ppsspp/Core/MIPS/x86/CompFPU.cpp
2014-11-16 17:38:26 +01:00

431 lines
11 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "Core/Config.h"
#include "Core/MemMap.h"
#include "Common/Common.h"
#include "Core/MIPS/MIPS.h"
#include "Core/MIPS/MIPSCodeUtils.h"
#include "Core/MIPS/x86/Jit.h"
#include "Core/MIPS/x86/RegCache.h"
#define _RS MIPS_GET_RS(op)
#define _RT MIPS_GET_RT(op)
#define _RD MIPS_GET_RD(op)
#define _FS MIPS_GET_FS(op)
#define _FT MIPS_GET_FT(op)
#define _FD MIPS_GET_FD(op)
#define _SA MIPS_GET_SA(op)
#define _POS ((op>> 6) & 0x1F)
#define _SIZE ((op>>11) & 0x1F)
#define _IMM16 (signed short)(op & 0xFFFF)
#define _IMM26 (op & 0x03FFFFFF)
// All functions should have CONDITIONAL_DISABLE, so we can narrow things down to a file quickly.
// Currently known non working ones should have DISABLE.
// #define CONDITIONAL_DISABLE { Comp_Generic(op); return; }
#define CONDITIONAL_DISABLE ;
#define DISABLE { Comp_Generic(op); return; }
namespace MIPSComp {
void Jit::CompFPTriArith(MIPSOpcode op, void (XEmitter::*arith)(X64Reg reg, OpArg), bool orderMatters) {
int ft = _FT;
int fs = _FS;
int fd = _FD;
fpr.SpillLock(fd, fs, ft);
if (fs == fd) {
fpr.MapReg(fd, true, true);
(this->*arith)(fpr.RX(fd), fpr.R(ft));
} else if (ft == fd && !orderMatters) {
fpr.MapReg(fd, true, true);
(this->*arith)(fpr.RX(fd), fpr.R(fs));
} else if (ft != fd) {
// fs can't be fd (handled above.)
fpr.MapReg(fd, false, true);
MOVSS(fpr.RX(fd), fpr.R(fs));
(this->*arith)(fpr.RX(fd), fpr.R(ft));
} else {
// fd must be ft.
fpr.MapReg(fd, true, true);
MOVSS(XMM0, fpr.R(fs));
(this->*arith)(XMM0, fpr.R(ft));
MOVSS(fpr.RX(fd), R(XMM0));
}
fpr.ReleaseSpillLocks();
}
void Jit::Comp_FPU3op(MIPSOpcode op) {
CONDITIONAL_DISABLE;
switch (op & 0x3f) {
case 0: CompFPTriArith(op, &XEmitter::ADDSS, false); break; //F(fd) = F(fs) + F(ft); //add
case 1: CompFPTriArith(op, &XEmitter::SUBSS, true); break; //F(fd) = F(fs) - F(ft); //sub
case 2: CompFPTriArith(op, &XEmitter::MULSS, false); break; //F(fd) = F(fs) * F(ft); //mul
case 3: CompFPTriArith(op, &XEmitter::DIVSS, true); break; //F(fd) = F(fs) / F(ft); //div
default:
_dbg_assert_msg_(CPU,0,"Trying to compile FPU3Op instruction that can't be interpreted");
break;
}
}
static u32 MEMORY_ALIGNED16(ssLoadStoreTemp);
void Jit::Comp_FPULS(MIPSOpcode op) {
CONDITIONAL_DISABLE;
s32 offset = _IMM16;
int ft = _FT;
MIPSGPReg rs = _RS;
switch (op >> 26) {
case 49: //FI(ft) = Memory::Read_U32(addr); break; //lwc1
{
gpr.Lock(rs);
fpr.SpillLock(ft);
fpr.MapReg(ft, false, true);
JitSafeMem safe(this, rs, offset);
OpArg src;
if (safe.PrepareRead(src, 4))
MOVSS(fpr.RX(ft), src);
if (safe.PrepareSlowRead(safeMemFuncs.readU32))
