ppsspp/GPU/GLES/Spline.cpp

817 lines
28 KiB
C++

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include "TransformPipeline.h"
#include "Core/Config.h"
#include "Core/MemMap.h"
#include "GPU/Math3D.h"
#include "GPU/Common/SplineCommon.h"
// Here's how to evaluate them fast:
// http://and-what-happened.blogspot.se/2012/07/evaluating-b-splines-aka-basis-splines.html
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning.
// The rest of the transform pipeline like lighting will go as normal, either hardware or software.
// The implementation is initially a bit inefficient but shouldn't be a big deal.
// An intermediate buffer of not-easy-to-predict size is stored at bufPtr.
u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, int lowerBound, int upperBound, u32 vertType) {
// First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate
// implementation of the vertex decoder.
VertexDecoder *dec = GetVertexDecoder(vertType);
dec->DecodeVerts(bufPtr, inPtr, lowerBound, upperBound);
// OK, morphing eliminated but bones still remain to be taken care of.
// Let's do a partial software transform where we only do skinning.
VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType);
SimpleVertex *sverts = (SimpleVertex *)outPtr;
const u8 defaultColor[4] = {
(u8)gstate.getMaterialAmbientR(),
(u8)gstate.getMaterialAmbientG(),
(u8)gstate.getMaterialAmbientB(),
(u8)gstate.getMaterialAmbientA(),
};
// Let's have two separate loops, one for non skinning and one for skinning.
if ((vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) {
int numBoneWeights = vertTypeGetNumBoneWeights(vertType);
for (int i = lowerBound; i <= upperBound; i++) {
reader.Goto(i);
SimpleVertex &sv = sverts[i];
if (vertType & GE_VTYPE_TC_MASK) {
reader.ReadUV(sv.uv);
}
if (vertType & GE_VTYPE_COL_MASK) {
reader.ReadColor0_8888(sv.color);
} else {
memcpy(sv.color, defaultColor, 4);
}
float nrm[3], pos[3];
float bnrm[3], bpos[3];
if (vertType & GE_VTYPE_NRM_MASK) {
// Normals are generated during tesselation anyway, not sure if any need to supply
reader.ReadNrm(nrm);
} else {
nrm[0] = 0;
nrm[1] = 0;
nrm[2] = 1.0f;
}
reader.ReadPos(pos);
// Apply skinning transform directly
float weights[8];
reader.ReadWeights(weights);
// Skinning
Vec3f psum(0,0,0);
Vec3f nsum(0,0,0);
for (int w = 0; w < numBoneWeights; w++) {
if (weights[w] != 0.0f) {
Vec3ByMatrix43(bpos, pos, gstate.boneMatrix+w*12);
Vec3f tpos(bpos);
psum += tpos * weights[w];
Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix+w*12);
Vec3f tnorm(bnrm);
nsum += tnorm * weights[w];
}
}
sv.pos = psum;
sv.nrm = nsum;
}
} else {
for (int i = lowerBound; i <= upperBound; i++) {
reader.Goto(i);
SimpleVertex &sv = sverts[i];
if (vertType & GE_VTYPE_TC_MASK) {
reader.ReadUV(sv.uv);
} else {
sv.uv[0] = 0; // This will get filled in during tesselation
sv.uv[1] = 0;
}
if (vertType & GE_VTYPE_COL_MASK) {
reader.ReadColor0_8888(sv.color);
} else {
memcpy(sv.color, defaultColor, 4);
}
if (vertType & GE_VTYPE_NRM_MASK) {
// Normals are generated during tesselation anyway, not sure if any need to supply
reader.ReadNrm((float *)&sv.nrm);
} else {
sv.nrm.x = 0;
sv.nrm.y = 0;
sv.nrm.z = 1.0f;
}
reader.ReadPos((float *)&sv.pos);
}
}
// Okay, there we are! Return the new type (but keep the index bits)
return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & GE_VTYPE_IDX_MASK);
}
#define START_OPEN 1
#define END_OPEN 2
static float lerp(float a, float b, float x) {
return a + x * (b - a);
}
static void lerpColor(u8 a[4], u8 b[4], float x, u8 out[4]) {
for (int i = 0; i < 4; i++) {
out[i] = (float)a[i] + x * ((float)b[i] - (float)a[i]);
}
}
// We decode all vertices into a common format for easy interpolation and stuff.
