ppsspp/GPU/GLES/TransformPipeline.cpp
Henrik Rydgard f4ad7c64e5 Fix issue with texcoord speed hack (bPrescaleUV) in software transform
(and also thus rectangles of course even when hw transform is enabled)
2013-11-10 11:18:26 +01:00

1419 lines
45 KiB
C++

// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
// Ideas for speeding things up on mobile OpenGL ES implementations
//
// Use superbuffers! Yes I just invented that name.
//
// The idea is to avoid respecifying the vertex format between every draw call (multiple glVertexAttribPointer ...)
// by combining the contents of multiple draw calls into one buffer, as long as
// they have exactly the same output vertex format. (different input formats is fine! This way
// we can combine the data for multiple draws with different numbers of bones, as we consider numbones < 4 to be = 4)
// into one VBO.
//
// This will likely be a win because I believe that between every change of VBO + glVertexAttribPointer*N, the driver will
// perform a lot of validation, probably at draw call time, while all the validation can be skipped if the only thing
// that changes between two draw calls is simple state or texture or a matrix etc, not anything vertex related.
// Also the driver will have to manage hundreds instead of thousands of VBOs in games like GTA.
//
// * Every 10 frames or something, do the following:
// - Frame 1:
// + Mark all drawn buffers with in-frame sequence numbers (alternatively,
// just log them in an array)
// - Frame 2 (beginning?):
// + Take adjacent buffers that have the same output vertex format, and add them
// to a list of buffers to combine. Create said buffers with appropriate sizes
// and precompute the offsets that the draws should be written into.
// - Frame 2 (end):
// + Actually do the work of combining the buffers. This probably means re-decoding
// the vertices into a new one. Will also have to apply index offsets.
//
// Also need to change the drawing code so that we don't glBindBuffer and respecify glVAP if
// two subsequent drawcalls come from the same superbuffer.
//
// Or we ignore all of this including vertex caching and simply find a way to do highly optimized vertex streaming,
// like Dolphin is trying to. That will likely never be able to reach the same speed as perfectly optimized
// superbuffers though. For this we will have to JIT the vertex decoder but that's not too hard.
//
// Now, when do we delete superbuffers? Maybe when half the buffers within have been killed?
//
// Another idea for GTA which switches textures a lot while not changing much other state is to use ES 3 Array
// textures, if they are the same size (even if they aren't, might be okay to simply resize the textures to match
// if they're just a multiple of 2 away) or something. Then we'd have to add a W texture coordinate to choose the
// texture within the bound texture array to the vertex data when merging into superbuffers.
//
// There are even more things to try. For games that do matrix palette skinning by quickly switching bones and
// just drawing a few triangles per call (NBA, FF:CC, Tekken 6 etc) we could even collect matrices, upload them
// all at once, writing matrix indices into the vertices in addition to the weights, and then doing a single
// draw call with specially generated shader to draw the whole mesh. This code will be seriously complex though.
#include "base/logging.h"
#include "base/timeutil.h"
#include "Common/MemoryUtil.h"
#include "Core/MemMap.h"
#include "Core/Host.h"
#include "Core/System.h"
#include "Core/Reporting.h"
#include "Core/Config.h"
#include "Core/CoreTiming.h"
#include "native/gfx_es2/gl_state.h"
#include "ext/xxhash.h"
#include "GPU/Math3D.h"
#include "GPU/GPUState.h"
#include "GPU/ge_constants.h"
#include "GPU/GLES/StateMapping.h"
#include "GPU/GLES/TextureCache.h"
#include "GPU/GLES/TransformPipeline.h"
#include "GPU/GLES/VertexDecoder.h"
#include "GPU/GLES/ShaderManager.h"
#include "GPU/GLES/GLES_GPU.h"
const GLuint glprim[8] = {
GL_POINTS,
GL_LINES,
GL_LINE_STRIP,
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN,
GL_TRIANGLES, // With OpenGL ES we have to expand sprites into triangles, tripling the data instead of doubling. sigh. OpenGL ES, Y U NO SUPPORT GL_QUADS?
};
enum {
VERTEX_BUFFER_MAX = 65536,
DECODED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * 48,
DECODED_INDEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * 20,
TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex)
};
#define QUAD_INDICES_MAX 32768
#define VERTEXCACHE_DECIMATION_INTERVAL 17
// Check for max first as clamping to max is more common than min when lighting.
inline float clamp(float in, float min, float max) {
return in > max ? max : (in < min ? min : in);
}
TransformDrawEngine::TransformDrawEngine()
: collectedVerts(0),
prevPrim_(GE_PRIM_INVALID),
dec_(0),
lastVType_(-1),
curVbo_(0),
shaderManager_(0),
textureCache_(0),
framebufferManager_(0),
numDrawCalls(0),
vertexCountInDrawCalls(0),
uvScale(0) {
decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL;
// Allocate nicely aligned memory. Maybe graphics drivers will
// appreciate it.
// All this is a LOT of memory, need to see if we can cut down somehow.
decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE);
decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE);
transformed = (TransformedVertex *)AllocateMemoryPages(TRANSFORMED_VERTEX_BUFFER_SIZE);
transformedExpanded = (TransformedVertex *)AllocateMemoryPages(3 * TRANSFORMED_VERTEX_BUFFER_SIZE);
quadIndices_ = new u16[6 * QUAD_INDICES_MAX];
for (int i = 0; i < QUAD_INDICES_MAX; i++) {
quadIndices_[i * 6 + 0] = i * 4;
quadIndices_[i * 6 + 1] = i * 4 + 2;
quadIndices_[i * 6 + 2] = i * 4 + 1;
quadIndices_[i * 6 + 3] = i * 4 + 1;
quadIndices_[i * 6 + 4] = i * 4 + 2;
quadIndices_[i * 6 + 5] = i * 4 + 3;
}
if (g_Config.bPrescaleUV) {
uvScale = new UVScale[MAX_DEFERRED_DRAW_CALLS];
}
memset(vbo_, 0, sizeof(vbo_));
memset(ebo_, 0, sizeof(ebo_));
indexGen.Setup(decIndex);
decJitCache_ = new VertexDecoderJitCache();
InitDeviceObjects();
register_gl_resource_holder(this);
}
TransformDrawEngine::~TransformDrawEngine() {
DestroyDeviceObjects();
FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE);
FreeMemoryPages(transformed, TRANSFORMED_VERTEX_BUFFER_SIZE);
FreeMemoryPages(transformedExpanded, 3 * TRANSFORMED_VERTEX_BUFFER_SIZE);
delete [] quadIndices_;
unregister_gl_resource_holder(this);
delete decJitCache_;
for (auto iter = decoderMap_.begin(); iter != decoderMap_.end(); iter++) {
delete iter->second;
}
delete [] uvScale;
}
void TransformDrawEngine::InitDeviceObjects() {
if (!vbo_[0]) {
glGenBuffers(NUM_VBOS, &vbo_[0]);
glGenBuffers(NUM_VBOS, &ebo_[0]);
} else {
ERROR_LOG(G3D, "Device objects already initialized!");
}
}
void TransformDrawEngine::DestroyDeviceObjects() {
glDeleteBuffers(NUM_VBOS, &vbo_[0]);
glDeleteBuffers(NUM_VBOS, &ebo_[0]);
memset(vbo_, 0, sizeof(vbo_));
memset(ebo_, 0, sizeof(ebo_));
ClearTrackedVertexArrays();
}
void TransformDrawEngine::GLLost() {
ILOG("TransformDrawEngine::GLLost()");
// The objects have already been deleted.
