scummvm/sword1/router.cpp

1969 lines
54 KiB
C++
Raw Normal View History

/* ScummVM - Scumm Interpreter
* Copyright (C) Revolution Software Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*
*/
#include "stdafx.h"
#include "router.h"
#include "util.h"
#include "objectman.h"
#include "resman.h"
#include "sworddefs.h"
#define SLOW_IN 3
#define SLOW_OUT 7
SwordRouter::SwordRouter(ObjectMan *pObjMan, ResMan *pResMan) {
_objMan = pObjMan;
_resMan = pResMan;
_numExtraBars = _numExtraNodes = 0;
_nNodes = _nBars = 0;
_playerTargetX = _playerTargetY = _playerTargetDir = _playerTargetStance = 0;
}
int SwordRouter::routeFinder(int32 id, BsObject *mega, int32 x, int32 y, int32 targetDir) {
loadWalkResources(id, mega, x, y, targetDir); // init vars for subs
// init offset pointers
FrameInfos frameInfo;
frameInfo.framesPerStep = _nWalkFrames / 2;
frameInfo.framesPerChar = _nWalkFrames * NO_DIRECTIONS;
frameInfo.standFrames = frameInfo.framesPerChar;
frameInfo.turnFramesLeft = frameInfo.framesPerChar;
frameInfo.turnFramesRight = frameInfo.framesPerChar;
frameInfo.walkFramesLeft = 0;
frameInfo.walkFramesRight = 0;
frameInfo.slowInFrames = 0;
frameInfo.slowOutFrames = 0;
frameInfo.startX = mega->o_xcoord;
frameInfo.startY = mega->o_ycoord;
frameInfo.targetX = x;
frameInfo.targetY = y;
frameInfo.targetDir = targetDir;
frameInfo.scaleA = mega->o_scale_a;
frameInfo.scaleB = mega->o_scale_b;
if (id == GEORGE) {
frameInfo.turnFramesLeft = 3 * frameInfo.framesPerChar + NO_DIRECTIONS + 2 * SLOW_IN + 4 * SLOW_OUT;
frameInfo.turnFramesRight = 3 * frameInfo.framesPerChar + NO_DIRECTIONS + 2 * SLOW_IN + 4 * SLOW_OUT + NO_DIRECTIONS;
frameInfo.walkFramesLeft = frameInfo.framesPerChar + NO_DIRECTIONS;
frameInfo.walkFramesRight = 2 * frameInfo.framesPerChar + NO_DIRECTIONS;
frameInfo.slowInFrames = 3 * frameInfo.framesPerChar + NO_DIRECTIONS;
frameInfo.slowOutFrames = 3 * frameInfo.framesPerChar + NO_DIRECTIONS + 2 * SLOW_IN;
} else if (id == NICO) {
frameInfo.turnFramesLeft = frameInfo.framesPerChar + NO_DIRECTIONS;
frameInfo.turnFramesRight = frameInfo.framesPerChar + 2 * NO_DIRECTIONS;
frameInfo.walkFramesLeft = 0;
frameInfo.walkFramesRight = 0;
frameInfo.slowInFrames = 0;
frameInfo.slowOutFrames = 0;
}
int32 routeFlag = getRoute();
2003-12-16 09:43:08 +00:00
int32 routeLength = 0;
if (routeFlag == 1) {
// extract the route as nodes and the directions to go between each node
// route.X,route.Y and route.Dir now hold all the route infomation with
// the target dir or route continuation
routeLength = extractRoute(targetDir);
}
int32 solidFlag = 0;
if (routeFlag == 2) //special case for zero length route
{
if (targetDir >7)// if target direction specified as any
targetDir = mega->o_dir;
// just a turn on the spot is required set an end module for the route let the animator deal with it
// modularPath is normally set by ExtractRoute
_modularPath[0].dir = mega->o_dir;
_modularPath[0].num = 0;
_modularPath[0].x = mega->o_xcoord;
_modularPath[0].y = mega->o_ycoord;
_modularPath[1].dir = targetDir;
_modularPath[1].num = 0;
_modularPath[1].x = mega->o_xcoord;
_modularPath[1].y = mega->o_ycoord;
_modularPath[2].dir = 9;
_modularPath[2].num = ROUTE_END_FLAG;
slidyWalkAnimator(mega->o_route, &frameInfo, id);
routeFlag = 2;
} else if (routeFlag == 1) { // a normal route
smoothestPath(mega->o_xcoord, mega->o_ycoord, mega->o_dir, routeLength);//Converts the route to an exact path
// The Route had waypoints and direction options
// The Path is an exact set of lines in 8 directions that reach the target.
// The path is in module format, but steps taken in each direction are not accurate
// if target dir = 8 then the walk isn't linked to an anim so
// we can create a route without sliding and miss the exact target
if (targetDir == NO_DIRECTIONS) {
solidPath(mega->o_scale_a, mega->o_scale_b);
solidFlag = solidWalkAnimator(mega->o_route, &frameInfo, id);
}
if (!solidFlag) {
slidyPath(mega->o_scale_a, mega->o_scale_b, targetDir);
slidyWalkAnimator(mega->o_route, &frameInfo, id);
}
}
return routeFlag;
}
void SwordRouter::slidyPath(int32 scaleA, int32 scaleB, uint16 targetDir) {
/****************************************************************************
* SlidyPath creates a path based on part steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* currently unused, but is intended for use when just clicking about.
*
* produce a module list from the line data
*
****************************************************************************/
int32 smooth;
int32 slidy;
int32 scale;
int32 stepX;
int32 stepY;
int32 deltaX;
int32 deltaY;
// strip out the short sections
slidy = 1;
smooth = 1;
_modularPath[0].x = _smoothPath[0].x;
_modularPath[0].y = _smoothPath[0].y;
_modularPath[0].dir = _smoothPath[0].dir;
_modularPath[0].num = 0;
while (_smoothPath[smooth].num < ROUTE_END_FLAG)
{
scale = scaleA * _smoothPath[smooth].y + scaleB;
deltaX = _smoothPath[smooth].x - _modularPath[slidy-1].x;
deltaY = _smoothPath[smooth].y - _modularPath[slidy-1].y;
stepX = _modX[_smoothPath[smooth].dir];
stepY = _modY[_smoothPath[smooth].dir];
stepX = stepX * scale;
stepY = stepY * scale;
stepX = stepX >> 19;// quarter a step minimum
stepY = stepY >> 19;
if ((abs(deltaX)>=abs(stepX)) && (abs(deltaY)>=abs(stepY)))
{
_modularPath[slidy].x = _smoothPath[smooth].x;
_modularPath[slidy].y = _smoothPath[smooth].y;
_modularPath[slidy].dir = _smoothPath[smooth].dir;
_modularPath[slidy].num = 1;
slidy += 1;
}
smooth += 1;
}
// in case the last bit had no steps
if (slidy > 1)
{
_modularPath[slidy-1].x = _smoothPath[smooth-1].x;
_modularPath[slidy-1].y = _smoothPath[smooth-1].y;
}
// set up the end of the walk
_modularPath[slidy].x = _smoothPath[smooth-1].x;
_modularPath[slidy].y = _smoothPath[smooth-1].y;
_modularPath[slidy].dir = targetDir;
_modularPath[slidy].num = 0;
slidy += 1;
_modularPath[slidy].x = _smoothPath[smooth-1].x;
_modularPath[slidy].y = _smoothPath[smooth-1].y;
_modularPath[slidy].dir = 9;
_modularPath[slidy].num = ROUTE_END_FLAG;
}
int32 SwordRouter::solidPath(int32 scaleA, int32 scaleB) {
/****************************************************************************
* SolidPath creates a path based on whole steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* currently unused, but is intended for use when just clicking about.