// Not fast but can be optimized later.
struct BezierPatch {
SimpleVertex *points[16];
// These are used to generate UVs.
int u_index, v_index;
// Interpolate colors between control points (bilinear, should be good enough).
void sampleColor(float u, float v, u8 color[4]) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 > 3) iu2 = 3;
if (iv2 > 3) iv2 = 3;
int tl = iu + 4 * iv;
int tr = iu2 + 4 * iv;
int bl = iu + 4 * iv2;
int br = iu2 + 4 * iv2;
u8 upperColor[4], lowerColor[4];
lerpColor(points[tl]->color, points[tr]->color, fracU, upperColor);
lerpColor(points[bl]->color, points[br]->color, fracU, lowerColor);
lerpColor(upperColor, lowerColor, fracV, color);
}
void sampleTexUV(float u, float v, float &tu, float &tv) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 > 3) iu2 = 3;
if (iv2 > 3) iv2 = 3;
int tl = iu + 4 * iv;
int tr = iu2 + 4 * iv;
int bl = iu + 4 * iv2;
int br = iu2 + 4 * iv2;
float upperTU = lerp(points[tl]->uv[0], points[tr]->uv[0], fracU);
float upperTV = lerp(points[tl]->uv[1], points[tr]->uv[1], fracU);
float lowerTU = lerp(points[bl]->uv[0], points[br]->uv[0], fracU);
float lowerTV = lerp(points[bl]->uv[1], points[br]->uv[1], fracU);
tu = lerp(upperTU, lowerTU, fracV);
tv = lerp(upperTV, lowerTV, fracV);
}
};
struct SplinePatch {
SimpleVertex **points;
int count_u;
int count_v;
int type_u;
int type_v;
/*
// Interpolate colors between control points (bilinear, should be good enough).
void sampleColor(float u, float v, u8 color[4]) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 >= count_u) iu2 = count_u - 1;
if (iv2 >= count_v) iv2 = count_v - 1;
int tl = iu + count_u * iv;
int tr = iu2 + count_u * iv;
int bl = iu + count_u * iv2;
int br = iu2 + count_u * iv2;
u8 upperColor[4], lowerColor[4];
lerpColor(points[tl]->color, points[tr]->color, fracU, upperColor);
lerpColor(points[bl]->color, points[br]->color, fracU, lowerColor);
lerpColor(upperColor, lowerColor, fracV, color);
}
void sampleTexUV(float u, float v, float &tu, float &tv) const {
u *= 3.0f;
v *= 3.0f;
int iu = (int)floorf(u);
int iv = (int)floorf(v);
int iu2 = iu + 1;
int iv2 = iv + 1;
float fracU = u - iu;
float fracV = v - iv;
if (iu2 >= count_u) iu2 = count_u - 1;
if (iv2 >= count_v) iv2 = count_v - 1;
int tl = iu + count_u * iv;
int tr = iu2 + count_u * iv;
int bl = iu + count_u * iv2;
int br = iu2 + count_u * iv2;
float upperTU = lerp(points[tl]->uv[0], points[tr]->uv[0], fracU);
float upperTV = lerp(points[tl]->uv[1], points[tr]->uv[1], fracU);
float lowerTU = lerp(points[bl]->uv[0], points[br]->uv[0], fracU);
float lowerTV = lerp(points[bl]->uv[1], points[br]->uv[1], fracU);
tu = lerp(upperTU, lowerTU, fracV);
tv = lerp(upperTV, lowerTV, fracV);
}*/
};
static void CopyQuad(u8 *&dest, const SimpleVertex *v1, const SimpleVertex *v2, const SimpleVertex* v3, const SimpleVertex *v4) {
int vertexSize = sizeof(SimpleVertex);
memcpy(dest, v1, vertexSize);
dest += vertexSize;
memcpy(dest, v2, vertexSize);
dest += vertexSize;
memcpy(dest, v3, vertexSize);
dest += vertexSize;
memcpy(dest, v4, vertexSize);
dest += vertexSize;
}
