR1, 3, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, ((uint8_t*)drawBuffer) + 8 * 4);
|
|
if (drawIndexed) {
|
|
#if 1 // USING_GLES2
|
|
glDrawElements(glprim[prim], numTrans, GL_UNSIGNED_SHORT, inds);
|
|
#else
|
|
glDrawRangeElements(glprim[prim], 0, indexGen.MaxIndex(), numTrans, GL_UNSIGNED_SHORT, inds);
|
|
#endif
|
|
} else {
|
|
glDrawArrays(glprim[prim], 0, numTrans);
|
|
}
|
|
}
|