memset(vbo_, 0, sizeof(vbo_));
memset(ebo_, 0, sizeof(ebo_));
ClearTrackedVertexArrays();
InitDeviceObjects();
}
// Convenient way to do precomputation to save the parts of the lighting calculation
// that's common between the many vertices of a draw call.
class Lighter {
public:
Lighter();
void Light(float colorOut0[4], float colorOut1[4], const float colorIn[4], Vec3f pos, Vec3f normal);
private:
Color4 globalAmbient;
Color4 materialEmissive;
Color4 materialAmbient;
Color4 materialDiffuse;
Color4 materialSpecular;
float specCoef_;
// Vec3f viewer_;
bool doShadeMapping_;
int materialUpdate_;
};
Lighter::Lighter() {
doShadeMapping_ = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP;
materialEmissive.GetFromRGB(gstate.materialemissive);
materialEmissive.a = 0.0f;
globalAmbient.GetFromRGB(gstate.ambientcolor);
globalAmbient.GetFromA(gstate.ambientalpha);
materialAmbient.GetFromRGB(gstate.materialambient);
materialAmbient.GetFromA(gstate.materialalpha);
materialDiffuse.GetFromRGB(gstate.materialdiffuse);
materialDiffuse.a = 1.0f;
materialSpecular.GetFromRGB(gstate.materialspecular);
materialSpecular.a = 1.0f;
specCoef_ = getFloat24(gstate.materialspecularcoef);
// viewer_ = Vec3f(-gstate.viewMatrix[9], -gstate.viewMatrix[10], -gstate.viewMatrix[11]);
materialUpdate_ = gstate.materialupdate & 7;
}
void Lighter::Light(float colorOut0[4], float colorOut1[4], const float colorIn[4], Vec3f pos, Vec3f norm)
{
Color4 in(colorIn);
const Color4 *ambient;
if (materialUpdate_ & 1)
ambient = &in;
else
ambient = &materialAmbient;
const Color4 *diffuse;
if (materialUpdate_ & 2)
diffuse = &in;
else
diffuse = &materialDiffuse;
const Color4 *specular;
if (materialUpdate_ & 4)
specular = &in;
else
specular = &materialSpecular;
Color4 lightSum0 = globalAmbient * *ambient + materialEmissive;
Color4 lightSum1(0, 0, 0, 0);
for (int l = 0; l < 4; l++)
{
// can we skip this light?
if (!gstate.isLightChanEnabled(l))
continue;
GELightType type = gstate.getLightType(l);
Vec3f toLight(0,0,0);
Vec3f lightDir(0,0,0);
if (type == GE_LIGHTTYPE_DIRECTIONAL)
toLight = Vec3f(gstate_c.lightpos[l]); // lightdir is for spotlights
else
toLight = Vec3f(gstate_c.lightpos[l]) - pos;
bool doSpecular = gstate.isUsingSpecularLight(l);
bool poweredDiffuse = gstate.isUsingPoweredDiffuseLight(l);
float distanceToLight = toLight.Length();
float dot = 0.0f;
float angle = 0.0f;
float lightScale = 0.0f;
if (distanceToLight > 0.0f) {
toLight /= distanceToLight;
dot = Dot(toLight, norm);
}
// Clamp dot to zero.
if (dot < 0.0f) dot = 0.0f;
if (poweredDiffuse)
dot = powf(dot, specCoef_);
// Attenuation
switch (type) {
case GE_LIGHTTYPE_DIRECTIONAL:
lightScale = 1.0f;
break;
case GE_LIGHTTYPE_POINT:
lightScale = clamp(1.0f / (gstate_c.lightatt[l][0] + gstate_c.lightatt[l][1]*distanceToLight + gstate_c.lightatt[l][2]*distanceToLight*distanceToLight), 0.0f, 1.0f);
break;
case GE_LIGHTTYPE_SPOT:
case GE_LIGHTTYPE_UNKNOWN:
lightDir = gstate_c.lightdir[l];
angle = Dot(toLight.Normalized(), lightDir.Normalized());
if (angle >= gstate_c.lightangle[l])
lightScale = clamp(1.0f / (gstate_c.lightatt[l][0] + gstate_c.lightatt[l][1]*distanceToLight + gstate_c.lightatt[l][2]*distanceToLight*distanceToLight), 0.0f, 1.0f) * powf(angle, gstate_c.lightspotCoef[l]);
break;
default:
// ILLEGAL
break;
}
Color4 lightDiff(gstate_c.lightColor[1][l], 0.0f);
Color4 diff = (lightDiff * *diffuse) * dot;
// Real PSP specular
Vec3f toViewer(0,0,1);
// Better specular
// Vec3f toViewer = (viewer - pos).Normalized();
if (doSpecular)
{
Vec3f halfVec = (toLight + toViewer);
halfVec.Normalize();
dot = Dot(halfVec, norm);
if (dot > 0.0f)
{
Color4 lightSpec(gstate_c.lightColor[2][l], 0.0f);
lightSum1 += (lightSpec * *specular * (powf(dot, specCoef_) * lightScale));
}
}
if (gstate.isLightChanEnabled(l))
{
Color4 lightAmbient(gstate_c.lightColor[0][l], 0.0f);
lightSum0 += (lightAmbient * *ambient + diff) * lightScale;
}
}
// 4?