#undef b2
// Bernstein basis functions
inline float bern0(float x) { return (1 - x) * (1 - x) * (1 - x); }
inline float bern1(float x) { return 3 * x * (1 - x) * (1 - x); }
inline float bern2(float x) { return 3 * x * x * (1 - x); }
inline float bern3(float x) { return x * x * x; }
// Not sure yet if these have any use
inline float bern0deriv(float x) { return -3 * (x - 1) * (x - 1); }
inline float bern1deriv(float x) { return 9 * x * x - 12 * x + 3; }
inline float bern2deriv(float x) { return 3 * (2 - 3 * x) * x; }
inline float bern3deriv(float x) { return 3 * x * x; }
// http://en.wikipedia.org/wiki/Bernstein_polynomial
Vec3f Bernstein3D(const Vec3f p0, const Vec3f p1, const Vec3f p2, const Vec3f p3, float x) {
return p0 * bern0(x) + p1 * bern1(x) + p2 * bern2(x) + p3 * bern3(x);
}
Vec3f Bernstein3DDerivative(const Vec3f p0, const Vec3f p1, const Vec3f p2, const Vec3f p3, float x) {
return p0 * bern0deriv(x) + p1 * bern1deriv(x) + p2 * bern2deriv(x) + p3 * bern3deriv(x);
}
void spline_n_4(int i, float t, float *knot, float *splineVal) {
knot += i + 1;
float t0 = (t - knot[0]);
float t1 = (t - knot[1]);
float t2 = (t - knot[2]);
float f30 = t0/(knot[3]-knot[0]);
float f41 = t1/(knot[4]-knot[1]);
float f52 = t2/(knot[5]-knot[2]);
float f31 = t1/(knot[3]-knot[1]);
float f42 = t2/(knot[4]-knot[2]);
float f32 = t2/(knot[3]-knot[2]);
float a = (1-f30)*(1-f31);
float b = (f31*f41);
float c = (1-f41)*(1-f42);
float d = (f42*f52);
splineVal[0] = a-(a*f32);
splineVal[1] = 1-a-b+((a+b+c-1)*f32);
splineVal[2] = b+((1-b-c-d)*f32);
splineVal[3] = d*f32;
}
// knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic))
void spline_knot(int n, int type, float *knot) {
memset(knot, 0, sizeof(float) * (n + 5));
for (int i = 0; i < n - 1; ++i)
knot[i + 3] = i;
if ((type & 1) == 0) {
knot[0] = -3;
knot[1] = -2;
knot[2] = -1;
}
if ((type & 2) == 0) {
knot[n + 2] = n - 1;
knot[n + 3] = n;
knot[n + 4] = n + 1;
} else {
knot[n + 2] = n - 2;
knot[n + 3] = n - 2;
knot[n + 4] = n - 2;
}
}
void TesselateSplinePatch(u8 *&dest, int &count, const SplinePatch &spatch, u32 origVertType) {
const float third = 1.0f / 3.0f;
if (g_Config.bLowQualitySplineBezier) {
// Fast and easy way - just draw the control points, generate some very basic normal vector substitutes.
// Very inaccurate but okay for Loco Roco. Maybe should keep it as an option because it's fast.
const int tile_min_u = (spatch.type_u & START_OPEN) ? 0 : 1;
const int tile_min_v = (spatch.type_v & START_OPEN) ? 0 : 1;
const int tile_max_u = (spatch.type_u & END_OPEN) ? spatch.count_u - 1 : spatch.count_u - 2;
const int tile_max_v = (spatch.type_v & END_OPEN) ? spatch.count_v - 1 : spatch.count_v - 2;
for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
int point_index = tile_u + tile_v * spatch.count_u;
SimpleVertex v0 = *spatch.points[point_index];
SimpleVertex v1 = *spatch.points[point_index+1];
SimpleVertex v2 = *spatch.points[point_index+spatch.count_u];
SimpleVertex v3 = *spatch.points[point_index+spatch.count_u+1];
// Generate UV. TODO: Do this even if UV specified in control points?