MOVD_xmm(fpr.RX(ft), R(EAX));
safe.Finish();
gpr.UnlockAll();
fpr.ReleaseSpillLocks();
}
break;
case 57: //Memory::Write_U32(FI(ft), addr); break; //swc1
{
gpr.Lock(rs);
fpr.SpillLock(ft);
fpr.MapReg(ft, true, false);
JitSafeMem safe(this, rs, offset);
OpArg dest;
if (safe.PrepareWrite(dest, 4))
MOVSS(dest, fpr.RX(ft));
if (safe.PrepareSlowWrite())
{
MOVSS(M(&ssLoadStoreTemp), fpr.RX(ft));
safe.DoSlowWrite(safeMemFuncs.writeU32, M(&ssLoadStoreTemp));
}
safe.Finish();
gpr.UnlockAll();
fpr.ReleaseSpillLocks();
}
break;
default:
_dbg_assert_msg_(CPU,0,"Trying to interpret FPULS instruction that can't be interpreted");
break;
}
}
static const u64 MEMORY_ALIGNED16(ssOneBits[2]) = {0x0000000100000001ULL, 0x0000000100000001ULL};
static const u64 MEMORY_ALIGNED16(ssSignBits2[2]) = {0x8000000080000000ULL, 0x8000000080000000ULL};
static const u64 MEMORY_ALIGNED16(ssNoSignMask[2]) = {0x7FFFFFFF7FFFFFFFULL, 0x7FFFFFFF7FFFFFFFULL};
void Jit::CompFPComp(int lhs, int rhs, u8 compare, bool allowNaN) {
gpr.MapReg(MIPS_REG_FPCOND, false, true);
// This means that NaN also means true, e.g. !<> or !>, etc.
if (allowNaN) {
MOVSS(XMM0, fpr.R(lhs));
MOVSS(XMM1, fpr.R(lhs));
CMPSS(XMM0, fpr.R(rhs), compare);
CMPUNORDSS(XMM1, fpr.R(rhs));
POR(XMM0, R(XMM1));
} else {
MOVSS(XMM0, fpr.R(lhs));
CMPSS(XMM0, fpr.R(rhs), compare);
}
MOVD_xmm(gpr.R(MIPS_REG_FPCOND), XMM0);
}
void Jit::Comp_FPUComp(MIPSOpcode op) {
CONDITIONAL_DISABLE;
int fs = _FS;
int ft = _FT;
switch (op & 0xf) {
case 0: //f
case 8: //sf
gpr.SetImm(MIPS_REG_FPCOND, 0);
break;
case 1: //un
case 9: //ngle
CompFPComp(fs, ft, CMP_UNORD);
break;
case 2: //eq
case 10: //seq
CompFPComp(fs, ft, CMP_EQ);
break;
case 3: //ueq
case 11: //ngl
CompFPComp(fs, ft, CMP_EQ, true);
break;
case 4: //olt
case 12: //lt
CompFPComp(fs, ft, CMP_LT);
break;
case 5: //ult
case 13: //nge
CompFPComp(ft, fs, CMP_NLE);
break;
case 6: //ole
case 14: //le
CompFPComp(fs, ft, CMP_LE);
break;
case 7: //ule
case 15: //ngt
CompFPComp(ft, fs, CMP_NLT);
break;
default:
DISABLE;
}
}
static u32 mxcsrTemp;
void Jit::Comp_FPU2op(MIPSOpcode op) {
CONDITIONAL_DISABLE;
int fs = _FS;
int fd = _FD;
auto execRounding = [&](void (XEmitter::*conv)(X64Reg, OpArg), int setMXCSR) {
fpr.SpillLock(fs);
// Small optimization: 0 is our default mode anyway.
if (setMXCSR == 0 && !js.hasSetRounding) {
setMXCSR = -1;
}
if (setMXCSR != -1) {
STMXCSR(M(&mxcsrTemp));
MOV(32, R(TEMPREG), M(&mxcsrTemp));
AND(32, R(TEMPREG), Imm32(~(3 << 13)));
OR(32, R(TEMPREG), Imm32(setMXCSR << 13));
MOV(32, M(&mips_->temp), R(TEMPREG));
LDMXCSR(M(&mips_->temp));
}
(this->*conv)(TEMPREG, fpr.R(fs));
// Did we get an indefinite integer value?