*
* produce a module list from the line data
*
****************************************************************************/
int32 smooth;
int32 solid;
int32 scale;
int32 stepX;
int32 stepY;
int32 deltaX;
int32 deltaY;
solid = 1;
smooth = 1;
_modularPath[0].x = _smoothPath[0].x;
_modularPath[0].y = _smoothPath[0].y;
_modularPath[0].dir = _smoothPath[0].dir;
_modularPath[0].num = 0;
do {
scale = scaleA * _smoothPath[smooth].y + scaleB;
deltaX = _smoothPath[smooth].x - _modularPath[solid-1].x;
deltaY = _smoothPath[smooth].y - _modularPath[solid-1].y;
stepX = _modX[_smoothPath[smooth].dir];
stepY = _modY[_smoothPath[smooth].dir];
stepX = stepX * scale;
stepY = stepY * scale;
stepX = stepX >> 16;
stepY = stepY >> 16;
if ((abs(deltaX)>=abs(stepX)) && (abs(deltaY)>=abs(stepY))) {
_modularPath[solid].x = _smoothPath[smooth].x;
_modularPath[solid].y = _smoothPath[smooth].y;
_modularPath[solid].dir = _smoothPath[smooth].dir;
_modularPath[solid].num = 1;
solid += 1;
}
smooth += 1;
} while (_smoothPath[smooth].num < ROUTE_END_FLAG);
// in case the last bit had no steps
if (solid == 1) { //there were no paths so put in a dummy end
solid = 2;
_modularPath[1].dir = _smoothPath[0].dir;
_modularPath[1].num = 0;
}
_modularPath[solid-1].x = _smoothPath[smooth-1].x;
_modularPath[solid-1].y = _smoothPath[smooth-1].y;
// set up the end of the walk
_modularPath[solid].x = _smoothPath[smooth-1].x;
_modularPath[solid].y = _smoothPath[smooth-1].y;
_modularPath[solid].dir = 9;
_modularPath[solid].num = ROUTE_END_FLAG;
return 1;
}
int32 SwordRouter::solidWalkAnimator(WalkData *walkAnim, FrameInfos *frInfo, int32 megaId) {
int32 p;
int32 i;
int32 left;
int32 lastDir;
int32 currentDir;
int32 turnDir;
int32 scale;
int32 step;
int32 module;
int32 moduleX;
int32 moduleY;
int32 module16X;
int32 module16Y;
int32 errorX;
int32 errorY;
int32 moduleEnd;
int32 slowStart;
int32 stepCount;
int32 lastCount;
int32 frame;
// start at the begining for a change
lastDir = _modularPath[0].dir;
p = 1;
currentDir = _modularPath[1].dir;
module = frInfo->framesPerChar + lastDir;
moduleX = frInfo->startX;
moduleY = frInfo->startY;
module16X = moduleX << 16;
module16Y = moduleY << 16;
slowStart = 0;
stepCount = 0;
//****************************************************************************
// SOLID
// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
//****************************************************************************
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
//****************************************************************************
// SOLID
// TURN TO START THE WALK
//****************************************************************************
// rotate if we need to
if (lastDir != currentDir)
{
// get the direction to turn
turnDir = currentDir - lastDir;
if ( turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to new walk direction
// for george and nico put in a head turn at the start
if ((megaId == GEORGE) || (megaId == NICO))
{
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
module = frInfo->turnFramesLeft + lastDir;
}
else
{
module = frInfo->turnFramesRight + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// rotate till were facing new dir then go back 45 degrees
while (lastDir != currentDir)
{
lastDir += turnDir;
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
if ( lastDir < 0)
lastDir += NO_DIRECTIONS;
module = frInfo->turnFramesLeft + lastDir;
}
else
{
if ( lastDir > 7)
lastDir -= NO_DIRECTIONS;
module = frInfo->turnFramesRight + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// the back 45 degrees bit
stepCount -= 1;// step back one because new head turn for george takes us past the new dir
}
//****************************************************************************
// SOLID
// THE SLOW IN
//****************************************************************************
// do start frames if its george and left or right
if (megaId == GEORGE)
{
if (_modularPath[1].num > 0)
{
if (currentDir == 2) // only for george
{
slowStart = 1;
walkAnim[stepCount].frame = 296;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 297;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 298;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
else if (currentDir == 6) // only for george
{
slowStart = 1;
walkAnim[stepCount].frame = 299;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 300;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 301;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
}
}
//****************************************************************************
// SOLID
// THE WALK
//****************************************************************************
if (currentDir > 4)
left = frInfo->framesPerStep;
else
left = 0;
lastCount = stepCount;
lastDir = 99;// this ensures that we don't put in turn frames for the start
currentDir = 99;// this ensures that we don't put in turn frames for the start
do
{
while(_modularPath[p].num > 0)
{
currentDir = _modularPath[p].dir;
if (currentDir< NO_DIRECTIONS)
{
module = currentDir * frInfo->framesPerStep * 2 + left;
if (left == 0)
left = frInfo->framesPerStep;
else
left = 0;
moduleEnd = module + frInfo->framesPerStep;
step = 0;
scale = (frInfo->scaleA * moduleY + frInfo->scaleB);
do
{
module16X += _dx[module]*scale;
module16Y += _dy[module]*scale;
moduleX = module16X >> 16;
moduleY = module16Y >> 16;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = step;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
module += 1;
step += 1;
}
while( module < moduleEnd) ;
errorX = _modularPath[p].x - moduleX;
errorX = errorX * _modX[_modularPath[p].dir];
errorY = _modularPath[p].y - moduleY;
errorY = errorY * _modY[_modularPath[p].dir];
if ((errorX < 0) || (errorY < 0))
{
_modularPath[p].num = 0;
stepCount -= frInfo->framesPerStep;
if (left == 0)
left = frInfo->framesPerStep;
else
left = 0;
// Okay this is the end of a section
moduleX = walkAnim[stepCount-1].x;
moduleY = walkAnim[stepCount-1].y;
module16X = moduleX << 16;
module16Y = moduleY << 16;
_modularPath[p].x =moduleX;
_modularPath[p].y =moduleY;
// Now is the time to put in the turn frames for the last turn