for (int i = 0; i < 4; i++) {
colorOut0[i] = lightSum0[i] > 1.0f ? 1.0f : lightSum0[i];
colorOut1[i] = lightSum1[i] > 1.0f ? 1.0f : lightSum1[i];
}
}
struct GlTypeInfo {
u16 type;
u8 count;
u8 normalized;
};
static const GlTypeInfo GLComp[] = {
{0}, // DEC_NONE,
{GL_FLOAT, 1, GL_FALSE}, // DEC_FLOAT_1,
{GL_FLOAT, 2, GL_FALSE}, // DEC_FLOAT_2,
{GL_FLOAT, 3, GL_FALSE}, // DEC_FLOAT_3,
{GL_FLOAT, 4, GL_FALSE}, // DEC_FLOAT_4,
{GL_BYTE, 4, GL_TRUE}, // DEC_S8_3,
{GL_SHORT, 4, GL_TRUE},// DEC_S16_3,
{GL_UNSIGNED_BYTE, 1, GL_TRUE},// DEC_U8_1,
{GL_UNSIGNED_BYTE, 2, GL_TRUE},// DEC_U8_2,
{GL_UNSIGNED_BYTE, 3, GL_TRUE},// DEC_U8_3,
{GL_UNSIGNED_BYTE, 4, GL_TRUE},// DEC_U8_4,
{GL_UNSIGNED_SHORT, 1, GL_TRUE},// DEC_U16_1,
{GL_UNSIGNED_SHORT, 2, GL_TRUE},// DEC_U16_2,
{GL_UNSIGNED_SHORT, 3, GL_TRUE},// DEC_U16_3,
{GL_UNSIGNED_SHORT, 4, GL_TRUE},// DEC_U16_4,
{GL_UNSIGNED_BYTE, 2, GL_FALSE},// DEC_U8A_2,
{GL_UNSIGNED_SHORT, 2, GL_FALSE},// DEC_U16A_2,
};
static inline void VertexAttribSetup(int attrib, int fmt, int stride, u8 *ptr) {
if (attrib != -1 && fmt) {
const GlTypeInfo &type = GLComp[fmt];
glVertexAttribPointer(attrib, type.count, type.type, type.normalized, stride, ptr);
}
}
// TODO: Use VBO and get rid of the vertexData pointers - with that, we will supply only offsets
static void SetupDecFmtForDraw(LinkedShader *program, const DecVtxFormat &decFmt, u8 *vertexData) {
VertexAttribSetup(ATTR_W1, decFmt.w0fmt, decFmt.stride, vertexData + decFmt.w0off);
VertexAttribSetup(ATTR_W2, decFmt.w1fmt, decFmt.stride, vertexData + decFmt.w1off);
VertexAttribSetup(ATTR_TEXCOORD, decFmt.uvfmt, decFmt.stride, vertexData + decFmt.uvoff);
VertexAttribSetup(ATTR_COLOR0, decFmt.c0fmt, decFmt.stride, vertexData + decFmt.c0off);
VertexAttribSetup(ATTR_COLOR1, decFmt.c1fmt, decFmt.stride, vertexData + decFmt.c1off);
VertexAttribSetup(ATTR_NORMAL, decFmt.nrmfmt, decFmt.stride, vertexData + decFmt.nrmoff);
VertexAttribSetup(ATTR_POSITION, decFmt.posfmt, decFmt.stride, vertexData + decFmt.posoff);
}
// The verts are in the order: BR BL TL TR
static void SwapUVs(TransformedVertex &a, TransformedVertex &b) {
float tempu = a.u;
float tempv = a.v;
a.u = b.u;
a.v = b.v;
b.u = tempu;
b.v = tempv;
}
// 2 3 3 2 0 3 2 1
// to to or
// 1 0 0 1 1 2 3 0
// See comment below where this was called before.
/*
static void RotateUV(TransformedVertex v[4]) {
float x1 = v[2].x;
float x2 = v[0].x;
float y1 = v[2].y;
float y2 = v[0].y;
if ((x1 < x2 && y1 < y2) || (x1 > x2 && y1 > y2))
SwapUVs(v[1], v[3]);
}*/
static void RotateUVThrough(TransformedVertex v[4]) {
float x1 = v[2].x;
float x2 = v[0].x;
float y1 = v[2].y;
float y2 = v[0].y;
if ((x1 < x2 && y1 > y2) || (x1 > x2 && y1 < y2))
SwapUVs(v[1], v[3]);
}
// Clears on the PSP are best done by drawing a series of vertical strips
// in clear mode. This tries to detect that.
bool TransformDrawEngine::IsReallyAClear(int numVerts) const {
if (transformed[0].x != 0.0f || transformed[0].y != 0.0f)
return false;
u32 matchcolor;
memcpy(&matchcolor, transformed[0].color0, 4);
float matchz = transformed[0].z;
int bufW = gstate_c.curRTWidth;
int bufH = gstate_c.curRTHeight;
float prevX = 0.0f;
for (int i = 1; i < numVerts; i++) {
u32 vcolor;
memcpy(&vcolor, transformed[i].color0, 4);
if (vcolor != matchcolor || transformed[i].z != matchz)
return false;
if ((i & 1) == 0) {
// Top left of a rectangle
if (transformed[i].y != 0)
return false;
if (i > 0 && transformed[i].x != transformed[i - 1].x)
return false;
} else {
// Bottom right
if (transformed[i].y != bufH)
return false;
if (transformed[i].x <= transformed[i - 1].x)
return false;
}
}
// The last vertical strip often extends outside the drawing area.
if (transformed[numVerts - 1].x < bufW)
return false;
return true;
}
// This is the software transform pipeline, which is necessary for supporting RECT
// primitives correctly, and may be easier to use for debugging than the hardware
// transform pipeline.
// There's code here that simply expands transformed RECTANGLES into plain triangles.
// We're gonna have to keep software transforming RECTANGLES, unless we use a geom shader which we can't on OpenGL ES 2.0.
// Usually, though, these primitives don't use lighting etc so it's no biggie performance wise, but it would be nice to get rid of
// this code.
// Actually, if we find the camera-relative right and down vectors, it might even be possible to add the extra points in pre-transformed
// space and thus make decent use of hardware transform.
// Actually again, single quads could be drawn more efficiently using GL_TRIANGLE_STRIP, no need to duplicate verts as for
// GL_TRIANGLES. Still need to sw transform to compute the extra two corners though.
void TransformDrawEngine::SoftwareTransformAndDraw(
int prim, u8 *decoded, LinkedShader *program, int vertexCount, u32 vertType, void *inds, int indexType, const DecVtxFormat &decVtxFormat, int maxIndex) {
bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0;
bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled();
// TODO: Split up into multiple draw calls for GLES 2.0 where you can't guarantee support for more than 0x10000 verts.
