mirror of
https://github.com/libretro/ppsspp.git
synced 2024-12-11 10:24:43 +00:00
486 lines
14 KiB
C++
486 lines
14 KiB
C++
// Copyright (c) 2012- PPSSPP Project.
|
|
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, version 2.0 or later versions.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License 2.0 for more details.
|
|
|
|
// A copy of the GPL 2.0 should have been included with the program.
|
|
// If not, see http://www.gnu.org/licenses/
|
|
|
|
// Official git repository and contact information can be found at
|
|
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
|
|
|
|
// UnitTests
|
|
//
|
|
// This is a program to directly test various functions, without going
|
|
// through a PSP. Especially useful for things like opcode emitters,
|
|
// hashes, and various data conversion utility function.
|
|
//
|
|
// TODO: Make a test of nice unittest asserts and count successes etc.
|
|
// Or just integrate with an existing testing framework.
|
|
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <sstream>
|
|
|
|
#include "base/NativeApp.h"
|
|
#include "base/logging.h"
|
|
#include "input/input_state.h"
|
|
#include "ext/disarm.h"
|
|
#include "math/math_util.h"
|
|
#include "util/text/parsers.h"
|
|
|
|
#include "Common/CPUDetect.h"
|
|
#include "Common/ArmEmitter.h"
|
|
#include "Core/Config.h"
|
|
#include "Core/MIPS/MIPSVFPUUtils.h"
|
|
#include "Core/FileSystems/ISOFileSystem.h"
|
|
|
|
#include "unittest/JitHarness.h"
|
|
#include "unittest/TestVertexJit.h"
|
|
#include "unittest/UnitTest.h"
|
|
|
|
std::string System_GetProperty(SystemProperty prop) { return ""; }
|
|
int System_GetPropertyInt(SystemProperty prop) { return -1; }
|
|
|
|
#ifndef M_PI_2
|
|
#define M_PI_2 1.57079632679489661923
|
|
#endif
|
|
|
|
// asin acos atan: https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
|
|
|
|
// TODO:
|
|
// Fast approximate sincos for NEON
|
|
// http://blog.julien.cayzac.name/2009/12/fast-sinecosine-for-armv7neon.html
|
|
// Fast sincos
|
|
// http://www.dspguru.com/dsp/tricks/parabolic-approximation-of-sin-and-cos
|
|
|
|
// minimax (surprisingly terrible! something must be wrong)
|
|
// double asin_plus_sqrtthing = .9998421793 + (1.012386649 + (-.6575341673 + .8999841642 + (-1.669668977 + (1.571945105 - .5860008052 * x) * x) * x) * x) * x;
|
|
|
|
// VERY good. 6 MAD, one division.
|
|
// double asin_plus_sqrtthing = (1.807607311 + (.191900116 + (-2.511278506 + (1.062519236 + (-.3572142480 + .1087063463 * x) * x) * x) * x) * x) / (1.807601897 - 1.615203794 * x);
|
|
// float asin_plus_sqrtthing_correct_ends =
|
|
// (1.807607311f + (.191900116f + (-2.511278506f + (1.062519236f + (-.3572142480f + .1087063463f * x) * x) * x) * x) * x) / (1.807607311f - 1.615195094 * x);
|
|
|
|
// Unfortunately this is very serial.
|
|
// At least there are only 8 constants needed - load them into two low quads and go to town.
|
|
// For every step, VDUP the constant into a new register (out of two alternating), then VMLA or VFMA into it.
|
|
|
|
// http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/arcsin/
|
|
// minimax polynomial rational approx, pretty good, get four digits consistently.
|
|
// unfortunately fastasin(1.0) / M_PI_2 != 1.0f, but it's pretty close.
|
|
float fastasin(double x) {
|
|
float sign = x >= 0.0f ? 1.0f : -1.0f;
|
|
x = fabs(x);
|
|
float sqrtthing = sqrt(1.0f - x * x);
|
|
// note that the sqrt can run parallel while we do the rest
|
|
// if the hardware supports it
|
|
|
|
float y = -.3572142480f + .1087063463f * x;
|
|
y = y * x + 1.062519236f;
|
|
y = y * x + -2.511278506f;
|
|
y = y * x + .191900116f;
|
|
y = y * x + 1.807607311f;
|
|
y /= (1.807607311f - 1.615195094 * x);
|
|
return sign * (y - sqrtthing);
|
|
}
|
|
|
|
double atan_66s(double x) {
|
|
const double c1=1.6867629106;
|
|
const double c2=0.4378497304;
|
|
const double c3=1.6867633134;
|
|
|
|
double x2; // The input argument squared
|
|
|
|
x2 = x * x;
|
|
return (x*(c1 + x2*c2)/(c3 + x2));
|
|
}
|
|
|
|
// Terrible.
