ppsspp/GPU/GLES/VertexShaderGenerator.cpp

570 lines
19 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <stdio.h>
#include <locale.h>
#if defined(_WIN32) && defined(_DEBUG)
#include <windows.h>
#endif
#include "../ge_constants.h"
#include "../GPUState.h"
#include "../../Core/Config.h"
#include "VertexShaderGenerator.h"
// SDL 1.2 on Apple does not have support for OpenGL 3 and hence needs
// special treatment in the shader generator.
#ifdef __APPLE__
#define FORCE_OPENGL_2_0
#endif
#undef WRITE
#define WRITE p+=sprintf
bool CanUseHardwareTransform(int prim) {
if (!g_Config.bHardwareTransform)
return false;
return !gstate.isModeThrough() && prim != GE_PRIM_RECTANGLES;
}
// prim so we can special case for RECTANGLES :(
void ComputeVertexShaderID(VertexShaderID *id, int prim, bool useHWTransform) {
const u32 vertType = gstate.vertType;
int doTexture = gstate.isTextureMapEnabled() && !gstate.isModeClear();
bool doTextureProjection = gstate.getUVGenMode() == 1;
bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0;
bool hasNormal = (vertType & GE_VTYPE_NRM_MASK) != 0;
bool hasBones = (vertType & GE_VTYPE_WEIGHT_MASK) != 0;
bool enableFog = gstate.isFogEnabled() && !gstate.isModeThrough() && !gstate.isModeClear();
bool lmode = (gstate.lmode & 1) && gstate.isLightingEnabled();
memset(id->d, 0, sizeof(id->d));
id->d[0] = lmode & 1;
id->d[0] |= ((int)gstate.isModeThrough()) << 1;
id->d[0] |= ((int)enableFog) << 2;
id->d[0] |= doTexture << 3;
id->d[0] |= (hasColor & 1) << 4;
if (doTexture) {
id->d[0] |= (gstate_c.flipTexture & 1) << 5;
id->d[0] |= (doTextureProjection & 1) << 6;
}
if (useHWTransform) {
id->d[0] |= 1 << 8;
id->d[0] |= (hasNormal & 1) << 9;
id->d[0] |= (hasBones & 1) << 10;
// UV generation mode
id->d[0] |= gstate.getUVGenMode() << 16;
// The next bits are used differently depending on UVgen mode
if (gstate.getUVGenMode() == 1) {
id->d[0] |= gstate.getUVProjMode() << 18;
} else if (gstate.getUVGenMode() == 2) {
id->d[0] |= gstate.getUVLS0() << 18;
id->d[0] |= gstate.getUVLS1() << 20;
}
// Bones
id->d[0] |= (gstate.getNumBoneWeights() - 1) << 22;
// Okay, d[1] coming up. ==============
id->d[1] |= gstate.isLightingEnabled() << 24;
id->d[1] |= ((vertType & GE_VTYPE_WEIGHT_MASK) >> GE_VTYPE_WEIGHT_SHIFT) << 25;
if (gstate.isLightingEnabled() || gstate.getUVGenMode() == 2) {
// Light bits
for (int i = 0; i < 4; i++) {
id->d[1] |= (gstate.ltype[i] & 3) << (i * 4);
id->d[1] |= ((gstate.ltype[i] >> 8) & 3) << (i * 4 + 2);
}
id->d[1] |= (gstate.materialupdate & 7) << 16;
for (int i = 0; i < 4; i++) {
id->d[1] |= (gstate.lightEnable[i] & 1) << (20 + i);
}
}
}
}
static const char * const boneWeightAttrDecl[8] = {
"attribute mediump float a_w1;\n",
"attribute mediump vec2 a_w1;\n",
"attribute mediump vec3 a_w1;\n",
"attribute mediump vec4 a_w1;\n",