CMP(32, R(TEMPREG), Imm32(0x80000000));
FixupBranch skip = J_CC(CC_NE);
MOVSS(XMM0, fpr.R(fs));
XORPS(XMM1, R(XMM1));
CMPSS(XMM0, R(XMM1), CMP_LT);
// At this point, -inf = 0xffffffff, inf/nan = 0x00000000.
// We want -inf to be 0x80000000 inf/nan to be 0x7fffffff, so we flip those bits.
MOVD_xmm(R(TEMPREG), XMM0);
XOR(32, R(TEMPREG), Imm32(0x7fffffff));
SetJumpTarget(skip);
fpr.DiscardR(fd);
MOV(32, fpr.R(fd), R(TEMPREG));
if (setMXCSR != -1) {
LDMXCSR(M(&mxcsrTemp));
}
};
switch (op & 0x3f) {
case 5: //F(fd) = fabsf(F(fs)); break; //abs
fpr.SpillLock(fd, fs);
fpr.MapReg(fd, fd == fs, true);
if (fd != fs) {
MOVSS(fpr.RX(fd), fpr.R(fs));
}
PAND(fpr.RX(fd), M(ssNoSignMask));
break;
case 6: //F(fd) = F(fs); break; //mov
if (fd != fs) {
fpr.SpillLock(fd, fs);
fpr.MapReg(fd, fd == fs, true);
MOVSS(fpr.RX(fd), fpr.R(fs));
}
break;
case 7: //F(fd) = -F(fs); break; //neg
fpr.SpillLock(fd, fs);
fpr.MapReg(fd, fd == fs, true);
if (fd != fs) {
MOVSS(fpr.RX(fd), fpr.R(fs));
}
PXOR(fpr.RX(fd), M(ssSignBits2));
break;
case 4: //F(fd) = sqrtf(F(fs)); break; //sqrt
fpr.SpillLock(fd, fs); // this probably works, just badly tested
fpr.MapReg(fd, fd == fs, true);
SQRTSS(fpr.RX(fd), fpr.R(fs));
break;
case 13: //FsI(fd) = F(fs)>=0 ? (int)floorf(F(fs)) : (int)ceilf(F(fs)); break;//trunc.w.s
execRounding(&XEmitter::CVTTSS2SI, -1);
break;
case 32: //F(fd) = (float)FsI(fs); break; //cvt.s.w
fpr.SpillLock(fd, fs);
fpr.MapReg(fd, fs == fd, true);
if (fpr.R(fs).IsSimpleReg()) {
CVTDQ2PS(fpr.RX(fd), fpr.R(fs));
} else {
// If fs was fd, we'd be in the case above since we mapped fd.
MOVSS(fpr.RX(fd), fpr.R(fs));
CVTDQ2PS(fpr.RX(fd), fpr.R(fd));
}
break;
case 36: //FsI(fd) = (int) F(fs); break; //cvt.w.s
// Uses the current rounding mode.
execRounding(&XEmitter::CVTSS2SI, -1);
break;
case 12: //FsI(fd) = (int)floorf(F(fs)+0.5f); break; //round.w.s
execRounding(&XEmitter::CVTSS2SI, 0);
break;
case 14: //FsI(fd) = (int)ceilf (F(fs)); break; //ceil.w.s
execRounding(&XEmitter::CVTSS2SI, 2);
break;
case 15: //FsI(fd) = (int)floorf(F(fs)); break; //floor.w.s
execRounding(&XEmitter::CVTSS2SI, 1);
break;
default:
DISABLE;
return;
}
fpr.ReleaseSpillLocks();
}
void Jit::Comp_mxc1(MIPSOpcode op) {
CONDITIONAL_DISABLE;
int fs = _FS;
MIPSGPReg rt = _RT;
switch ((op >> 21) & 0x1f) {
case 0: // R(rt) = FI(fs); break; //mfc1
if (rt == MIPS_REG_ZERO)
return;
gpr.MapReg(rt, false, true);
// If fs is not mapped, most likely it's being abandoned.