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
float u = tile_u * third;
float v = tile_v * third;
v0.uv[0] = u;
v0.uv[1] = v;
v1.uv[0] = u + third;
v1.uv[1] = v;
v2.uv[0] = u;
v2.uv[1] = v + third;
v3.uv[0] = u + third;
v3.uv[1] = v + third;
}
// Generate normal if lighting is enabled (otherwise there's no point).
// This is a really poor quality algorithm, we get facet normals.
if (gstate.isLightingEnabled()) {
Vec3f norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
norm.Normalize();
if (gstate.patchfacing & 1)
norm *= -1.0f;
v0.nrm = norm;
v1.nrm = norm;
v2.nrm = norm;
v3.nrm = norm;
}
CopyQuad(dest, &v0, &v1, &v2, &v3);
count += 6;
}
}
} else {
// Full correct tessellation of spline patches.
// Does not yet generate normals and is atrociously slow (see spline_s...)
// First, generate knot vectors.
int n = spatch.count_u - 1;
int m = spatch.count_v - 1;
float *knot_u = new float[n + 5];
float *knot_v = new float[m + 5];
spline_knot(n, spatch.type_u, knot_u);
spline_knot(m, spatch.type_v, knot_v);
int patch_div_s = gstate.getPatchDivisionU();
int patch_div_t = gstate.getPatchDivisionV();
// Increase tesselation based on the size. Should be approximately right?
// JPCSP is wrong at least because their method results in square loco roco.
patch_div_s = (spatch.count_u - 3) * patch_div_s / 3;
patch_div_t = (spatch.count_v - 3) * patch_div_t / 3;
if (patch_div_s == 0) patch_div_s = 1;
if (patch_div_t == 0) patch_div_t = 1;
// TODO: Remove this cap when spline_s has been optimized.
if (patch_div_s > 64) patch_div_s = 64;
if (patch_div_t > 64) patch_div_t = 64;
// First compute all the vertices and put them in an array
SimpleVertex *vertices = new SimpleVertex[(patch_div_s + 1) * (patch_div_t + 1)];
float tu_width = 1.0f + (spatch.count_u - 4) * 1.0f/3.0f;
float tv_height = 1.0f + (spatch.count_v - 4) * 1.0f/3.0f;
bool computeNormals = gstate.isLightingEnabled();
for (int tile_v = 0; tile_v < patch_div_t + 1; tile_v++) {
float v = ((float)tile_v * (float)(m - 2) / (float)(patch_div_t + 0.00001f)); // epsilon to prevent division by 0 in spline_s
for (int tile_u = 0; tile_u < patch_div_s + 1; tile_u++) {
float u = ((float)tile_u * (float)(n - 2) / (float)(patch_div_s + 0.00001f));
SimpleVertex *vert = &vertices[tile_v * (patch_div_s + 1) + tile_u];
vert->pos.SetZero();
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm.SetZero();
} else {
vert->nrm.SetZero();
vert->nrm.z = 1.0f;
}
if (origVertType & GE_VTYPE_COL_MASK) {
memset(vert->color, 0, 4);
} else {
memcpy(vert->color, spatch.points[0]->color, 4);
}
if (origVertType & GE_VTYPE_TC_MASK) {
vert->uv[0] = 0.0f;
vert->uv[1] = 0.0f;
} else {
vert->uv[0] = tu_width * ((float)tile_u / (float)patch_div_s);
vert->uv[1] = tv_height * ((float)tile_v / (float)patch_div_t);
}
// Collect influences from surrounding control points.