|
|
double fastasin2(double x) {
|
|
return atan_66s(x / sqrt(1 - x * x));
|
|
}
|
|
|
|
// Also terrible.
|
|
float fastasin3(float x) {
|
|
return x + x * x * x * x * x * 0.4971;
|
|
}
|
|
|
|
// Great! This is the one we'll use. Can be easily rescaled to get the right range for free.
|
|
// http://mathforum.org/library/drmath/view/54137.html
|
|
// http://www.musicdsp.org/showone.php?id=115
|
|
float fastasin4(float x) {
|
|
float sign = x >= 0.0f ? 1.0f : -1.0f;
|
|
x = fabs(x);
|
|
x = M_PI/2 - sqrtf(1.0f - x) * (1.5707288 + -0.2121144*x + 0.0742610*x*x + -0.0187293*x*x*x);
|
|
return sign * x;
|
|
}
|
|
|
|
// Or this:
|
|
float fastasin5(float x)
|
|
{
|
|
float sign = x >= 0.0f ? 1.0f : -1.0f;
|
|
x = fabs(x);
|
|
float fRoot = sqrtf(1.0f - x);
|
|
float fResult = 0.0742610f + -0.0187293f * x;
|
|
fResult = -0.2121144f + fResult * x;
|
|
fResult = 1.5707288f + fResult * x;
|
|
fResult = M_PI/2 - fRoot*fResult;
|
|
return sign * fResult;
|
|
}
|
|
|
|
|
|
// This one is unfortunately not very good. But lets us avoid PI entirely
|
|
// thanks to the special arguments of the PSP functions.
|
|
// http://www.dspguru.com/dsp/tricks/parabolic-approximation-of-sin-and-cos
|
|
#define C 0.70710678118654752440f // 1.0f / sqrt(2.0f)
|
|
// Some useful constants (PI and <math.h> are not part of algo)
|
|
#define BITSPERQUARTER (20)
|
|
void fcs(float angle, float &sinout, float &cosout) {
|
|
int phasein = angle * (1 << BITSPERQUARTER);
|
|
// Modulo phase into quarter, convert to float 0..1
|
|
float modphase = (phasein & ((1<<BITSPERQUARTER)-1)) * (1.0f / (1<<BITSPERQUARTER));
|
|
// Extract quarter bits
|
|
int quarter = phasein >> BITSPERQUARTER;
|
|
// Recognize quarter
|
|
if (!quarter) {
|
|
// First quarter, angle = 0 .. pi/2
|
|
float x = modphase - 0.5f; // 1 sub
|
|
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
|
|
sinout = temp + x; // 1 add
|
|
cosout = temp - x; // 1 sub
|
|
} else if (quarter == 1) {
|
|
// Second quarter, angle = pi/2 .. pi
|
|
float x = 0.5f - modphase; // 1 sub
|
|
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
|
|
sinout = x + temp; // 1 add
|
|
cosout = x - temp; // 1 sub
|
|
} else if (quarter == 2) {
|
|
// Third quarter, angle = pi .. 1.5pi
|
|
float x = modphase - 0.5f; // 1 sub
|
|
float temp = (4*C - 2)*x*x - C; // 2 mul, 1 sub
|
|
sinout = temp - x; // 1 sub
|
|
cosout = temp + x; // 1 add
|
|
} else if (quarter == 3) {
|
|
// Fourth quarter, angle = 1.5pi..2pi
|
|
float x = modphase - 0.5f; // 1 sub
|
|
float temp = (2 - 4*C)*x*x + C; // 2 mul, 1 add
|
|
sinout = x - temp; // 1 sub
|
|
cosout = x + temp; // 1 add
|
|
}
|
|
}
|
|
#undef C
|
|
|
|
|
|
const float PI_SQR = 9.86960440108935861883449099987615114f;
|
|
|
|
//https://code.google.com/p/math-neon/source/browse/trunk/math_floorf.c?r=18
|
|
// About 2 correct decimals. Not great.