#if defined(USING_GLES2)
if (vertexCount > 0x10000/3)
vertexCount = 0x10000/3;
#endif
float uscale = 1.0f;
float vscale = 1.0f;
if (throughmode) {
uscale /= gstate_c.curTextureWidth;
vscale /= gstate_c.curTextureHeight;
}
bool scaleUV = !g_Config.bPrescaleUV;
int w = gstate.getTextureWidth(0);
int h = gstate.getTextureHeight(0);
float widthFactor = (float) w / (float) gstate_c.curTextureWidth;
float heightFactor = (float) h / (float) gstate_c.curTextureHeight;
Lighter lighter;
float fog_end = getFloat24(gstate.fog1);
float fog_slope = getFloat24(gstate.fog2);
VertexReader reader(decoded, decVtxFormat, vertType);
for (int index = 0; index < maxIndex; index++) {
reader.Goto(index);
float v[3] = {0, 0, 0};
float c0[4] = {1, 1, 1, 1};
float c1[4] = {0, 0, 0, 0};
float uv[3] = {0, 0, 1};
float fogCoef = 1.0f;
if (throughmode) {
// Do not touch the coordinates or the colors. No lighting.
reader.ReadPos(v);
if (reader.hasColor0()) {
reader.ReadColor0(c0);
for (int j = 0; j < 4; j++) {
c1[j] = 0.0f;
}
} else {
c0[0] = gstate.getMaterialAmbientR() / 255.f;
c0[1] = gstate.getMaterialAmbientG() / 255.f;
c0[2] = gstate.getMaterialAmbientB() / 255.f;
c0[3] = gstate.getMaterialAmbientA() / 255.f;
}
if (reader.hasUV()) {
reader.ReadUV(uv);
uv[0] *= uscale;
uv[1] *= vscale;
}
fogCoef = 1.0f;
// Scale UV?
} else {
// We do software T&L for now
float out[3], norm[3];
float pos[3], nrm[3];
Vec3f normal(0, 0, 1);
reader.ReadPos(pos);
if (reader.hasNormal())
reader.ReadNrm(nrm);
if (!vertTypeIsSkinningEnabled(vertType)) {
Vec3ByMatrix43(out, pos, gstate.worldMatrix);
if (reader.hasNormal()) {
Norm3ByMatrix43(norm, nrm, gstate.worldMatrix);
normal = Vec3f(norm).Normalized();
}
} else {
float weights[8];
reader.ReadWeights(weights);
// Skinning
Vec3f psum(0,0,0);
Vec3f nsum(0,0,0);
for (int i = 0; i < vertTypeGetNumBoneWeights(vertType); i++) {
if (weights[i] != 0.0f) {
Vec3ByMatrix43(out, pos, gstate.boneMatrix+i*12);
Vec3f tpos(out);
psum += tpos * weights[i];
if (reader.hasNormal()) {
Norm3ByMatrix43(norm, nrm, gstate.boneMatrix+i*12);
Vec3f tnorm(norm);
nsum += tnorm * weights[i];
}
}
}
// Yes, we really must multiply by the world matrix too.
Vec3ByMatrix43(out, psum.AsArray(), gstate.worldMatrix);
if (reader.hasNormal()) {
Norm3ByMatrix43(norm, nsum.AsArray(), gstate.worldMatrix);
normal = Vec3f(norm).Normalized();
}
}
// Perform lighting here if enabled. don't need to check through, it's checked above.
float unlitColor[4] = {1, 1, 1, 1};
if (reader.hasColor0()) {
reader.ReadColor0(unlitColor);
} else {
unlitColor[0] = gstate.getMaterialAmbientR() / 255.f;
unlitColor[1] = gstate.getMaterialAmbientG() / 255.f;
unlitColor[2] = gstate.getMaterialAmbientB() / 255.f;
unlitColor[3] = gstate.getMaterialAmbientA() / 255.f;
}
float litColor0[4];
float litColor1[4];
lighter.Light(litColor0, litColor1, unlitColor, out, normal);
if (gstate.isLightingEnabled()) {
// Don't ignore gstate.lmode - we should send two colors in that case
for (int j = 0; j < 4; j++) {
c0[j] = litColor0[j];
}
if (lmode) {
// Separate colors
for (int j = 0; j < 4; j++) {
c1[j] = litColor1[j];
}
} else {
// Summed color into c0
for (int j = 0; j < 4; j++) {
c0[j] = ((c0[j] + litColor1[j]) > 1.0f) ? 1.0f : (c0[j] + litColor1[j]);
}
}
} else {
if (reader.hasColor0()) {
for (int j = 0; j < 4; j++) {
c0[j] = unlitColor[j];
}
} else {
c0[0] = gstate.getMaterialAmbientR() / 255.f;
c0[1] = gstate.getMaterialAmbientG() / 255.f;
c0[2] = gstate.getMaterialAmbientB() / 255.f;
c0[3] = gstate.getMaterialAmbientA() / 255.f;
}
if (lmode) {
for (int j = 0; j < 4; j++) {
c1[j] = 0.0f;
}
}
}
float ruv[2] = {0.0f, 0.0f};
if (reader.hasUV())
reader.ReadUV(ruv);
// Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights.
switch (gstate.getUVGenMode()) {
case GE_TEXMAP_TEXTURE_COORDS: // UV mapping
case GE_TEXMAP_UNKNOWN: // Seen in Riviera. Unsure of meaning, but this works.
// Texture scale/offset is only performed in this mode.
if (scaleUV) {
uv[0] = uscale * (ruv[0]*gstate_c.uv.uScale + gstate_c.uv.uOff);
uv[1] = vscale * (ruv[1]*gstate_c.uv.vScale + gstate_c.uv.vOff);
} else {
uv[0] = uscale * ruv[0];
uv[1] = vscale * ruv[1];
}
uv[2] = 1.0f;
break;
case GE_TEXMAP_TEXTURE_MATRIX:
{
// Projection mapping
Vec3f source;
switch (gstate.getUVProjMode()) {
case GE_PROJMAP_POSITION: // Use model space XYZ as source
source = pos;
break;
case GE_PROJMAP_UV: // Use unscaled UV as source
source = Vec3f(ruv[0], ruv[1], 0.0f);
break;
case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized normal as source
if (reader.hasNormal()) {
source = Vec3f(norm).Normalized();
} else {
ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?");
source = Vec3f(0.0f, 0.0f, 1.0f);
}
break;
case GE_PROJMAP_NORMAL: // Use non-normalized normal as source!
if (reader.hasNormal()) {
source = Vec3f(norm);
} else {
ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?");
source = Vec3f(0.0f, 0.0f, 1.0f);
}
break;
}
float uvw[3];
Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix);
uv[0] = uvw[0];
uv[1] = uvw[1];
uv[2] = uvw[2];
}
break;
case GE_TEXMAP_ENVIRONMENT_MAP:
// Shade mapping - use two light sources to generate U and V.