"attribute mediump vec4 a_w1;\nattribute mediump float a_w2;\n",
"attribute mediump vec4 a_w1;\nattribute mediump vec2 a_w2;\n",
"attribute mediump vec4 a_w1;\nattribute mediump vec3 a_w2;\n",
"attribute mediump vec4 a_w1;\nattribute mediump vec4 a_w2;\n",
};
enum DoLightComputation {
LIGHT_OFF,
LIGHT_SHADE,
LIGHT_FULL,
};
void GenerateVertexShader(int prim, char *buffer, bool useHWTransform) {
char *p = buffer;
// #define USE_FOR_LOOP
#if defined(USING_GLES2)
WRITE(p, "#version 100\n"); // GLSL ES 1.0
WRITE(p, "precision highp float;\n");
#elif !defined(FORCE_OPENGL_2_0)
WRITE(p, "#version 110\n");
// Remove lowp/mediump in non-mobile implementations
WRITE(p, "#define lowp\n");
WRITE(p, "#define mediump\n");
#else
// Need to remove lowp/mediump for Mac
WRITE(p, "#define lowp\n");
WRITE(p, "#define mediump\n");
#endif
const u32 vertType = gstate.vertType;
int lmode = (gstate.lmode & 1) && gstate.isLightingEnabled();
int doTexture = gstate.isTextureMapEnabled() && !gstate.isModeClear();
bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0 || !useHWTransform;
bool hasNormal = (vertType & GE_VTYPE_NRM_MASK) != 0 && useHWTransform;
bool enableFog = gstate.isFogEnabled() && !gstate.isModeThrough() && !gstate.isModeClear();
bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0;
bool flipV = gstate_c.flipTexture;
bool doTextureProjection = gstate.getUVGenMode() == 1;
DoLightComputation doLight[4] = {LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF};
if (useHWTransform) {
int shadeLight0 = gstate.getUVGenMode() == 2 ? gstate.getUVLS0() : -1;
int shadeLight1 = gstate.getUVGenMode() == 2 ? gstate.getUVLS1() : -1;
for (int i = 0; i < 4; i++) {
if (i == shadeLight0 || i == shadeLight1)
doLight[i] = LIGHT_SHADE;
if ((gstate.lightingEnable & 1) && (gstate.lightEnable[i] & 1))
doLight[i] = LIGHT_FULL;
}
}
if ((vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) {
WRITE(p, "%s", boneWeightAttrDecl[gstate.getNumBoneWeights() - 1]);
}
if (useHWTransform)
WRITE(p, "attribute vec3 a_position;\n");
else
WRITE(p, "attribute vec4 a_position;\n"); // need to pass the fog coord in w
if (useHWTransform && hasNormal)
WRITE(p, "attribute mediump vec3 a_normal;\n");
if (doTexture) {
if (!useHWTransform && doTextureProjection)
WRITE(p, "attribute vec3 a_texcoord;\n");
else
WRITE(p, "attribute vec2 a_texcoord;\n");
}
if (hasColor) {
WRITE(p, "attribute lowp vec4 a_color0;\n");
if (lmode && !useHWTransform) // only software transform supplies color1 as vertex data
WRITE(p, "attribute lowp vec3 a_color1;\n");
}
if (gstate.isModeThrough()) {
WRITE(p, "uniform mat4 u_proj_through;\n");
} else {
WRITE(p, "uniform mat4 u_proj;\n");
// Add all the uniforms we'll need to transform properly.
}
if (useHWTransform) {
// When transforming by hardware, we need a great deal more uniforms...