|
|
void fcs2(float theta, float &outsine, float &outcosine) {
|
|
float gamma = theta + 1;
|
|
gamma += 2;
|
|
gamma /= 4;
|
|
theta += 2;
|
|
theta /= 4;
|
|
//theta -= (float)(int)theta;
|
|
//gamma -= (float)(int)gamma;
|
|
theta -= floorf(theta);
|
|
gamma -= floorf(gamma);
|
|
theta *= 4;
|
|
theta -= 2;
|
|
gamma *= 4;
|
|
gamma -= 2;
|
|
|
|
float x = 2 * gamma - gamma * fabs(gamma);
|
|
float y = 2 * theta - theta * fabs(theta);
|
|
const float P = 0.225f;
|
|
outsine = P * (y * fabsf(y) - y) + y; // Q * y + P * y * abs(y)
|
|
outcosine = P * (x * fabsf(x) - x) + x; // Q * y + P * y * abs(y)
|
|
}
|
|
|
|
|
|
|
|
void fastsincos(float x, float &sine, float &cosine) {
|
|
fcs2(x, sine, cosine);
|
|
}
|
|
|
|
bool TestSinCos() {
|
|
for (int i = -100; i <= 100; i++) {
|
|
float f = i / 30.0f;
|
|
|
|
// The PSP sin/cos take as argument angle * M_PI_2.
|
|
// We need to match that.
|
|
float slowsin = sinf(f * M_PI_2), slowcos = cosf(f * M_PI_2);
|
|
float fastsin, fastcos;
|
|
fastsincos(f, fastsin, fastcos);
|
|
printf("%f: slow: %0.8f, %0.8f fast: %0.8f, %0.8f\n", f, slowsin, slowcos, fastsin, fastcos);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool TestAsin() {
|
|
for (int i = -100; i <= 100; i++) {
|
|
float f = i / 100.0f;
|
|
float slowval = asinf(f) / M_PI_2;
|
|
float fastval = fastasin5(f) / M_PI_2;
|
|
printf("slow: %0.16f fast: %0.16f\n", slowval, fastval);
|
|
float diff = fabsf(slowval - fastval);
|
|
// EXPECT_TRUE(diff < 0.0001f);
|
|
}
|
|
// EXPECT_TRUE(fastasin(1.0) / M_PI_2 <= 1.0f);
|
|
return true;
|
|
}
|
|
|
|
bool TestMathUtil() {
|
|
EXPECT_FALSE(my_isinf(1.0));
|
|
volatile float zero = 0.0f;
|
|
EXPECT_TRUE(my_isinf(1.0f/zero));
|
|
EXPECT_FALSE(my_isnan(1.0f/zero));
|
|
return true;
|
|
}
|
|
|
|
bool TestParsers() {
|
|
const char *macstr = "01:02:03:ff:fe:fd";
|
|
uint8_t mac[6];
|
|
ParseMacAddress(macstr, mac);
|
|
EXPECT_TRUE(mac[0] == 1);
|
|
EXPECT_TRUE(mac[1] == 2);
|
|
EXPECT_TRUE(mac[2] == 3);
|
|
EXPECT_TRUE(mac[3] == 255);
|
|
EXPECT_TRUE(mac[4] == 254);
|
|
EXPECT_TRUE(mac[5] == 253);
|
|
return true;
|
|
}
|
|
|
|
bool TestVFPUSinCos() {
|
|
float sine, cosine;
|
|
vfpu_sincos(0.0f, sine, cosine);
|
|
EXPECT_EQ_FLOAT(sine, 0.0f);
|
|
EXPECT_EQ_FLOAT(cosine, 1.0f);
|
|
vfpu_sincos(1.0f, sine, cosine);
|
|
EXPECT_APPROX_EQ_FLOAT(sine, 1.0f);
|
|
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
|
|
vfpu_sincos(2.0f, sine, cosine);
|
|
EXPECT_APPROX_EQ_FLOAT(sine, 0.0f);
|
|
EXPECT_APPROX_EQ_FLOAT(cosine, -1.0f);
|
|
vfpu_sincos(3.0f, sine, cosine);
|
|
EXPECT_APPROX_EQ_FLOAT(sine, -1.0f);
|
|
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