{
Vec3f lightpos0 = Vec3f(gstate_c.lightpos[gstate.getUVLS0()]).Normalized();
Vec3f lightpos1 = Vec3f(gstate_c.lightpos[gstate.getUVLS1()]).Normalized();
uv[0] = (1.0f + Dot(lightpos0, normal))/2.0f;
uv[1] = (1.0f - Dot(lightpos1, normal))/2.0f;
uv[2] = 1.0f;
}
break;
default:
// Illegal
ERROR_LOG_REPORT(G3D, "Impossible UV gen mode? %d", gstate.getUVGenMode());
break;
}
uv[0] = uv[0] * widthFactor;
uv[1] = uv[1] * heightFactor;
// Transform the coord by the view matrix.
Vec3ByMatrix43(v, out, gstate.viewMatrix);
fogCoef = (v[2] + fog_end) * fog_slope;
}
// TODO: Write to a flexible buffer, we don't always need all four components.
memcpy(&transformed[index].x, v, 3 * sizeof(float));
transformed[index].fog = fogCoef;
memcpy(&transformed[index].u, uv, 3 * sizeof(float));
if (gstate_c.flipTexture) {
transformed[index].v = 1.0f - transformed[index].v;
}
for (int i = 0; i < 4; i++) {
transformed[index].color0[i] = c0[i] * 255.0f;
}
for (int i = 0; i < 3; i++) {
transformed[index].color1[i] = c1[i] * 255.0f;
}
}
// Here's the best opportunity to try to detect rectangles used to clear the screen, and
// replace them with real OpenGL clears. This can provide a speedup on certain mobile chips.
// Disabled for now - depth does not come out exactly the same.
//
// An alternative option is to simply ditch all the verts except the first and last to create a single
// rectangle out of many. Quite a small optimization though.
if (false && maxIndex > 1 && gstate.isModeClear() && prim == GE_PRIM_RECTANGLES && IsReallyAClear(maxIndex)) {
u32 clearColor;
memcpy(&clearColor, transformed[0].color0, 4);
float clearDepth = transformed[0].z;
const float col[4] = {
((clearColor & 0xFF)) / 255.0f,
((clearColor & 0xFF00) >> 8) / 255.0f,
((clearColor & 0xFF0000) >> 16) / 255.0f,
((clearColor & 0xFF000000) >> 24) / 255.0f,
};
bool colorMask = gstate.isClearModeColorMask();
bool alphaMask = gstate.isClearModeAlphaMask();
glstate.colorMask.set(colorMask, colorMask, colorMask, alphaMask);
if (alphaMask) {
glstate.stencilTest.set(true);
// Clear stencil
// TODO: extract the stencilValue properly, see below
int stencilValue = 0;
glstate.stencilFunc.set(GL_ALWAYS, stencilValue, 255);
} else {
// Don't touch stencil
glstate.stencilTest.set(false);
}
glstate.scissorTest.set(false);
bool depthMask = gstate.isClearModeDepthMask();
int target = 0;
if (colorMask || alphaMask) target |= GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT;
if (depthMask) target |= GL_DEPTH_BUFFER_BIT;
glClearColor(col[0], col[1], col[2], col[3]);
#ifdef USING_GLES2
glClearDepthf(clearDepth);
#else
glClearDepth(clearDepth);
#endif
glClearStencil(0); // TODO - take from alpha?
glClear(target);
return;
}
// Step 2: expand rectangles.
const TransformedVertex *drawBuffer = transformed;
int numTrans = 0;
bool drawIndexed = false;
if (prim != GE_PRIM_RECTANGLES) {
// We can simply draw the unexpanded buffer.
numTrans = vertexCount;
drawIndexed = true;
} else {
numTrans = 0;
drawBuffer = transformedExpanded;
TransformedVertex *trans = &transformedExpanded[0];
TransformedVertex saved;
u32 stencilValue;
for (int i = 0; i < vertexCount; i += 2) {
int index = ((const u16*)inds)[i];
saved = transformed[index];
int index2 = ((const u16*)inds)[i + 1];
TransformedVertex &transVtx = transformed[index2];
if (i == 0)
stencilValue = transVtx.color0[3];
// We have to turn the rectangle into two triangles, so 6 points. Sigh.
// bottom right
trans[0] = transVtx;
// bottom left
trans[1] = transVtx;
trans[1].y = saved.y;
trans[1].v = saved.v;
// top left
trans[2] = transVtx;
trans[2].x = saved.x;
trans[2].y = saved.y;
trans[2].u = saved.u;
trans[2].v = saved.v;
// top right
trans[3] = transVtx;
trans[3].x = saved.x;
trans[3].u = saved.u;
// That's the four corners. Now process UV rotation.
if (throughmode)
RotateUVThrough(trans);
// Apparently, non-through RotateUV just breaks things.
// If we find a game where it helps, we'll just have to figure out how they differ.
// Possibly, it has something to do with flipped viewport Y axis, which a few games use.
// One game might be one of the Metal Gear ones, can't find the issue right now though.
// else
// RotateUV(trans);
// bottom right
trans[4] = trans[0];
// top left
trans[5] = trans[2];
trans += 6;
numTrans += 6;
}
// We don't know the color until here, so we have to do it now, instead of in StateMapping.
// Might want to reconsider the order of things later...
if (gstate.isModeClear() && gstate.isClearModeAlphaMask()) {
glstate.stencilFunc.set(GL_ALWAYS, stencilValue, 255);
}
}
// TODO: Add a post-transform cache here for multi-RECTANGLES only.
// Might help for text drawing.