WRITE(p, "uniform mat4 u_world;\n");
WRITE(p, "uniform mat4 u_view;\n");
if (gstate.getUVGenMode() == 1)
WRITE(p, "uniform mediump mat4 u_texmtx;\n");
if ((vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) {
int numBones = 1 + ((vertType & GE_VTYPE_WEIGHTCOUNT_MASK) >> GE_VTYPE_WEIGHTCOUNT_SHIFT);
#ifdef USE_BONE_ARRAY
WRITE(p, "uniform mediump mat4 u_bone[%i];\n", numBones);
#else
for (int i = 0; i < numBones; i++) {
WRITE(p, "uniform mat4 u_bone%i;\n", i);
}
#endif
}
if (gstate.getUVGenMode() == 0)
WRITE(p, "uniform vec4 u_uvscaleoffset;\n");
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_OFF) {
// This is needed for shade mapping
WRITE(p, "uniform vec3 u_lightpos%i;\n", i);
}
if (doLight[i] == LIGHT_FULL) {
// These are needed for the full thing
WRITE(p, "uniform mediump vec3 u_lightdir%i;\n", i);
GELightType type = (GELightType)((gstate.ltype[i] >> 8) & 3);
if (type != GE_LIGHTTYPE_DIRECTIONAL)
WRITE(p, "uniform mediump vec3 u_lightatt%i;\n", i);
if (type == GE_LIGHTTYPE_SPOT) {
WRITE(p, "uniform mediump float u_lightangle%i;\n", i);
WRITE(p, "uniform mediump float u_lightspotCoef%i;\n", i);
}
WRITE(p, "uniform lowp vec3 u_lightambient%i;\n", i);
WRITE(p, "uniform lowp vec3 u_lightdiffuse%i;\n", i);
GELightComputation comp = (GELightComputation)(gstate.ltype[i] & 3);
if (comp != GE_LIGHTCOMP_ONLYDIFFUSE)
WRITE(p, "uniform lowp vec3 u_lightspecular%i;\n", i);
}
}
if (gstate.isLightingEnabled()) {
WRITE(p, "uniform lowp vec4 u_ambient;\n");
if ((gstate.materialupdate & 2) == 0)
WRITE(p, "uniform lowp vec3 u_matdiffuse;\n");
// if ((gstate.materialupdate & 4) == 0)
WRITE(p, "uniform lowp vec4 u_matspecular;\n"); // Specular coef is contained in alpha
WRITE(p, "uniform lowp vec3 u_matemissive;\n");
}
}
if (useHWTransform || !hasColor)
WRITE(p, "uniform lowp vec4 u_matambientalpha;\n"); // matambient + matalpha
if (enableFog) {
WRITE(p, "uniform vec2 u_fogcoef;\n");
}
WRITE(p, "varying lowp vec4 v_color0;\n");
if (lmode) WRITE(p, "varying lowp vec3 v_color1;\n");
if (doTexture) {
if (doTextureProjection)
WRITE(p, "varying vec3 v_texcoord;\n");
else
WRITE(p, "varying vec2 v_texcoord;\n");
}
if (enableFog) WRITE(p, "varying float v_fogdepth;\n");
WRITE(p, "void main() {\n");
if (!useHWTransform) {
// Simple pass-through of vertex data to fragment shader
if (doTexture)
WRITE(p, " v_texcoord = a_texcoord;\n");
if (hasColor) {
WRITE(p, " v_color0 = a_color0;\n");
if (lmode)
WRITE(p, " v_color1 = a_color1;\n");
} else {
WRITE(p, " v_color0 = u_matambientalpha;\n");
if (lmode)
WRITE(p, " v_color1 = vec3(0.0);\n");
}
if (enableFog) {
WRITE(p, " v_fogdepth = a_position.w;\n");
}
if (gstate.isModeThrough()) {
WRITE(p, " gl_Position = u_proj_through * vec4(a_position.xyz, 1.0);\n");
} else {
WRITE(p, " gl_Position = u_proj * vec4(a_position.xyz, 1.0);\n");
}
} else {
// Step 1: World Transform / Skinning
if ((vertType & GE_VTYPE_WEIGHT_MASK) == GE_VTYPE_WEIGHT_NONE) {
// No skinning, just standard T&L.