// Just load from memory in that case.
if (fpr.R(fs).IsSimpleReg()) {
MOVD_xmm(gpr.R(rt), fpr.RX(fs));
} else {
MOV(32, gpr.R(rt), fpr.R(fs));
}
break;
case 2: // R(rt) = currentMIPS->ReadFCR(fs); break; //cfc1
if (rt == MIPS_REG_ZERO)
return;
if (fs == 31) {
bool wasImm = gpr.IsImm(MIPS_REG_FPCOND);
if (!wasImm) {
gpr.Lock(rt, MIPS_REG_FPCOND);
gpr.MapReg(MIPS_REG_FPCOND, true, false);
}
gpr.MapReg(rt, false, true);
MOV(32, gpr.R(rt), M(&mips_->fcr31));
if (wasImm) {
if (gpr.GetImm(MIPS_REG_FPCOND) & 1) {
OR(32, gpr.R(rt), Imm32(1 << 23));
} else {
AND(32, gpr.R(rt), Imm32(~(1 << 23)));
}
} else {
AND(32, gpr.R(rt), Imm32(~(1 << 23)));
MOV(32, R(TEMPREG), gpr.R(MIPS_REG_FPCOND));
AND(32, R(TEMPREG), Imm32(1));
SHL(32, R(TEMPREG), Imm8(23));
OR(32, gpr.R(rt), R(TEMPREG));
}
gpr.UnlockAll();
} else if (fs == 0) {
gpr.SetImm(rt, MIPSState::FCR0_VALUE);
} else {
Comp_Generic(op);
}
return;
case 4: //FI(fs) = R(rt); break; //mtc1
fpr.MapReg(fs, false, true);
if (gpr.IsImm(rt) && gpr.GetImm(rt) == 0) {
XORPS(fpr.RX(fs), fpr.R(fs));
} else {
gpr.KillImmediate(rt, true, false);
MOVD_xmm(fpr.RX(fs), gpr.R(rt));
}
return;
case 6: //currentMIPS->WriteFCR(fs, R(rt)); break; //ctc1
if (fs == 31) {
// Must clear before setting, since ApplyRoundingMode() assumes it was cleared.
RestoreRoundingMode();
if (gpr.IsImm(rt)) {
gpr.SetImm(MIPS_REG_FPCOND, (gpr.GetImm(rt) >> 23) & 1);
MOV(32, M(&mips_->fcr31), Imm32(gpr.GetImm(rt) & 0x0181FFFF));
if ((gpr.GetImm(rt) & 0x1000003) == 0) {
// Default nearest / no-flush mode, just leave it cleared.
} else {
UpdateRoundingMode();
ApplyRoundingMode();
}
} else {
gpr.Lock(rt, MIPS_REG_FPCOND);
gpr.MapReg(rt, true, false);
gpr.MapReg(MIPS_REG_FPCOND, false, true);
MOV(32, gpr.R(MIPS_REG_FPCOND), gpr.R(rt));
SHR(32, gpr.R(MIPS_REG_FPCOND), Imm8(23));
AND(32, gpr.R(MIPS_REG_FPCOND), Imm32(1));
MOV(32, M(&mips_->fcr31), gpr.R(rt));
AND(32, M(&mips_->fcr31), Imm32(0x0181FFFF));
gpr.UnlockAll();
UpdateRoundingMode();
ApplyRoundingMode();
}
} else {
Comp_Generic(op);
}
return;
}
}
} // namespace MIPSComp