// these spam the gDebugger log.
const int vertexSize = sizeof(transformed[0]);
bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX;
glBindBuffer(GL_ARRAY_BUFFER, 0);
glVertexAttribPointer(ATTR_POSITION, 4, GL_FLOAT, GL_FALSE, vertexSize, drawBuffer);
int attrMask = program->attrMask;
if (attrMask & (1 << ATTR_TEXCOORD)) glVertexAttribPointer(ATTR_TEXCOORD, doTextureProjection ? 3 : 2, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)drawBuffer) + 4 * 4);
if (attrMask & (1 << ATTR_COLOR0)) glVertexAttribPointer(ATTR_COLOR0, 4, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, ((uint8_t*)drawBuffer) + 7 * 4);
if (attrMask & (1 << ATTR_COLOR1)) glVertexAttribPointer(ATTR_COLOR1, 3, GL_UNSIGNED_BYTE, GL_TRUE, vertexSize, ((uint8_t*)drawBuffer) + 8 * 4);
if (drawIndexed) {
#ifdef USING_GLES2
glDrawElements(glprim[prim], numTrans, GL_UNSIGNED_SHORT, inds);
#else
glDrawRangeElements(glprim[prim], 0, indexGen.MaxIndex(), numTrans, GL_UNSIGNED_SHORT, inds);
#endif
} else {
glDrawArrays(glprim[prim], 0, numTrans);
}
}
VertexDecoder *TransformDrawEngine::GetVertexDecoder(u32 vtype) {
auto iter = decoderMap_.find(vtype);
if (iter != decoderMap_.end())
return iter->second;
VertexDecoder *dec = new VertexDecoder();
dec->SetVertexType(vtype, decJitCache_);
decoderMap_[vtype] = dec;
return dec;
}
void TransformDrawEngine::SetupVertexDecoder(u32 vertType) {
// If vtype has changed, setup the vertex decoder.
// TODO: Simply cache the setup decoders instead.
if (vertType != lastVType_) {
dec_ = GetVertexDecoder(vertType);
lastVType_ = vertType;
}
}
int TransformDrawEngine::EstimatePerVertexCost() {
// TODO: This is transform cost, also account for rasterization cost somehow... although it probably
// runs in parallel with transform.
// Also, this is all pure guesswork. If we can find a way to do measurements, that would be great.
// GTA wants a low value to run smooth, GoW wants a high value (otherwise it thinks things
// went too fast and starts doing all the work over again).
int cost = 20;
if (gstate.isLightingEnabled()) {
cost += 10;
}
for (int i = 0; i < 4; i++) {
if (gstate.isLightChanEnabled(i))
cost += 10;
}
if (gstate.getUVGenMode() != GE_TEXMAP_TEXTURE_COORDS) {
cost += 20;
}
if (dec_ && dec_->morphcount > 1) {
cost += 5 * dec_->morphcount;
}
return cost;
}
void TransformDrawEngine::SubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertType, int forceIndexType, int *bytesRead) {
if (vertexCount == 0)
return; // we ignore zero-sized draw calls.
if (!indexGen.PrimCompatible(prevPrim_, prim) || numDrawCalls >= MAX_DEFERRED_DRAW_CALLS || vertexCountInDrawCalls + vertexCount > VERTEX_BUFFER_MAX)
Flush();
// TODO: Is this the right thing to do?
if (prim == GE_PRIM_KEEP_PREVIOUS) {
prim = prevPrim_;
}
prevPrim_ = prim;
SetupVertexDecoder(vertType);
dec_->IncrementStat(STAT_VERTSSUBMITTED, vertexCount);
if (bytesRead)
*bytesRead = vertexCount * dec_->VertexSize();
gpuStats.numDrawCalls++;
gpuStats.numVertsSubmitted += vertexCount;
DeferredDrawCall &dc = drawCalls[numDrawCalls];
dc.verts = verts;
dc.inds = inds;
dc.vertType = vertType;
dc.indexType = ((forceIndexType == -1) ? (vertType & GE_VTYPE_IDX_MASK) : forceIndexType) >> GE_VTYPE_IDX_SHIFT;
dc.prim = prim;
dc.vertexCount = vertexCount;
if (inds) {
GetIndexBounds(inds, vertexCount, vertType, &dc.indexLowerBound, &dc.indexUpperBound);
} else {
dc.indexLowerBound = 0;
dc.indexUpperBound = vertexCount - 1;
}
if (uvScale) {
uvScale[numDrawCalls] = gstate_c.uv;
}
numDrawCalls++;
vertexCountInDrawCalls += vertexCount;
}
void TransformDrawEngine::DecodeVerts() {
UVScale origUV;
if (uvScale)
origUV = gstate_c.uv;
for (int i = 0; i < numDrawCalls; i++) {
const DeferredDrawCall &dc = drawCalls[i];
indexGen.SetIndex(collectedVerts);
int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound;
u32 indexType = dc.indexType;
void *inds = dc.inds;
if (indexType == GE_VTYPE_IDX_NONE >> GE_VTYPE_IDX_SHIFT) {
// Decode the verts and apply morphing. Simple.
if (uvScale)
gstate_c.uv = uvScale[i];
dec_->DecodeVerts(decoded + collectedVerts * (int)dec_->GetDecVtxFmt().stride,
dc.verts, indexLowerBound, indexUpperBound);
collectedVerts += indexUpperBound - indexLowerBound + 1;
indexGen.AddPrim(dc.prim, dc.vertexCount);
} else {
// It's fairly common that games issue long sequences of PRIM calls, with differing
// inds pointer but the same base vertex pointer. We'd like to reuse vertices between
// these as much as possible, so we make sure here to combine as many as possible
// into one nice big drawcall, sharing data.
// 1. Look ahead to find the max index, only looking as "matching" drawcalls.
// Expand the lower and upper bounds as we go.
int j = i + 1;
int lastMatch = i;
while (j < numDrawCalls) {
if (drawCalls[j].verts != dc.verts)
break;
if (uvScale && memcmp(&uvScale[j], &uvScale[i], sizeof(uvScale[0])) != 0)
break;
indexLowerBound = std::min(indexLowerBound, (int)drawCalls[j].indexLowerBound);
indexUpperBound = std::max(indexUpperBound, (int)drawCalls[j].indexUpperBound);
lastMatch = j;
j++;
}
// 2. Loop through the drawcalls, translating indices as we go.
for (j = i; j <= lastMatch; j++) {
switch (indexType) {
case GE_VTYPE_IDX_8BIT >> GE_VTYPE_IDX_SHIFT:
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u8 *)drawCalls[j].inds, indexLowerBound);
break;
case GE_VTYPE_IDX_16BIT >> GE_VTYPE_IDX_SHIFT:
indexGen.TranslatePrim(drawCalls[j].prim, drawCalls[j].vertexCount, (const u16 *)drawCalls[j].inds, indexLowerBound);
break;
}
}
int vertexCount = indexUpperBound - indexLowerBound + 1;
// 3. Decode that range of vertex data.