float u_weights[4];
float v_weights[4];
int iu = (int)u;
int iv = (int)v;
spline_n_4(iu, u, knot_u, u_weights);
spline_n_4(iv, v, knot_v, v_weights);
for (int ii = 0; ii < 4; ++ii) {
for (int jj = 0; jj < 4; ++jj) {
float u_spline = u_weights[ii];
float v_spline = v_weights[jj];
float f = u_spline * v_spline;
if (f > 0.0f) {
SimpleVertex *a = spatch.points[spatch.count_u * (iv + jj) + (iu + ii)];
vert->pos += a->pos * f;
if (origVertType & GE_VTYPE_TC_MASK) {
vert->uv[0] += a->uv[0] * f;
vert->uv[1] += a->uv[1] * f;
}
if (origVertType & GE_VTYPE_COL_MASK) {
vert->color[0] += a->color[0] * f;
vert->color[1] += a->color[1] * f;
vert->color[2] += a->color[2] * f;
vert->color[3] += a->color[3] * f;
}
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm += a->nrm * f;
}
}
}
}
if (origVertType & GE_VTYPE_NRM_MASK) {
vert->nrm.Normalize();
}
}
}
delete [] knot_u;
delete [] knot_v;
// Hacky normal generation through central difference.
if (gstate.isLightingEnabled() && (origVertType & GE_VTYPE_NRM_MASK) == 0) {
for (int v = 0; v < patch_div_t + 1; v++) {
for (int u = 0; u < patch_div_s + 1; u++) {
int l = std::max(0, u - 1);
int t = std::max(0, v - 1);
int r = std::min(patch_div_s, u + 1);
int b = std::min(patch_div_t, v + 1);
const Vec3f &right = vertices[v * (patch_div_s + 1) + r].pos - vertices[v * (patch_div_s + 1) + l].pos;
const Vec3f &down = vertices[b * (patch_div_s + 1) + u].pos - vertices[t * (patch_div_s + 1) + u].pos;
vertices[v * (patch_div_s + 1) + u].nrm = Cross(right, down).Normalized();
if (gstate.patchfacing & 1) {
vertices[v * (patch_div_s + 1) + u].nrm *= -1.0f;
}
}
}
}
// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
for (int tile_v = 0; tile_v < patch_div_t; ++tile_v) {
for (int tile_u = 0; tile_u < patch_div_s; ++tile_u) {
float u = ((float)tile_u / (float)patch_div_s);
float v = ((float)tile_v / (float)patch_div_t);
SimpleVertex *v0 = &vertices[tile_v * (patch_div_s + 1) + tile_u];
SimpleVertex *v1 = &vertices[tile_v * (patch_div_s + 1) + tile_u + 1];
SimpleVertex *v2 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u];
SimpleVertex *v3 = &vertices[(tile_v + 1) * (patch_div_s + 1) + tile_u + 1];
CopyQuad(dest, v0, v1, v2, v3);
count += 6;
}
}
delete [] vertices;
}
}
void TesselateBezierPatch(u8 *&dest, int &count, int tess_u, int tess_v, const BezierPatch &patch, u32 origVertType) {
const float third = 1.0f / 3.0f;
if (g_Config.bLowQualitySplineBezier) {
// Fast and easy way - just draw the control points, generate some very basic normal vector subsitutes.
// Very inaccurate though but okay for Loco Roco. Maybe should keep it as an option.
float u_base = patch.u_index / 3.0f;
float v_base = patch.v_index / 3.0f;
for (int tile_v = 0; tile_v < 3; tile_v++) {
for (int tile_u = 0; tile_u < 3; tile_u++) {
int point_index = tile_u + tile_v * 4;
SimpleVertex v0 = *patch.points[point_index];
SimpleVertex v1 = *patch.points[point_index+1];
SimpleVertex v2 = *patch.points[point_index+4];
SimpleVertex v3 = *patch.points[point_index+5];
// Generate UV. TODO: Do this even if UV specified in control points?