|
|
vfpu_sincos(4.0f, sine, cosine);
|
|
EXPECT_EQ_FLOAT(sine, 0.0f);
|
|
EXPECT_EQ_FLOAT(cosine, 1.0f);
|
|
vfpu_sincos(5.0f, sine, cosine);
|
|
EXPECT_APPROX_EQ_FLOAT(sine, 1.0f);
|
|
EXPECT_APPROX_EQ_FLOAT(cosine, 0.0f);
|
|
|
|
for (float angle = -10.0f; angle < 10.0f; angle++) {
|
|
vfpu_sincos(angle, sine, cosine);
|
|
EXPECT_APPROX_EQ_FLOAT(sine, sinf(angle * M_PI_2));
|
|
EXPECT_APPROX_EQ_FLOAT(cosine, cosf(angle * M_PI_2));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool TestMatrixTranspose() {
|
|
MatrixSize sz = M_4x4;
|
|
int matrix = 0; // M000
|
|
u8 cols[4];
|
|
u8 rows[4];
|
|
|
|
GetMatrixColumns(matrix, sz, cols);
|
|
GetMatrixRows(matrix, sz, rows);
|
|
|
|
int transposed = Xpose(matrix);
|
|
u8 x_cols[4];
|
|
u8 x_rows[4];
|
|
|
|
GetMatrixColumns(transposed, sz, x_cols);
|
|
GetMatrixRows(transposed, sz, x_rows);
|
|
|
|
for (int i = 0; i < GetMatrixSide(sz); i++) {
|
|
EXPECT_EQ_INT(cols[i], x_rows[i]);
|
|
EXPECT_EQ_INT(x_cols[i], rows[i]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void TestGetMatrix(int matrix, MatrixSize sz) {
|
|
ILOG("Testing matrix %s", GetMatrixNotation(matrix, sz));
|
|
u8 fullMatrix[16];
|
|
|
|
u8 cols[4];
|
|
u8 rows[4];
|
|
|
|
GetMatrixColumns(matrix, sz, cols);
|
|
GetMatrixRows(matrix, sz, rows);
|
|
|
|
GetMatrixRegs(fullMatrix, sz, matrix);
|
|
|
|
int n = GetMatrixSide(sz);
|
|
VectorSize vsz = GetVectorSize(sz);
|
|
for (int i = 0; i < n; i++) {
|
|
// int colName = GetColumnName(matrix, sz, i, 0);
|
|
// int rowName = GetRowName(matrix, sz, i, 0);
|
|
int colName = cols[i];
|
|
int rowName = rows[i];
|
|
ILOG("Column %i: %s", i, GetVectorNotation(colName, vsz));
|
|
ILOG("Row %i: %s", i, GetVectorNotation(rowName, vsz));
|
|
|
|
u8 colRegs[4];
|
|
u8 rowRegs[4];
|
|
GetVectorRegs(colRegs, vsz, colName);
|
|
GetVectorRegs(rowRegs, vsz, rowName);
|
|
|
|
// Check that the individual regs are the expected ones.
|
|
std::stringstream a, b, c, d;
|
|
for (int j = 0; j < n; j++) {
|
|
a.clear();
|
|
b.clear();
|
|
a << (int)fullMatrix[i * 4 + j] << " ";
|
|
b << (int)colRegs[j] << " ";
|
|
|
|
c.clear();
|
|
d.clear();
|
|
|
|
c << (int)fullMatrix[j * 4 + i] << " ";
|
|
d << (int)rowRegs[j] << " ";
|
|
}
|
|
ILOG("Col: %s vs %s", a.str().c_str(), b.str().c_str());
|
|
if (a.str() != b.str())
|
|
ILOG("WRONG!");
|
|
ILOG("Row: %s vs %s", c.str().c_str(), d.str().c_str());
|
|
if (c.str() != d.str())
|
|
ILOG("WRONG!");
|
|
}
|
|
}
|
|
|
|
bool TestParseLBN() {
|
|
const char *validStrings[] = {
|
|
"/sce_lbn0x5fa0_size0x1428",
|
|
"/sce_lbn7050_sizeee850",
|
|
"/sce_lbn0x5eeeh_size0x234x", // Check for trailing chars. See #7960.