if ((stepCount - lastCount) < frInfo->framesPerStep)// no step taken
{
currentDir = 99;// this ensures that we don't put in turn frames for this walk or the next
if (slowStart == 1)// clean up if a slow in but no walk
{
stepCount -= 3;
lastCount -= 3;
slowStart = 0;
}
}
// check each turn condition in turn
if (((lastDir != 99) && (currentDir != 99)) && (megaId == GEORGE)) // only for george
{
lastDir = currentDir - lastDir;//1 and -7 going right -1 and 7 going left
if (((lastDir == -1) || (lastDir == 7)) || ((lastDir == -2) || (lastDir == 6)))
{
// turn at the end of the last walk
frame = lastCount - frInfo->framesPerStep;
do
{
walkAnim[frame].frame += 104;//turning left
frame += 1;
}
while(frame < lastCount );
}
if (((lastDir == 1) || (lastDir == -7)) || ((lastDir == 2) || (lastDir == -6)))
{
// turn at the end of the current walk
frame = lastCount - frInfo->framesPerStep;
do
{
walkAnim[frame].frame += 200; //was 60 now 116
frame += 1;
}
while(frame < lastCount );
}
}
// all turns checked
lastCount = stepCount;
}
}
}
p = p + 1;
lastDir = currentDir;
slowStart = 0; //can only be valid first time round
}
while (_modularPath[p].dir < NO_DIRECTIONS);
//****************************************************************************
// SOLID
// THE SLOW OUT
//****************************************************************************
if ((currentDir == 2) && (megaId == GEORGE)) // only for george
{
// place stop frames here
// slowdown at the end of the last walk
frame = lastCount - frInfo->framesPerStep;
if (walkAnim[frame].frame == 24)
{
do
{
walkAnim[frame].frame += 278;//stopping right
frame += 1;
}
while(frame < lastCount );
walkAnim[stepCount].frame = 308;
walkAnim[stepCount].step = 7;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
else if (walkAnim[frame].frame == 30)
{
do
{
walkAnim[frame].frame += 279;//stopping right
frame += 1;
}
while(frame < lastCount );
walkAnim[stepCount].frame = 315;
walkAnim[stepCount].step = 7;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
}
else if ((currentDir == 6) && (megaId == GEORGE)) // only for george
{
// place stop frames here
// slowdown at the end of the last walk
frame = lastCount - frInfo->framesPerStep;
if (walkAnim[frame].frame == 72)
{
do
{
walkAnim[frame].frame += 244;//stopping left
frame += 1;
}
while(frame < lastCount );
walkAnim[stepCount].frame = 322;
walkAnim[stepCount].step = 7;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
else if (walkAnim[frame].frame == 78)
{
do
{
walkAnim[frame].frame += 245;//stopping left
frame += 1;
}
while(frame < lastCount );
walkAnim[stepCount].frame = 329;
walkAnim[stepCount].step = 7;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
}
module = frInfo->framesPerChar + _modularPath[p-1].dir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = _modularPath[p-1].dir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 512;
stepCount += 1;
walkAnim[stepCount].frame = 512;
stepCount += 1;
walkAnim[stepCount].frame = 512;
//****************************************************************************
// SOLID
// NO END TURNS
//****************************************************************************
// Tdebug("RouteFinder RouteSize is %d", stepCount);
// now check the route
i = 0;
do
{
if (!check(_modularPath[i].x, _modularPath[i].y, _modularPath[i+1].x, _modularPath[i+1].y))
p=0;
i += 1;
}
while(i<p-1);
if (p != 0) {
frInfo->targetDir = _modularPath[p-1].dir;
if (checkTarget(moduleX,moduleY) == 3)// new target on a line
p = 0;
}
return p;
}
int32 SwordRouter::smoothestPath(uint16 startX, uint16 startY, uint16 startDir, int32 routeLength) {
/*
* This is the second big part of the route finder and the the only bit that tries to be clever
* (the other bits are clever).
* This part of the autorouter creates a list of modules from a set of lines running across the screen
* The task is complicated by two things;
* Firstly in chosing a route through the maze of nodes the routine tries to minimise the amount of each
* individual turn avoiding 90 degree and greater turns (where possible) and reduces the total nuber of
* turns (subject to two 45 degree turns being better than one 90 degree turn).
* Secondly when walking in a given direction the number of steps required to reach the end of that run
* is not calculated accurately. This is because I was unable to derive a function to relate number of
* steps taken between two points to the shrunken step size
*
*/
int32 dirS;
int32 dirD;
int32 dS;
int32 dD;
int32 dSS;
int32 dSD;
int32 dDS;
int32 dDD;
int32 SS;
int32 SD;
int32 DS;
int32 DD;
int32 temp;
2003-12-16 09:43:08 +00:00
int32 steps = 0;
int32 option;
int32 options;
int32 lastDir;
int32 nextDirS;
int32 nextDirD;
int32 tempturns[4];
int32 turns[4];
int32 turntable[NO_DIRECTIONS] = {0,1,3,5,7,5,3,1};
// route.X route.Y and route.Dir start at far end
_smoothPath[0].x = startX;
_smoothPath[0].y = startY;
_smoothPath[0].dir = startDir;
_smoothPath[0].num = 0;
lastDir = startDir;
// for each section of the route
for (int32 p = 0; p < routeLength; p++) {
dirS = _route[p].dirS;
dirD = _route[p].dirD;
nextDirS = _route[p+1].dirS;
nextDirD = _route[p+1].dirD;
// Check directions into and out of a pair of nodes
// going in
dS = dirS - lastDir;
if ( dS < 0)
dS = dS + NO_DIRECTIONS;
dD = dirD - lastDir;
if ( dD < 0)
dD = dD + NO_DIRECTIONS;
// coming out
dSS = dirS - nextDirS;
if ( dSS < 0)
dSS = dSS + NO_DIRECTIONS;
dDD = dirD - nextDirD;
if ( dDD < 0)
dDD = dDD + NO_DIRECTIONS;
dSD = dirS - nextDirD;
if ( dSD < 0)
dSD = dSD + NO_DIRECTIONS;
dDS = dirD - nextDirS;
if ( dDS < 0)
dDS = dDS + NO_DIRECTIONS;
// Determine the amount of turning involved in each possible path
dS = turntable[dS];
dD = turntable[dD];
dSS = turntable[dSS];
dDD = turntable[dDD];
dSD = turntable[dSD];
dDS = turntable[dDS];
// get the best path out ie assume next section uses best direction
if (dSD < dSS)
dSS = dSD;
if (dDS < dDD)
dDD = dDS;
// rate each option
SS = dS + dSS + 3; // Split routes look crap so weight against them
SD = dS + dDD;
DS = dD + dSS;
DD = dD + dDD + 3;
// set up turns as a sorted array of the turn values