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
float u = u_base + tile_u * third;
float v = v_base + tile_v * third;
v0.uv[0] = u;
v0.uv[1] = v;
v1.uv[0] = u + third;
v1.uv[1] = v;
v2.uv[0] = u;
v2.uv[1] = v + third;
v3.uv[0] = u + third;
v3.uv[1] = v + third;
}
// Generate normal if lighting is enabled (otherwise there's no point).
// This is a really poor quality algorithm, we get facet normals.
if (gstate.isLightingEnabled()) {
Vec3f norm = Cross(v1.pos - v0.pos, v2.pos - v0.pos);
norm.Normalize();
if (gstate.patchfacing & 1)
norm *= -1.0f;
v0.nrm = norm;
v1.nrm = norm;
v2.nrm = norm;
v3.nrm = norm;
}
CopyQuad(dest, &v0, &v1, &v2, &v3);
count += 6;
}
}
} else {
// Full correct tesselation of bezier patches.
// Note: Does not handle splines correctly.
// First compute all the vertices and put them in an array
SimpleVertex *vertices = new SimpleVertex[(tess_u + 1) * (tess_v + 1)];
Vec3f *horiz = new Vec3f[(tess_u + 1) * 4];
Vec3f *horiz2 = horiz + (tess_u + 1) * 1;
Vec3f *horiz3 = horiz + (tess_u + 1) * 2;
Vec3f *horiz4 = horiz + (tess_u + 1) * 3;
// Precompute the horizontal curves to we only have to evaluate the vertical ones.
for (int i = 0; i < tess_u + 1; i++) {
float u = ((float)i / (float)tess_u);
horiz[i] = Bernstein3D(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, u);
horiz2[i] = Bernstein3D(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, u);
horiz3[i] = Bernstein3D(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, u);
horiz4[i] = Bernstein3D(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, u);
}
bool computeNormals = gstate.isLightingEnabled();
for (int tile_v = 0; tile_v < tess_v + 1; ++tile_v) {
for (int tile_u = 0; tile_u < tess_u + 1; ++tile_u) {
float u = ((float)tile_u / (float)tess_u);
float v = ((float)tile_v / (float)tess_v);
float bu = u;
float bv = v;
// TODO: Should be able to precompute the four curves per U, then just Bernstein per V. Will benefit large tesselation factors.
const Vec3f &pos1 = horiz[tile_u];
const Vec3f &pos2 = horiz2[tile_u];
const Vec3f &pos3 = horiz3[tile_u];
const Vec3f &pos4 = horiz4[tile_u];
SimpleVertex &vert = vertices[tile_v * (tess_u + 1) + tile_u];
if (computeNormals) {
Vec3f derivU1 = Bernstein3DDerivative(patch.points[0]->pos, patch.points[1]->pos, patch.points[2]->pos, patch.points[3]->pos, bu);
Vec3f derivU2 = Bernstein3DDerivative(patch.points[4]->pos, patch.points[5]->pos, patch.points[6]->pos, patch.points[7]->pos, bu);
Vec3f derivU3 = Bernstein3DDerivative(patch.points[8]->pos, patch.points[9]->pos, patch.points[10]->pos, patch.points[11]->pos, bu);
Vec3f derivU4 = Bernstein3DDerivative(patch.points[12]->pos, patch.points[13]->pos, patch.points[14]->pos, patch.points[15]->pos, bu);
Vec3f derivU = Bernstein3D(derivU1, derivU2, derivU3, derivU4, bv);
Vec3f derivV = Bernstein3DDerivative(pos1, pos2, pos3, pos4, bv);
// TODO: Interpolate normals instead of generating them, if available?