WRITE(p, " vec3 worldpos = (u_world * vec4(a_position.xyz, 1.0)).xyz;\n");
if (hasNormal)
WRITE(p, " vec3 worldnormal = normalize((u_world * vec4(a_normal, 0.0)).xyz);\n");
else
WRITE(p, " vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n");
} else {
int numWeights = 1 + ((vertType & GE_VTYPE_WEIGHTCOUNT_MASK) >> GE_VTYPE_WEIGHTCOUNT_SHIFT);
static const float rescale[4] = {0, 2*127.5f/128.f, 2*32767.5f/32768.f, 2.0f};
float factor = rescale[(vertType & GE_VTYPE_WEIGHT_MASK) >> GE_VTYPE_WEIGHT_SHIFT];
static const char * const boneWeightAttr[8] = {
"a_w1.x", "a_w1.y", "a_w1.z", "a_w1.w",
"a_w2.x", "a_w2.y", "a_w2.z", "a_w2.w",
};
#if defined(USE_FOR_LOOP) && defined(USE_BONE_ARRAY)
// To loop through the weights, we unfortunately need to put them in a float array.
// GLSL ES sucks - no way to directly initialize an array!
switch (numWeights) {
case 1: WRITE(p, " float w[1]; w[0] = a_w1;\n"); break;
case 2: WRITE(p, " float w[2]; w[0] = a_w1.x; w[1] = a_w1.y;\n"); break;
case 3: WRITE(p, " float w[3]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z;\n"); break;
case 4: WRITE(p, " float w[4]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w;\n"); break;
case 5: WRITE(p, " float w[5]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2;\n"); break;
case 6: WRITE(p, " float w[6]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y;\n"); break;
case 7: WRITE(p, " float w[7]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y; w[6] = a_w2.z;\n"); break;
case 8: WRITE(p, " float w[8]; w[0] = a_w1.x; w[1] = a_w1.y; w[2] = a_w1.z; w[3] = a_w1.w; w[4] = a_w2.x; w[5] = a_w2.y; w[6] = a_w2.z; w[7] = a_w2.w;\n"); break;
}
WRITE(p, " mat4 skinMatrix = w[0] * u_bone[0];\n");
if (numWeights > 1) {
WRITE(p, " for (int i = 1; i < %i; i++) {\n", numWeights);
WRITE(p, " skinMatrix += w[i] * u_bone[i];\n");
WRITE(p, " }\n");
}
#else
#ifdef USE_BONE_ARRAY
if (numWeights == 1)
WRITE(p, " mat4 skinMatrix = a_w1 * u_bone[0]");
else
WRITE(p, " mat4 skinMatrix = a_w1.x * u_bone[0]");
for (int i = 1; i < numWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue
if (numWeights == 1 && i == 0) weightAttr = "a_w1";
if (numWeights == 5 && i == 4) weightAttr = "a_w2";
WRITE(p, " + %s * u_bone[%i]", weightAttr, i);
}
#else
// Uncomment this to screw up bone shaders to check the vertex shader software fallback
// WRITE(p, "THIS SHOULD ERROR! #error");
if (numWeights == 1)
WRITE(p, " mat4 skinMatrix = a_w1 * u_bone0");
else
WRITE(p, " mat4 skinMatrix = a_w1.x * u_bone0");
for (int i = 1; i < numWeights; i++) {
const char *weightAttr = boneWeightAttr[i];
// workaround for "cant do .x of scalar" issue
if (numWeights == 1 && i == 0) weightAttr = "a_w1";
if (numWeights == 5 && i == 4) weightAttr = "a_w2";
WRITE(p, " + %s * u_bone%i", weightAttr, i);
}
#endif
#endif
WRITE(p, ";\n");
// Trying to simplify this results in bugs in LBP...