tempturns[0] = SS;
turns[0] = 0;
tempturns[1] = SD;
turns[1] = 1;
tempturns[2] = DS;
turns[2] = 2;
tempturns[3] = DD;
turns[3] = 3;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (tempturns[j] > tempturns[j + 1]) {
temp = turns[j];
turns[j] = turns[j+1];
turns[j+1] = temp;
temp = tempturns[j];
tempturns[j] = tempturns[j+1];
tempturns[j+1] = temp;
}
}
}
// best option matched in order of the priority we would like to see on the screen
// but each option must be checked to see if it can be walked
options = newCheck(1, _route[p].x, _route[p].y, _route[p + 1].x, _route[p + 1].y);
if (options == 0)
error("BestTurns failed");
steps = 0;
for (int i = 0; (i < 4) && (steps == 0); i++) {
option = 1 << turns[i];
if (option & options)
steps = smoothCheck(turns[i],p,dirS,dirD);
}
if (steps == 0)
error("BestTurns failed");
// route.X route.Y route.dir and bestTurns start at far end
}
_smoothPath[steps].dir = 9;
_smoothPath[steps].num = ROUTE_END_FLAG;
return 1;
}
int32 SwordRouter::smoothCheck(int32 best, int32 p, int32 dirS, int32 dirD) {
static int32 k;
int32 tempK;
int32 x;
int32 y;
int32 x2;
int32 y2;
int32 dx;
int32 dy;
int32 dsx;
int32 dsy;
int32 ddx;
int32 ddy;
int32 dirX;
int32 dirY;
int32 ss0;
int32 ss1;
int32 ss2;
int32 sd0;
int32 sd1;
int32 sd2;
if (p == 0)
k = 1;
tempK = 0;
x = _route[p].x;
y = _route[p].y;
x2 = _route[p + 1].x;
y2 = _route[p + 1].y;
dx = x2 - x;
dy = y2 - y;
dirX = 1;
dirY = 1;
if (dx < 0) {
dx = -dx;
dirX = -1;
}
if (dy < 0) {
dy = -dy;
dirY = -1;
}
// set up sd0-ss2 to reflect possible movement in each direction
if ((dirS == 0) || (dirS == 4)) { // vert and diag
ddx = dx;
ddy = (dx*_diagonaly)/_diagonalx;
dsy = dy - ddy;
ddx = ddx * dirX;
ddy = ddy * dirY;
dsy = dsy * dirY;
dsx = 0;
sd0 = (ddx + _modX[dirD]/2) / _modX[dirD];
ss0 = (dsy + _modY[dirS]/2) / _modY[dirS];
sd1 = sd0/2;
ss1 = ss0/2;
sd2 = sd0 - sd1;
ss2 = ss0 - ss1;
} else {
ddy = dy;
ddx = (dy*_diagonalx)/_diagonaly;
dsx = dx - ddx;
ddy = ddy * dirY;
ddx = ddx * dirX;
dsx = dsx * dirX;
dsy = 0;
sd0 = (ddy + _modY[dirD]/2) / _modY[dirD];
ss0 = (dsx + _modX[dirS]/2) / _modX[dirS];
sd1 = sd0/2;
ss1 = ss0/2;
sd2 = sd0 - sd1;
ss2 = ss0 - ss1;
}
if (best == 0) { //halfsquare, diagonal, halfsquare
_smoothPath[k].x = x+dsx/2;
_smoothPath[k].y = y+dsy/2;
_smoothPath[k].dir = dirS;
_smoothPath[k].num = ss1;
k = k + 1;
_smoothPath[k].x = x+dsx/2+ddx;
_smoothPath[k].y = y+dsy/2+ddy;
_smoothPath[k].dir = dirD;
_smoothPath[k].num = sd0;
k = k + 1;
_smoothPath[k].x = x+dsx+ddx;
_smoothPath[k].y = y+dsy+ddy;
_smoothPath[k].dir = dirS;
_smoothPath[k].num = ss2;
k = k + 1;
tempK = k;
} else if (best == 1) { //square, diagonal
_smoothPath[k].x = x+dsx;
_smoothPath[k].y = y+dsy;
_smoothPath[k].dir = dirS;
_smoothPath[k].num = ss0;
k = k + 1;
_smoothPath[k].x = x2;
_smoothPath[k].y = y2;
_smoothPath[k].dir = dirD;
_smoothPath[k].num = sd0;
k = k + 1;
tempK = k;
} else if (best == 2) { //diagonal square
_smoothPath[k].x = x+ddx;
_smoothPath[k].y = y+ddy;
_smoothPath[k].dir = dirD;
_smoothPath[k].num = sd0;
k = k + 1;
_smoothPath[k].x = x2;
_smoothPath[k].y = y2;
_smoothPath[k].dir = dirS;
_smoothPath[k].num = ss0;
k = k + 1;
tempK = k;
} else { //halfdiagonal, square, halfdiagonal
_smoothPath[k].x = x+ddx/2;
_smoothPath[k].y = y+ddy/2;
_smoothPath[k].dir = dirD;
_smoothPath[k].num = sd1;
k = k + 1;
_smoothPath[k].x = x+dsx+ddx/2;
_smoothPath[k].y = y+dsy+ddy/2;
_smoothPath[k].dir = dirS;
_smoothPath[k].num = ss0;
k = k + 1;
_smoothPath[k].x = x2;
_smoothPath[k].y = y2;
_smoothPath[k].dir = dirD;
_smoothPath[k].num = sd2;
k = k + 1;
tempK = k;
}
return tempK;
}
void SwordRouter::slidyWalkAnimator(WalkData *walkAnim, FrameInfos *frInfo, int32 megaId) {
/****************************************************************************
* Skidding every where HardWalk creates an animation that exactly fits the
* smoothPath and uses foot slipping to fit whole steps into the route
* Parameters: georgeg,mouseg
* Returns: rout
*
* produce a module list from the line data
*
****************************************************************************/
static int32 left = 0;
int32 p;
int32 lastDir;
int32 lastRealDir;
int32 currentDir;
int32 turnDir;
int32 scale;
int32 step;
int32 module;
int32 moduleEnd;
int32 moduleX;
int32 moduleY;
int32 module16X = 0;
int32 module16Y = 0;
int32 stepX;
int32 stepY;
int32 errorX;
int32 errorY;
int32 lastErrorX;
int32 lastErrorY;
int32 lastCount;
int32 stepCount;
int32 frameCount;
int32 frames;
int32 frame;
lastDir = _modularPath[0].dir;
currentDir = _modularPath[1].dir;
if (currentDir == NO_DIRECTIONS)
currentDir = lastDir;
moduleX = frInfo->startX;
moduleY = frInfo->startY;
module16X = moduleX << 16;
module16Y = moduleY << 16;
stepCount = 0;
//****************************************************************************
// SLIDY
// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
//****************************************************************************
module = frInfo->framesPerChar + lastDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
//****************************************************************************
// SLIDY
// TURN TO START THE WALK
//****************************************************************************
// rotate if we need to
if (lastDir != currentDir)
{
// get the direction to turn
turnDir = currentDir - lastDir;
if ( turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to new walk direction
// for george and nico put in a head turn at the start
if ((megaId == GEORGE) || (megaId == NICO))
{
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
module = frInfo->turnFramesLeft + lastDir;
}
else
{
module = frInfo->turnFramesRight + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// rotate till were facing new dir then go back 45 degrees
while (lastDir != currentDir) {
lastDir += turnDir;
if ( turnDir < 0) { // new frames for turn frames
if ( lastDir < 0)
lastDir += NO_DIRECTIONS;
module = frInfo->turnFramesLeft + lastDir;
} else {
if ( lastDir > 7)
lastDir -= NO_DIRECTIONS;
module = frInfo->turnFramesRight + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// the back 45 degrees bit