if (uvScale)
gstate_c.uv = uvScale[i];
dec_->DecodeVerts(decoded + collectedVerts * (int)dec_->GetDecVtxFmt().stride,
dc.verts, indexLowerBound, indexUpperBound);
collectedVerts += vertexCount;
// 4. Advance indexgen vertex counter.
indexGen.Advance(vertexCount);
i = lastMatch;
}
}
// Sanity check
if (indexGen.Prim() < 0) {
ERROR_LOG_REPORT(G3D, "DecodeVerts: Failed to deduce prim: %i", indexGen.Prim());
// Force to points (0)
indexGen.AddPrim(GE_PRIM_POINTS, 0);
}
if (uvScale)
gstate_c.uv = origUV;
}
u32 TransformDrawEngine::ComputeHash() {
u32 fullhash = 0;
int vertexSize = dec_->GetDecVtxFmt().stride;
// TODO: Add some caps both for numDrawCalls and num verts to check?
// It is really very expensive to check all the vertex data so often.
for (int i = 0; i < numDrawCalls; i++) {
const DeferredDrawCall &dc = drawCalls[i];
if (!dc.inds) {
fullhash += XXH32((const char *)dc.verts, vertexSize * dc.vertexCount, 0x1DE8CAC4);
} else {
int indexLowerBound = dc.indexLowerBound, indexUpperBound = dc.indexUpperBound;
int j = i + 1;
int lastMatch = i;
while (j < numDrawCalls) {
if (drawCalls[j].verts != dc.verts)
break;
indexLowerBound = std::min(indexLowerBound, (int)dc.indexLowerBound);
indexUpperBound = std::max(indexUpperBound, (int)dc.indexUpperBound);
lastMatch = j;
j++;
}
// This could get seriously expensive with sparse indices. Need to combine hashing ranges the same way
// we do when drawing.
fullhash += XXH32((const char *)dc.verts + vertexSize * indexLowerBound,
vertexSize * (indexUpperBound - indexLowerBound), 0x029F3EE1);
int indexSize = (dec_->VertexType() & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT ? 2 : 1;
// Hm, we will miss some indices when combining above, but meh, it should be fine.
fullhash += XXH32((const char *)dc.inds, indexSize * dc.vertexCount, 0x955FD1CA);
i = lastMatch;
}
}
if (uvScale) {
fullhash += XXH32(&uvScale[0], sizeof(uvScale[0]) * numDrawCalls, 0x0123e658);
}
return fullhash;
}
u32 TransformDrawEngine::ComputeFastDCID() {
u32 hash = 0;
for (int i = 0; i < numDrawCalls; i++) {
hash ^= (u32)(uintptr_t)drawCalls[i].verts;
hash = __rotl(hash, 13);
hash ^= (u32)(uintptr_t)drawCalls[i].inds;
hash = __rotl(hash, 13);
hash ^= (u32)drawCalls[i].vertType;
hash = __rotl(hash, 13);
hash ^= (u32)drawCalls[i].vertexCount;
hash = __rotl(hash, 13);
hash ^= (u32)drawCalls[i].prim;
}
return hash;
}
enum { VAI_KILL_AGE = 120 };
void TransformDrawEngine::ClearTrackedVertexArrays() {
for (auto vai = vai_.begin(); vai != vai_.end(); vai++) {
delete vai->second;
}
vai_.clear();
}
void TransformDrawEngine::DecimateTrackedVertexArrays() {
if (--decimationCounter_ <= 0) {
decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL;
} else {
return;
}
int threshold = gpuStats.numFlips - VAI_KILL_AGE;
for (auto iter = vai_.begin(); iter != vai_.end(); ) {
if (iter->second->lastFrame < threshold) {
delete iter->second;
vai_.erase(iter++);
}
else
++iter;
}
// Enable if you want to see vertex decoders in the log output. Need a better way.
#if 0
char buffer[16384];
for (std::map<u32, VertexDecoder*>::iterator dec = decoderMap_.begin(); dec != decoderMap_.end(); ++dec) {
char *ptr = buffer;
ptr += dec->second->ToString(ptr);
// *ptr++ = '\n';
NOTICE_LOG(G3D, buffer);
}
#endif
}
VertexArrayInfo::~VertexArrayInfo() {
if (vbo)
glDeleteBuffers(1, &vbo);
if (ebo)
glDeleteBuffers(1, &ebo);
}
void TransformDrawEngine::DoFlush() {
gpuStats.numFlushes++;
gpuStats.numTrackedVertexArrays = (int)vai_.size();
// This is not done on every drawcall, we should collect vertex data
// until critical state changes. That's when we draw (flush).
GEPrimitiveType prim = prevPrim_;
ApplyDrawState(prim);
LinkedShader *program = shaderManager_->ApplyShader(prim, lastVType_);
if (program->useHWTransform_) {
GLuint vbo = 0, ebo = 0;
int vertexCount = 0;
int maxIndex = 0;
bool useElements = true;
// Cannot cache vertex data with morph enabled.
if (g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK)) {
u32 id = ComputeFastDCID();
auto iter = vai_.find(id);
VertexArrayInfo *vai;
if (iter != vai_.end()) {
// We've seen this before. Could have been a cached draw.
vai = iter->second;
} else {
vai = new VertexArrayInfo();
vai_[id] = vai;
}
switch (vai->status) {
case VertexArrayInfo::VAI_NEW:
{
// Haven't seen this one before.
u32 dataHash = ComputeHash();
vai->hash = dataHash;
vai->status = VertexArrayInfo::VAI_HASHING;
vai->drawsUntilNextFullHash = 0;
DecodeVerts(); // writes to indexGen
vai->numVerts = indexGen.VertexCount();
vai->prim = indexGen.Prim();
vai->maxIndex = indexGen.MaxIndex();
goto rotateVBO;
}
// Hashing - still gaining confidence about the buffer.