WRITE(p, " vec3 skinnedpos = (skinMatrix * vec4(a_position, 1.0)).xyz * %f;\n", factor);
WRITE(p, " vec3 worldpos = (u_world * vec4(skinnedpos, 1.0)).xyz;\n");
if (hasNormal) {
WRITE(p, " vec3 skinnednormal = (skinMatrix * vec4(a_normal, 0.0)).xyz * %f;\n", factor);
WRITE(p, " vec3 worldnormal = normalize((u_world * vec4(skinnednormal, 0.0)).xyz);\n");
} else {
WRITE(p, " vec3 worldnormal = (u_world * (skinMatrix * vec4(0.0, 0.0, 1.0, 0.0))).xyz;\n");
}
}
WRITE(p, " vec4 viewPos = u_view * vec4(worldpos, 1.0);\n");
// Final view and projection transforms.
WRITE(p, " gl_Position = u_proj * viewPos;\n");
// TODO: Declare variables for dots for shade mapping if needed.
const char *ambientStr = (gstate.materialupdate & 1) ? (hasColor ? "a_color0" : "u_matambientalpha") : "u_matambientalpha";
const char *diffuseStr = (gstate.materialupdate & 2) ? (hasColor ? "a_color0.rgb" : "u_matambientalpha.rgb") : "u_matdiffuse";
const char *specularStr = (gstate.materialupdate & 4) ? (hasColor ? "a_color0.rgb" : "u_matambientalpha.rgb") : "u_matspecular.rgb";
bool diffuseIsZero = true;
bool specularIsZero = true;
bool distanceNeeded = false;
if (gstate.isLightingEnabled()) {
WRITE(p, " lowp vec4 lightSum0 = u_ambient * %s + vec4(u_matemissive, 0.0);\n", ambientStr);
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_FULL)
continue;
diffuseIsZero = false;
GELightComputation comp = (GELightComputation)(gstate.ltype[i] & 3);
if (comp != GE_LIGHTCOMP_ONLYDIFFUSE)
specularIsZero = false;
GELightType type = (GELightType)((gstate.ltype[i] >> 8) & 3);
if (type != GE_LIGHTTYPE_DIRECTIONAL)
distanceNeeded = true;
}
if (!specularIsZero) {
WRITE(p, " lowp vec3 lightSum1 = vec3(0.0);\n");
WRITE(p, " mediump vec3 halfVec;\n");
}
if (!diffuseIsZero) {
WRITE(p, " vec3 toLight;\n");
WRITE(p, " lowp vec3 diffuse;\n");
}
if (distanceNeeded) {
WRITE(p, " float distance;\n");
WRITE(p, " lowp float lightScale;\n");
}
}
// Calculate lights if needed. If shade mapping is enabled, lights may need to be
// at least partially calculated.
for (int i = 0; i < 4; i++) {
if (doLight[i] != LIGHT_FULL)
continue;
GELightComputation comp = (GELightComputation)(gstate.ltype[i] & 3);
GELightType type = (GELightType)((gstate.ltype[i] >> 8) & 3);
if (type == GE_LIGHTTYPE_DIRECTIONAL) {
// We prenormalize light positions for directional lights.