stepCount -= 1;// step back one because new head turn for george takes us past the new dir
}
// his head is in the right direction
lastRealDir = currentDir;
//****************************************************************************
// SLIDY
// THE WALK
//****************************************************************************
if (left == 0)
left = frInfo->framesPerStep;
else
left = 0;
lastCount = stepCount;
lastDir = 99;// this ensures that we don't put in turn frames for the start
currentDir = 99;// this ensures that we don't put in turn frames for the start
p = 0;
do
{
while (_modularPath[p].num == 0)
{
p = p + 1;
if (currentDir != 99)
lastRealDir = currentDir;
lastDir = currentDir;
lastCount = stepCount;
}
//calculate average amount to lose in each step on the way to the next node
currentDir = _modularPath[p].dir;
if (currentDir < NO_DIRECTIONS)
{
module = currentDir * frInfo->framesPerStep * 2 + left;
if (left == 0)
left = frInfo->framesPerStep;
else
left = 0;
moduleEnd = module + frInfo->framesPerStep;
step = 0;
scale = (frInfo->scaleA * moduleY + frInfo->scaleB);
do {
module16X += _dx[module]*scale;
module16Y += _dy[module]*scale;
moduleX = module16X >> 16;
moduleY = module16Y >> 16;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = step;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
step += 1;
module += 1;
} while( module < moduleEnd);
stepX = _modX[_modularPath[p].dir];
stepY = _modY[_modularPath[p].dir];
errorX = _modularPath[p].x - moduleX;
errorX = errorX * stepX;
errorY = _modularPath[p].y - moduleY;
errorY = errorY * stepY;
if ((errorX < 0) || (errorY < 0)) {
_modularPath[p].num = 0; // the end of the path
// okay those last steps took us past our target but do we want to scoot or moonwalk
frames = stepCount - lastCount;
errorX = _modularPath[p].x - walkAnim[stepCount-1].x;
errorY = _modularPath[p].y - walkAnim[stepCount-1].y;
if (frames > frInfo->framesPerStep) {
lastErrorX = _modularPath[p].x - walkAnim[stepCount-7].x;
lastErrorY = _modularPath[p].y - walkAnim[stepCount-7].y;
if (stepX==0) {
if (3*abs(lastErrorY) < abs(errorY)) { //the last stop was closest
stepCount -= frInfo->framesPerStep;
if (left == 0)
left = frInfo->framesPerStep;
else
left = 0;
}
} else {
if (3*abs(lastErrorX) < abs(errorX)) { //the last stop was closest
stepCount -= frInfo->framesPerStep;
if (left == 0)
left = frInfo->framesPerStep;
else
left = 0;
}
}
}
errorX = _modularPath[p].x - walkAnim[stepCount-1].x;
errorY = _modularPath[p].y - walkAnim[stepCount-1].y;
// okay we've reached the end but we still have an error
if (errorX != 0) {
frameCount = 0;
frames = stepCount - lastCount;
do {
frameCount += 1;
walkAnim[lastCount + frameCount - 1].x += errorX*frameCount/frames;
} while(frameCount<frames);
}
if (errorY != 0) {
frameCount = 0;
frames = stepCount - lastCount;
do {
frameCount += 1;
walkAnim[lastCount + frameCount-1].y += errorY*frameCount/frames;
} while(frameCount<frames);
}
// Now is the time to put in the turn frames for the last turn
if (frames < frInfo->framesPerStep)
currentDir = 99;// this ensures that we don't put in turn frames for this walk or the next
if (currentDir != 99)
lastRealDir = currentDir;
// check each turn condition in turn
if (((lastDir != 99) && (currentDir != 99)) && (megaId == GEORGE)) { // only for george
lastDir = currentDir - lastDir;//1 and -7 going right -1 and 7 going left
if (((lastDir == -1) || (lastDir == 7)) || ((lastDir == -2) || (lastDir == 6))) {
// turn at the end of the last walk
frame = lastCount - frInfo->framesPerStep;
do {
walkAnim[frame].frame += 104;//turning left
frame += 1;
} while(frame < lastCount );
}
if (((lastDir == 1) || (lastDir == -7)) || ((lastDir == 2) || (lastDir == -6))) {
// turn at the end of the current walk
frame = lastCount - frInfo->framesPerStep;
do {
walkAnim[frame].frame += 200; //was 60 now 116
frame += 1;
} while(frame < lastCount );
}
lastDir = currentDir;
}
// all turns checked
lastCount = stepCount;
moduleX = walkAnim[stepCount-1].x;
moduleY = walkAnim[stepCount-1].y;
module16X = moduleX << 16;
module16Y = moduleY << 16;
}
}
} while (_modularPath[p].dir < NO_DIRECTIONS);
if (lastRealDir == 99)
error("SlidyWalkAnimator direction error");
if (frInfo->targetDir == NO_DIRECTIONS) { // stand in the last direction
module = frInfo->standFrames + lastRealDir;
frInfo->targetDir = lastRealDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
if (frInfo->targetDir == 9) {
if (stepCount == 0) {
module = frInfo->framesPerChar + lastRealDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
} else if (frInfo->targetDir != lastRealDir) { // rotate to targetDir
// rotate to target direction
turnDir = frInfo->targetDir - lastRealDir;
if ( turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to target direction
// for george and nico put in a head turn at the start
if ((megaId == GEORGE) || (megaId == NICO)) {
if ( turnDir < 0) // new frames for turn frames 29oct95jps
module = frInfo->turnFramesLeft + lastDir;
else
module = frInfo->turnFramesRight + lastDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// rotate if we need to
while (lastRealDir != frInfo->targetDir) {
lastRealDir += turnDir;
if ( turnDir < 0) { // new frames for turn frames 29oct95jps
if ( lastRealDir < 0)
lastRealDir += NO_DIRECTIONS;
module = frInfo->turnFramesLeft + lastRealDir;
} else {
if ( lastRealDir > 7)
lastRealDir -= NO_DIRECTIONS;
module = frInfo->turnFramesRight + lastRealDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
module = frInfo->standFrames + lastRealDir;
walkAnim[stepCount-1].frame = module;
} else { // just stand at the end
module = frInfo->standFrames + lastRealDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
walkAnim[stepCount].frame = 512;
stepCount += 1;
walkAnim[stepCount].frame = 512;
stepCount += 1;
walkAnim[stepCount].frame = 512;
}
/****************************************************************************
* ExtractRoute gets route from the node data after a full scan, route is
* written with just the basic way points and direction options for heading
* to the next point.