// But if we get this far it's likely to be worth creating a vertex buffer.
case VertexArrayInfo::VAI_HASHING:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
if (vai->drawsUntilNextFullHash == 0) {
u32 newHash = ComputeHash();
if (newHash != vai->hash) {
vai->status = VertexArrayInfo::VAI_UNRELIABLE;
if (vai->vbo) {
glDeleteBuffers(1, &vai->vbo);
vai->vbo = 0;
}
if (vai->ebo) {
glDeleteBuffers(1, &vai->ebo);
vai->ebo = 0;
}
DecodeVerts();
goto rotateVBO;
}
if (vai->numVerts > 100) {
// exponential backoff up to 16 draws, then every 24
vai->drawsUntilNextFullHash = std::min(24, vai->numFrames);
} else {
// Lower numbers seem much more likely to change.
vai->drawsUntilNextFullHash = 0;
}
// TODO: tweak
//if (vai->numFrames > 1000) {
// vai->status = VertexArrayInfo::VAI_RELIABLE;
//}
} else {
vai->drawsUntilNextFullHash--;
// TODO: "mini-hashing" the first 32 bytes of the vertex/index data or something.
}
if (vai->vbo == 0) {
DecodeVerts();
vai->numVerts = indexGen.VertexCount();
vai->prim = indexGen.Prim();
vai->maxIndex = indexGen.MaxIndex();
useElements = !indexGen.SeenOnlyPurePrims();
if (!useElements && indexGen.PureCount()) {
vai->numVerts = indexGen.PureCount();
}
glGenBuffers(1, &vai->vbo);
glBindBuffer(GL_ARRAY_BUFFER, vai->vbo);
glBufferData(GL_ARRAY_BUFFER, dec_->GetDecVtxFmt().stride * indexGen.MaxIndex(), decoded, GL_STATIC_DRAW);
// If there's only been one primitive type, and it's either TRIANGLES, LINES or POINTS,
// there is no need for the index buffer we built. We can then use glDrawArrays instead
// for a very minor speed boost.
if (useElements) {
glGenBuffers(1, &vai->ebo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vai->ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short) * indexGen.VertexCount(), (GLvoid *)decIndex, GL_STATIC_DRAW);
} else {
vai->ebo = 0;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
} else {
gpuStats.numCachedDrawCalls++;
glBindBuffer(GL_ARRAY_BUFFER, vai->vbo);
if (vai->ebo)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vai->ebo);
useElements = vai->ebo ? true : false;
gpuStats.numCachedVertsDrawn += vai->numVerts;
}
vbo = vai->vbo;
ebo = vai->ebo;
vertexCount = vai->numVerts;
maxIndex = vai->maxIndex;
prim = static_cast<GEPrimitiveType>(vai->prim);
break;
}
// Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time.
case VertexArrayInfo::VAI_RELIABLE:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
gpuStats.numCachedDrawCalls++;
gpuStats.numCachedVertsDrawn += vai->numVerts;
vbo = vai->vbo;
ebo = vai->ebo;
glBindBuffer(GL_ARRAY_BUFFER, vbo);
if (ebo)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
vertexCount = vai->numVerts;
maxIndex = vai->maxIndex;
prim = static_cast<GEPrimitiveType>(vai->prim);
break;
}
case VertexArrayInfo::VAI_UNRELIABLE:
{
vai->numDraws++;
if (vai->lastFrame != gpuStats.numFlips) {
vai->numFrames++;
}
DecodeVerts();
goto rotateVBO;
}
}
vai->lastFrame = gpuStats.numFlips;
} else {
DecodeVerts();
rotateVBO:
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
useElements = !indexGen.SeenOnlyPurePrims();
vertexCount = indexGen.VertexCount();
maxIndex = indexGen.MaxIndex();
if (!useElements && indexGen.PureCount()) {
vertexCount = indexGen.PureCount();
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
prim = indexGen.Prim();
}
DEBUG_LOG(G3D, "Flush prim %i! %i verts in one go", prim, vertexCount);
SetupDecFmtForDraw(program, dec_->GetDecVtxFmt(), vbo ? 0 : decoded);
if (useElements) {
#ifdef USING_GLES2
glDrawElements(glprim[prim], vertexCount, GL_UNSIGNED_SHORT, ebo ? 0 : (GLvoid*)decIndex);
#else
glDrawRangeElements(glprim[prim], 0, maxIndex, vertexCount, GL_UNSIGNED_SHORT, ebo ? 0 : (GLvoid*)decIndex);
#endif
if (ebo)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
} else {
glDrawArrays(glprim[prim], 0, vertexCount);
}
if (vbo)
glBindBuffer(GL_ARRAY_BUFFER, 0);
} else {
DecodeVerts();
gpuStats.numUncachedVertsDrawn += indexGen.VertexCount();
prim = indexGen.Prim();
// Undo the strip optimization, not supported by the SW code yet.
if (prim == GE_PRIM_TRIANGLE_STRIP)
prim = GE_PRIM_TRIANGLES;
DEBUG_LOG(G3D, "Flush prim %i SW! %i verts in one go", prim, indexGen.VertexCount());
SoftwareTransformAndDraw(
prim, decoded, program, indexGen.VertexCount(),
dec_->VertexType(), (void *)decIndex, GE_VTYPE_IDX_16BIT, dec_->GetDecVtxFmt(),
indexGen.MaxIndex());
}
indexGen.Reset();
collectedVerts = 0;
numDrawCalls = 0;
vertexCountInDrawCalls = 0;
prevPrim_ = GE_PRIM_INVALID;
#ifndef USING_GLES2
host->GPUNotifyDraw();
#endif
}
bool TransformDrawEngine::TestBoundingBox(void* control_points, int vertexCount, u32 vertType) {
// Simplify away bones and morph before proceeding
/*
SimpleVertex *corners = (SimpleVertex *)(decoded + 65536 * 12);
u8 *temp_buffer = decoded + 65536 * 24;
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)corners, temp_buffer, (u8 *)control_points, 0, vertexCount, vertType);
for (int cube = 0; cube < vertexCount / 8; cube++) {
// For each cube...
for (int i = 0; i < 8; i++) {
const SimpleVertex &vert = corners[cube * 8 + i];
// To world space...
float worldPos[3];
Vec3ByMatrix43(worldPos, (float *)&vert.pos.x, gstate.worldMatrix);
// To view space...
float viewPos[3];
Vec3ByMatrix43(viewPos, worldPos, gstate.viewMatrix);
// And finally to screen space.
float frustumPos[4];
Vec3ByMatrix44(frustumPos, viewPos, gstate.projMatrix);
// Project to 2D
float x = frustumPos[0] / frustumPos[3];
float y = frustumPos[1] / frustumPos[3];
// Rescale 2d position
// ...
}
}
*/
// Let's think. A better approach might be to take the edges of the drawing region and the projection
// matrix to build a frustum pyramid, and then clip the cube against those planes. If all vertices fail the same test,
// the cube is out. Otherwise it's in.
// TODO....
return true;
}