vert.nrm = Cross(derivU, derivV).Normalized();
if (gstate.patchfacing & 1)
vert.nrm *= -1.0f;
} else {
vert.nrm.SetZero();
}
vert.pos = Bernstein3D(pos1, pos2, pos3, pos4, bv);
if ((origVertType & GE_VTYPE_TC_MASK) == 0) {
// Generate texcoord
vert.uv[0] = u + patch.u_index * third;
vert.uv[1] = v + patch.v_index * third;
} else {
// Sample UV from control points
patch.sampleTexUV(u, v, vert.uv[0], vert.uv[1]);
}
if (origVertType & GE_VTYPE_COL_MASK) {
patch.sampleColor(u, v, vert.color);
} else {
memcpy(vert.color, patch.points[0]->color, 4);
}
}
}
delete [] horiz;
// Tesselate. TODO: Use indices so we only need to emit 4 vertices per pair of triangles instead of six.
for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
float u = ((float)tile_u / (float)tess_u);
float v = ((float)tile_v / (float)tess_v);
const SimpleVertex *v0 = &vertices[tile_v * (tess_u + 1) + tile_u];
const SimpleVertex *v1 = &vertices[tile_v * (tess_u + 1) + tile_u + 1];
const SimpleVertex *v2 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u];
const SimpleVertex *v3 = &vertices[(tile_v + 1) * (tess_u + 1) + tile_u + 1];
CopyQuad(dest, v0, v1, v2, v3);
count += 6;
}
}
delete [] vertices;
}
}
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertType) {
Flush();
if (prim_type != GE_PATCHPRIM_TRIANGLES) {
// Only triangles supported!
return;
}
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
const u8* indices8 = (const u8*)indices;
const u16* indices16 = (const u16*)indices;
if (indices)
GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);
// Simplify away bones and morph before proceeding
SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
u8 *temp_buffer = decoded + 65536 * 24;
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
int vertexSize = vdecoder->VertexSize();
if (vertexSize != sizeof(SimpleVertex)) {
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
}
const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();
// TODO: Do something less idiotic to manage this buffer
SimpleVertex **points = new SimpleVertex *[count_u * count_v];
// Make an array of pointers to the control points, to get rid of indices.
for (int idx = 0; idx < count_u * count_v; idx++) {
if (indices)
points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
else
points[idx] = simplified_control_points + idx;
}
u8 *decoded2 = decoded + 65536 * 36;
int count = 0;
u8 *dest = decoded2;
SplinePatch patch;
patch.type_u = type_u;
patch.type_v = type_v;
patch.count_u = count_u;
patch.count_v = count_v;
patch.points = points;
TesselateSplinePatch(dest, count, patch, origVertType);
delete[] points;
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, -1, 0);
Flush();
}
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) {
Flush();
if (prim_type != GE_PATCHPRIM_TRIANGLES) {
// Only triangles supported!
return;
}
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
const u8* indices8 = (const u8*)indices;
const u16* indices16 = (const u16*)indices;
if (indices)
GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);
// Simplify away bones and morph before proceeding
SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
u8 *temp_buffer = decoded + 65536 * 24;
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
int vertexSize = vdecoder->VertexSize();
if (vertexSize != sizeof(SimpleVertex)) {
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
}
const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();
// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
int num_patches_u = (count_u - 1) / 3;
int num_patches_v = (count_v - 1) / 3;
BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
for (int point = 0; point < 16; ++point) {
int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u;
if (indices)
patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
else
patch.points[point] = simplified_control_points + idx;
}
patch.u_index = patch_u * 3;
patch.v_index = patch_v * 3;
}
}
u8 *decoded2 = decoded + 65536 * 36;
int count = 0;
u8 *dest = decoded2;
// Simple approximation of the real tesselation factor.
// We shouldn't really split up into separate 4x4 patches, instead we should do something that works
// like the splines, so we subdivide across the whole "mega-patch".
int tess_u = gstate.getPatchDivisionU() / num_patches_u;
int tess_v = gstate.getPatchDivisionV() / num_patches_v;
if (tess_u < 4) tess_u = 4;
if (tess_v < 4) tess_v = 4;
for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
BezierPatch& patch = patches[patch_idx];
TesselateBezierPatch(dest, count, tess_u, tess_v, patch, origVertType);
}
delete[] patches;
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, -1, 0);
Flush();
}