****************************************************************************/
int32 SwordRouter::extractRoute(int32 targetDir) {
int32 prev;
int32 prevx;
int32 prevy;
int32 last;
int32 point;
int32 dirx;
int32 diry;
int32 dir;
// extract the route from the node data
prev = _nNodes;
last = prev;
point = O_ROUTE_SIZE - 1;
_route[point].x = _node[last].x;
_route[point].y = _node[last].y;
while (prev > 0) {
point = point - 1;
prev = _node[last].prev;
prevx = _node[prev].x;
prevy = _node[prev].y;
_route[point].x = prevx;
_route[point].y = prevy;
last = prev;
}
int32 routeLength = 0;
do {
_route[routeLength].x = _route[point].x;
_route[routeLength].y = _route[point].y;
point = point + 1;
routeLength = routeLength + 1;
} while (point < O_ROUTE_SIZE);
for (int p = 0; p < routeLength; p++) {
int32 dx = _route[p+1].x - _route[p].x;
int32 dy = _route[p+1].y - _route[p].y;
dirx = 1;
diry = 1;
if (dx < 0)
{
dx = -dx;
dirx = -1;
}
if (dy < 0)
{
dy = -dy;
diry = -1;
}
if ((_diagonaly * dx) > (_diagonalx * dy)) // dir = 1,2 or 2,3 or 5,6 or 6,7
{
dir = 4 - 2 * dirx; // 2 or 6
_route[p].dirS = dir;
dir = dir + diry * dirx; // 1,3,5 or 7
_route[p].dirD = dir;
}
else // dir = 7,0 or 0,1 or 3,4 or 4,5
{
dir = 2 + 2 * diry; // 0 or 4
_route[p].dirS = dir;
dir = 4 - 2 * dirx; // 2 or 6
dir = dir + diry * dirx; // 1,3,5 or 7
_route[p].dirD = dir;
}
}
if (targetDir == 8) // ANY direction
{
_route[routeLength].dirS = _route[routeLength-1].dirS;
_route[routeLength].dirD = _route[routeLength-1].dirD;
}
else
{
_route[routeLength].dirS = targetDir;
_route[routeLength].dirD = targetDir;
}
return routeLength;
}
int SwordRouter::getRoute() {
int32 routeRes;
if ((_node[0].x == _node[_nNodes].x) && (_node[0].y == _node[_nNodes].y))
routeRes = 2; // start is the same as destination
else
routeRes = checkTarget(_node[_nNodes].x, _node[_nNodes].y);
if (routeRes == 0) { // still looking for a route check if target is within a pixel of a line
int32 level = 1;
int changed;
do
{
changed = scan(level);
level++;
} while(changed == 1);
if (_node[_nNodes].dist < 9999) // did we reach the target?
routeRes = 1;
}
return routeRes;
}
int SwordRouter::scan(int32 level) {
int32 distance;
int changed = 0;
// For all the nodes that have new values and a distance less than enddist
// ie dont check for new routes from a point we checked before or from a point
// that is already further away than the best route so far.
for (int32 i = 0; i < _nNodes; i++) {
if ((_node[i].dist < _node[_nNodes].dist) && (_node[i].level == level)) {
int16 x1 = _node[i].x;
int16 y1 = _node[i].y;
for (int32 k = _nNodes; k > 0; k--) {
if (_node[k].dist > _node[i].dist) {
int16 x2 = _node[k].x;
int16 y2 = _node[k].y;
if (abs(x2 - x1) > (4.5 * abs(y2 - y1)))
distance = (8 * abs(x2 - x1) + 18 * abs(y2 - y1)) / (54 * 8) + 1;
else
distance = (6 * abs(x2 - x1) + 36 * abs(y2 - y1)) / (36 * 14) + 1;
if ((distance + _node[i].dist < _node[_nNodes].dist) && (distance + _node[i].dist < _node[k].dist)) {
//if (int temp = newCheck(0, x1, y1, x2, y2)) {
if (newCheck(0, x1, y1, x2, y2)) {
_node[k].level = level + 1;
_node[k].dist = distance + _node[i].dist;
_node[k].prev = i;
changed = 1;
}
}
}
}
}
}
return changed;
}
/*******************************************************************************
* NewCheck routine checks if the route between two points can be achieved
* without crossing any of the bars in the Bars array.
*
* NewCheck differs from check in that that 4 route options are considered
* corresponding to actual walked routes.
*
* Note distance doesnt take account of shrinking ???