|
|
"/sce_lbneee__size434.", // Check for trailing chars. See #7960.
|
|
};
|
|
int expectedResults[][2] = {
|
|
{0x5fa0, 0x1428},
|
|
{0x7050, 0xee850},
|
|
{0x5eee, 0x234},
|
|
{0xeee, 0x434},
|
|
};
|
|
const char *invalidStrings[] = {
|
|
"/sce_lbn0x5fa0_sze0x1428",
|
|
"",
|
|
"//",
|
|
};
|
|
for (int i = 0; i < ARRAY_SIZE(validStrings); i++) {
|
|
u32 startSector = 0, readSize = 0;
|
|
// printf("testing %s\n", validStrings[i]);
|
|
EXPECT_TRUE(parseLBN(validStrings[i], &startSector, &readSize));
|
|
EXPECT_EQ_INT(startSector, expectedResults[i][0]);
|
|
EXPECT_EQ_INT(readSize, expectedResults[i][1]);
|
|
}
|
|
for (int i = 0; i < ARRAY_SIZE(invalidStrings); i++) {
|
|
u32 startSector, readSize;
|
|
EXPECT_FALSE(parseLBN(invalidStrings[i], &startSector, &readSize));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
typedef bool (*TestFunc)();
|
|
struct TestItem {
|
|
const char *name;
|
|
TestFunc func;
|
|
};
|
|
|
|
#define TEST_ITEM(name) { #name, &Test ##name, }
|
|
|
|
bool TestArmEmitter();
|
|
bool TestArm64Emitter();
|
|
bool TestX64Emitter();
|
|
|
|
TestItem availableTests[] = {
|
|
#if defined(ARM64) || defined(_M_X64) || defined(_M_IX86)
|
|
TEST_ITEM(Arm64Emitter),
|
|
#endif
|
|
#if defined(ARM) || defined(_M_X64) || defined(_M_IX86)
|
|
TEST_ITEM(ArmEmitter),
|
|
#endif
|
|
#if defined(_M_X64) || defined(_M_IX86)
|
|
TEST_ITEM(X64Emitter),
|
|
#endif
|
|
TEST_ITEM(VertexJit),
|
|
TEST_ITEM(Asin),
|
|
TEST_ITEM(SinCos),
|
|
TEST_ITEM(VFPUSinCos),
|
|
TEST_ITEM(MathUtil),
|
|
TEST_ITEM(Parsers),
|
|
TEST_ITEM(Jit),
|
|
TEST_ITEM(MatrixTranspose),
|
|
TEST_ITEM(ParseLBN),
|
|
};
|
|
|
|
int main(int argc, const char *argv[]) {
|
|
cpu_info.bNEON = true;
|
|
cpu_info.bVFP = true;
|
|
cpu_info.bVFPv3 = true;
|
|
cpu_info.bVFPv4 = true;
|
|
g_Config.bEnableLogging = true;
|
|
|
|
bool allTests = false;
|
|
TestFunc testFunc = nullptr;
|
|
if (argc >= 2) {
|
|
if (!strcasecmp(argv[1], "all")) {
|
|
allTests = true;
|
|
}
|
|
for (auto f : availableTests) {
|
|
if (!strcasecmp(argv[1], f.name)) {
|
|
testFunc = f.func;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allTests) {
|
|
int passes = 0;
|
|
int fails = 0;
|
|
for (auto f : availableTests) {
|
|
if (f.func()) {
|
|
++passes;
|
|
} else {
|
|
printf("%s: FAILED\n", f.name);
|
|
++fails;
|
|
}
|
|
}
|
|
if (passes > 0) {
|
|
printf("%d tests passed.\n", passes);
|
|
}
|
|
if (fails > 0) {
|
|
return 2;
|
|
}
|
|
} else if (testFunc == nullptr) {
|
|
fprintf(stderr, "You may select a test to run by passing an argument.\n");
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "Available tests:\n");
|
|
for (auto f : availableTests) {
|
|
fprintf(stderr, " * %s\n", f.name);
|
|
}
|
|
return 1;
|
|
} else {
|
|
if (!testFunc()) {
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|