WRITE(p, " toLight = u_lightpos%i;\n", i);
} else {
WRITE(p, " toLight = u_lightpos%i - worldpos;\n", i);
WRITE(p, " distance = length(toLight);\n");
WRITE(p, " toLight /= distance;\n");
}
bool doSpecular = (comp != GE_LIGHTCOMP_ONLYDIFFUSE);
bool poweredDiffuse = comp == GE_LIGHTCOMP_BOTHWITHPOWDIFFUSE;
if (poweredDiffuse) {
WRITE(p, " mediump float dot%i = pow(dot(toLight, worldnormal), u_matspecular.a);\n", i);
} else {
WRITE(p, " mediump float dot%i = dot(toLight, worldnormal);\n", i);
}
const char *timesLightScale = " * lightScale";
// Attenuation
switch (type) {
case GE_LIGHTTYPE_DIRECTIONAL:
timesLightScale = "";
break;
case GE_LIGHTTYPE_POINT:
WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i);
break;
case GE_LIGHTTYPE_SPOT:
WRITE(p, " lowp float angle%i = dot(normalize(u_lightdir%i), toLight);\n", i, i);
WRITE(p, " if (angle%i >= u_lightangle%i) {\n", i, i);
WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0) * pow(angle%i, u_lightspotCoef%i);\n", i, i, i);
WRITE(p, " } else {\n");
WRITE(p, " lightScale = 0.0;\n");
WRITE(p, " }\n");
break;
default:
// ILLEGAL
break;
}
WRITE(p, " diffuse = (u_lightdiffuse%i * %s) * max(dot%i, 0.0);\n", i, diffuseStr, i);
if (doSpecular) {
WRITE(p, " halfVec = normalize(toLight + vec3(0.0, 0.0, 1.0));\n");
WRITE(p, " dot%i = dot(halfVec, worldnormal);\n", i);
WRITE(p, " if (dot%i > 0.0)\n", i);
WRITE(p, " lightSum1 += u_lightspecular%i * %s * (pow(dot%i, u_matspecular.a) %s);\n", i, specularStr, i, timesLightScale);
}
WRITE(p, " lightSum0.rgb += (u_lightambient%i * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale);
}
if (gstate.isLightingEnabled()) {
// Sum up ambient, emissive here.
if (lmode) {
WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n");
// v_color1 only exists when lmode = 1.
if (specularIsZero) {
WRITE(p, " v_color1 = vec3(0.0);\n");
} else {
WRITE(p, " v_color1 = clamp(lightSum1, 0.0, 1.0);\n");
}
} else {
if (specularIsZero) {
WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n");
} else {
WRITE(p, " v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + vec4(lightSum1, 0.0), 0.0, 1.0);\n");
}
}
} else {
// Lighting doesn't affect color.
if (hasColor) {
WRITE(p, " v_color0 = a_color0;\n");
} else {
WRITE(p, " v_color0 = u_matambientalpha;\n");
}
if (lmode)
WRITE(p, " v_color1 = vec3(0.0);\n");
}
// Step 3: UV generation
if (doTexture) {
switch (gstate.getUVGenMode()) {
case 0: // Scale-offset. Easy.
WRITE(p, " v_texcoord = a_texcoord * u_uvscaleoffset.xy + u_uvscaleoffset.zw;\n");
break;
case 1: // Projection mapping.
{
const char *temp_tc;
switch (gstate.getUVProjMode()) {
case 0: // Use model space XYZ as source
temp_tc = "vec4(a_position.xyz, 1.0)";
break;
case 1: // Use unscaled UV as source
temp_tc = "vec4(a_texcoord.xy * 2.0, 0.0, 1.0)";
break;
case 2: // Use normalized transformed normal as source
if (hasNormal)
temp_tc = "vec4(normalize(a_normal), 1.0)";
else
temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)";
break;
case 3: // Use non-normalized transformed normal as source
if (hasNormal)
temp_tc = "vec4(a_normal, 1.0)";
else
temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)";
break;
}
WRITE(p, " v_texcoord = (u_texmtx * %s).xyz;\n", temp_tc);
}
// Transform by texture matrix. XYZ as we are doing projection mapping.
break;
case 2: // Shade mapping - use dots from light sources.
WRITE(p, " v_texcoord = vec2(1.0 + dot(normalize(u_lightpos%i), worldnormal), 1.0 - dot(normalize(u_lightpos%i), worldnormal)) * 0.5;\n", gstate.getUVLS0(), gstate.getUVLS1());
break;
case 3:
// ILLEGAL
break;
}
if (flipV) {
if (throughmode)
WRITE(p, " v_texcoord.y = 1.0 - v_texcoord.y;\n");
else
WRITE(p, " v_texcoord.y = 1.0 - v_texcoord.y * 2.0;\n");
}
}
// Compute fogdepth
if (enableFog)
WRITE(p, " v_fogdepth = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n");
}
WRITE(p, "}\n");
}