*
* Note Bars array must be properly calculated ie min max dx dy co
*******************************************************************************/
int SwordRouter::newCheck(int32 status, int16 x1, int16 x2, int16 y1, int16 y2) {
int32 ldx;
int32 ldy;
int32 dlx;
int32 dly;
int32 dirX;
int32 dirY;
int32 step1;
int32 step2;
int32 step3;
int32 steps;
int32 options;
steps = 0;
options = 0;
ldx = x2 - x1;
ldy = y2 - y1;
dirX = 1;
dirY = 1;
if (ldx < 0) {
ldx = -ldx;
dirX = -1;
}
if (ldy < 0) {
ldy = -ldy;
dirY = -1;
}
// make the route options
if (_diagonaly * ldx > _diagonalx * ldy) {
// dir = 1,2 or 2,3 or 5,6 or 6,7
dly = ldy;
dlx = (ldy * _diagonalx) / _diagonaly;
ldx = ldx - dlx;
dlx = dlx * dirX;
dly = dly * dirY;
ldx = ldx * dirX;
ldy = 0;
//options are
//square, diagonal a code 1 route
step1 = check(x1, y1, x1 + ldx, y1);
if (step1 != 0) {
step2 = check(x1 + ldx, y1, x2, y2);
if (step2 != 0) {
steps = step1 + step2;
options = options + 2;
}
}
//diagonal, square a code 2 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x1 + dlx, y1 + dly);
if (step1 != 0) {
step2 = check(x1 + dlx, y2, x2, y2);
if (step2 != 0) {
steps = step1 + step2;
options = options + 4;
}
}
}
//halfsquare, diagonal, halfsquare a code 0 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x1 + ldx / 2, y1);
if (step1 != 0) {
step2 = check(x1 + ldx / 2, y1, x1 + ldx / 2 + dlx, y2);
if (step2 != 0) {
step3 = check(x1 + ldx / 2 + dlx, y2, x2, y2);
if (step3 != 0) {
steps = step1 + step2 + step3;
options++;
}
}
}
}
//halfdiagonal, square, halfdiagonal a code 3 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x1 + dlx / 2, y1 + dly / 2);
if (step1 != 0) {
step2 = check(x1 + dlx / 2, y1 + dly / 2, x1 + ldx + dlx / 2, y1 + dly / 2);
if (step2 != 0) {
step3 = check(x1 + ldx + dlx / 2, y1 + dly / 2, x2, y2);
if (step3 != 0) {
steps = step1 + step2 + step3;
options = options + 8;
}
}
}
}
} else {
// dir = 7,0 or 0,1 or 3,4 or 4,5
dlx = ldx;
dly = (ldx * _diagonaly) / _diagonalx;
ldy = ldy - dly;
dlx = dlx * dirX;
dly = dly * dirY;
ldy = ldy * dirY;
ldx = 0;
//options are
//square, diagonal a code 1 route
step1 = check(x1 ,y1, x1, y1 + ldy);
if (step1 != 0) {
step2 = check(x1, y1 + ldy, x2, y2);
if (step2 != 0) {
steps = step1 + step2;
options = options + 2;
}
}
//diagonal, square a code 2 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x2, y1 + dly);
if (step1 != 0) {
step2 = check(x2, y1 + dly, x2, y2);
if (step2 != 0) {
steps = step1 + step2;
options = options + 4;
}
}
}
//halfsquare, diagonal, halfsquare a code 0 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x1, y1 + ldy / 2);
if (step1 != 0) {
step2 = check(x1, y1 + ldy / 2, x2, y1 + ldy / 2 + dly);
if (step2 != 0) {
step3 = check(x2, y1 + ldy / 2 + dly, x2, y2);
if (step3 != 0) {
steps = step1 + step2 + step3;
options++;
}
}
}
}
//halfdiagonal, square, halfdiagonal a code 3 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x1 + dlx / 2, y1 + dly / 2);
if (step1 != 0) {
step2 = check(x1 + dlx / 2, y1 + dly / 2, x1 + dlx / 2, y1 + ldy + dly / 2);
if (step2 != 0) {
step3 = check(x1 + dlx / 2, y1 + ldy + dly / 2, x2, y2);
if (step3 != 0) {
steps = step1 + step2 + step3;
options = options + 8;
}
}
}
}
}
if (status == 0)
status = steps;
else
status = options;
return status;
}
int SwordRouter::check(int16 x1, int16 y1, int16 x2, int16 y2) {
//call the fastest line check for the given line
//returns 1 if line didn't cross any bars
int steps;
if ((x1 == x2) && (y1 == y2))
steps = 1;
else if (x1 == x2)
steps = vertCheck(x1, y1, y2);
else if (y1 == y2)
steps = horizCheck(x1, y1, x2);
else
steps = lineCheck(x1, y1, x2, y2);
return steps;
}
int SwordRouter::horizCheck(int16 x1, int16 y, int16 x2) {
int32 ldy;
int32 i;
int32 xc;
int32 xmin;
int32 xmax;
int32 linesCrossed = 1;
if (x1 > x2) {
xmin = x2;
xmax = x1;
} else {
xmin = x1;
xmax = x2;
}
// line set to go one step in chosen direction
// so ignore if it hits anything
i = 0;
do {
// skip if not on module
if (xmax >= _bars[i].xmin && xmin <= _bars[i].xmax) {
// skip if not on module
if (y >= _bars[i].ymin && y <= _bars[i].ymax) {
// okay its a valid line calculate an intercept
// wow but all this arithmetic we must have
// loads of time
if (_bars[i].dy == 0)
linesCrossed = 0;
else {
ldy = y - _bars[i].y1;
xc = _bars[i].x1 + (_bars[i].dx * ldy) / _bars[i].dy;
// skip if not on module
if (xc >= xmin - 1 && xc <= xmax + 1)
linesCrossed = 0;
}
}
}
i++;
} while (i < _nBars && linesCrossed);
return linesCrossed;
}
int SwordRouter::vertCheck(int16 x, int16 y1, int16 y2) {
int32 ldx;
int32 i;
int32 yc;
int32 ymin;
int32 ymax;
int32 linesCrossed = 1;
if (y1 > y2) {
ymin = y2;
ymax = y1;
} else {
ymin = y1;
ymax = y2;
}
// line set to go one step in chosen direction
// so ignore if it hits anything
i = 0;
do {
if (x >= _bars[i].xmin && x <= _bars[i].xmax) {
// overlapping
// skip if not on module
if (ymax >= _bars[i].ymin && ymin <= _bars[i].ymax) {
// okay its a valid line calculate an intercept
// wow but all this arithmetic we must have
// loads of time
// both lines vertical and overlap in x and y
// so they cross
if (_bars[i].dx == 0)
linesCrossed = 0;
else {
ldx = x - _bars[i].x1;
yc = _bars[i].y1 + (_bars[i].dy * ldx) / _bars[i].dx;
// the intercept overlaps
if (yc >= ymin - 1 && yc <= ymax + 1)
linesCrossed = 0;
}
}
}
i++;
} while (i < _nBars && linesCrossed);
return linesCrossed;
}
int SwordRouter::lineCheck(int16 x1, int16 y1, int16 x2, int16 y2) {
int32 dirx;
int32 diry;
int32 co;
int32 slope;
int32 i;
int32 xc;
int32 yc;
int32 xmin;
int32 ymin;
int32 xmax;
int32 ymax;
int32 linesCrossed = 1;
if (x1 > x2) {
xmin = x2;
xmax = x1;
} else {
xmin = x1;
xmax = x2;
}
if (y1 > y2) {
ymin = y2;
ymax = y1;
} else {
ymin = y1;
ymax = y2;
}
// line set to go one step in chosen direction
// so ignore if it hits anything
dirx = x2 - x1;
diry = y2 - y1;
co = (y1 * dirx)- (x1 * diry); // new line equation
i = 0;
do {
// skip if not on module
if (xmax >= _bars[i].xmin && xmin <= _bars[i].xmax) {
// skip if not on module
if (ymax >= _bars[i].ymin && ymin <= _bars[i].ymax) {
// okay its a valid line calculate an intercept
// wow but all this arithmetic we must have
// loads of time
// slope it he slope between the two lines
slope = (_bars[i].dx * diry) - (_bars[i].dy *dirx);
// assuming parallel lines don't cross
if (slope != 0) {
// calculate x intercept and check its
// on both lines
xc = ((_bars[i].co * dirx) - (co * _bars[i].dx)) / slope;
// skip if not on module
if (xc >= xmin - 1 && xc <= xmax + 1) {
// skip if not on line
if (xc >= _bars[i].xmin - 1 && xc <= _bars[i].xmax + 1) {
yc = ((_bars[i].co * diry) - (co * _bars[i].dy)) / slope;
// skip if not on module
if (yc >= ymin - 1 && yc <= ymax + 1) {
// skip if not on line
if (yc >= _bars[i].ymin - 1 && yc <= _bars[i].ymax + 1) {
linesCrossed = 0;
}
}
}
}
}
}
}
i++;
} while (i < _nBars && linesCrossed);
return linesCrossed;
}
int SwordRouter::checkTarget(int16 x, int16 y) {
int32 dx, dy, xc, yc, xmin, xmax, ymin, ymax;
int32 onLine = 0;
xmin = x - 1;
xmax = x + 1;
ymin = y - 1;
ymax = y + 1;
for (int i = 0; (i < _nBars) && (onLine == 0); i++) {
if ((xmax >= _bars[i].xmin) && (xmin <= _bars[i].xmax)) { //overlapping line
if ((ymax >= _bars[i].ymin) && ( ymin <= _bars[i].ymax)) { //overlapping line
// okay this line overlaps the target, calculate an y intersept for x
if (_bars[i].dx == 0) // vertical line so we know it overlaps y
yc = 0;
else {
dx = x - _bars[i].x1;
yc = _bars[i].y1 + (_bars[i].dy * dx) / _bars[i].dx;
}
if ((yc >= ymin) && (yc <= ymax)) //overlapping point for y
onLine = 3; // target on a line so drop out
else {
if (_bars[i].dy == 0) // vertical line so we know it overlaps y
xc = 0;
else {
dy = y- _bars[i].y1;
xc = _bars[i].x1 + (_bars[i].dx * dy) / _bars[i].dy;
}
if ((xc >= xmin) && (xc <= xmax)) //skip if not on module
onLine = 3;// target on a line so drop out
}
}
}
}
return onLine;
}
void SwordRouter::resetExtraData(void) {
_numExtraBars = _numExtraNodes = 0;
}
void SwordRouter::setPlayerTarget(int32 x, int32 y, int32 dir, int32 stance) {
_playerTargetX = x;
_playerTargetY = y;
_playerTargetDir = dir;
_playerTargetStance = stance;
}
void SwordRouter::loadWalkResources(int32 megaId, BsObject *mega, int32 x, int32 y, int32 dir) {
WalkGridHeader *floorHeader;
int32 walkGridId = _objMan->fetchObject(mega->o_place)->o_resource;
uint8 *fPolyGrid = (uint8*)_resMan->openFetchRes(walkGridId);
floorHeader = (WalkGridHeader*)(fPolyGrid + sizeof(Header));
fPolyGrid += sizeof(WalkGridHeader) + sizeof(Header);
_nBars = FROM_LE_32(floorHeader->numBars);
_nNodes = FROM_LE_32(floorHeader->numNodes) + 1;
if ((_nBars >= O_GRID_SIZE) || (_nNodes >= O_GRID_SIZE))
error("loadWalkResources: resource has %d bars and %d nodes", _nBars, _nNodes);
for (int32 cnt = 0; cnt < _nBars; cnt++) {
_bars[cnt].x1 = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_bars[cnt].y1 = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_bars[cnt].x2 = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_bars[cnt].y2 = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_bars[cnt].xmin = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_bars[cnt].ymin = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_bars[cnt].xmax = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_bars[cnt].ymax = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_bars[cnt].dx = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_bars[cnt].dy = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_bars[cnt].co = READ_LE_UINT32(fPolyGrid); fPolyGrid += 4;
}
//_nBars = 0;
// leave node 0 for start node
for (int32 cnt = 1; cnt < _nNodes; cnt++) {
_node[cnt].x = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
_node[cnt].y = READ_LE_UINT16(fPolyGrid); fPolyGrid += 2;
}
_resMan->resClose(walkGridId);
// floor grid loaded. Copy george's extra bars and nodes.
if (megaId == GEORGE) {
memcpy(_bars + _nBars, _extraBars, _numExtraBars * sizeof(BarData));
_nBars += _numExtraBars;
for (int32 cnt = 0; cnt < _numExtraNodes; cnt++) {
_node[_nNodes + cnt].x = _extraNodes[cnt].x;
_node[_nNodes + cnt].y = _extraNodes[cnt].y;
}
_nNodes += _numExtraNodes;
}
uint8 *walkData = (uint8*)_resMan->openFetchRes(mega->o_mega_resource);
_nWalkFrames = walkData[0];
_nTurnFrames = walkData[1];
walkData += 2;
for (int32 cnt = 0; cnt < NO_DIRECTIONS * (_nWalkFrames + 1 + _nTurnFrames); cnt++) {
_dx[cnt] = READ_LE_UINT32(walkData);
walkData += 4;
}
for (int32 cnt = 0; cnt < NO_DIRECTIONS * (_nWalkFrames + 1 + _nTurnFrames); cnt++) {
_dy[cnt] = READ_LE_UINT32(walkData);
walkData += 4;
}
for (int32 cnt = 0; cnt < NO_DIRECTIONS; cnt++) {
_modX[cnt] = READ_LE_UINT32(walkData);
walkData += 4;
}
for (int32 cnt = 0; cnt < NO_DIRECTIONS; cnt++) {
_modY[cnt] = READ_LE_UINT32(walkData);
walkData += 4;
}
_resMan->resClose(mega->o_mega_resource);
_diagonalx = _modX[3];
_diagonaly = _modY[3];
if ((_diagonalx != 36) || (_diagonaly != 8))
warning("DiagX = %d, DiagY = %d", _diagonalx, _diagonaly);
// mega data ready
// finish setting grid by putting mega node at begining
// and target node at end and reset current values
_node[0].x = mega->o_xcoord; // the start
_node[0].y = mega->o_ycoord; //
_node[0].dist = 0;
_node[0].prev = 0;
_node[0].level = 1;
for (int32 cnt = 1; cnt <= _nNodes; cnt++) {
_node[cnt].dist = 9999;
_node[cnt].prev = 0;
_node[cnt].level = 0;
}
_node[_nNodes].x = x; // the destination
_node[_nNodes].y = y; //
}
int SwordRouter::whatTarget(int32 startX, int32 startY, int32 destX, int32 destY) {
int tar_dir;
//setting up
int deltaX = destX-startX;
int deltaY = destY-startY;
int signX = (deltaX > 0);
int signY = (deltaY > 0);
int slope;
if ( (abs(deltaY) * _diagonalx ) < (abs(deltaX) * _diagonaly / 2))
slope = 0;// its flat
else if ( (abs(deltaY) * _diagonalx / 2) > (abs(deltaX) * _diagonaly ) )
slope = 2;// its vertical
else
slope = 1;// its diagonal
if (slope == 0) { //flat
if (signX == 1) // going right
tar_dir = 2;
else
tar_dir = 6;
} else if (slope == 2) { //vertical
if (signY == 1) // going down
tar_dir = 4;
else
tar_dir = 0;
} else if (signX == 1) { //right diagonal
if (signY == 1) // going down
tar_dir = 3;
else
tar_dir = 1;
} else { //left diagonal
if (signY == 1) // going down
tar_dir = 5;
else
tar_dir = 7;
}
return tar_dir;
}