scummvm/sword2/driver/sprite.cpp

739 lines
19 KiB
C++
Raw Normal View History

2003-07-28 01:47:41 +00:00
/* Copyright (C) 1994-2003 Revolution Software Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*/
//=============================================================================
//
// Filename : sprite.c
// Created : 23rd September 1996
// By : P.R.Porter
//
// Summary : This module holds the sprite drawing functions.
//
// Functions
// ---------
//
// --------------------------------------------------------------------------
//
// int32 CreateSurface(_spriteInfo *s, uint32 *surface)
//
// Creates a sprite surface in video memory (if possible) and returns it's
// handle in surface.
//
// ---------------------------------------------------------------------------
//
// int32 DrawSurface(_spriteInfo *s, uint32 surface, ScummVM::Rect *clipRect)
2003-07-28 01:47:41 +00:00
//
// Draws the sprite surface created earlier. If the surface has been lost,
// it is recreated.
//
// ---------------------------------------------------------------------------
//
// int32 DeleteSurface(uint32 surface)
//
// Deletes a surface from video memory.
//
// --------------------------------------------------------------------------
//
// int32 DrawSprite(_spriteInfo *s)
//
// Draws a sprite onto the screen. The _spriteInfo structure holds all of
// the information needed to draw the sprite - see driver96.h for details
//
//=============================================================================
2003-07-28 03:12:49 +00:00
#include "stdafx.h"
2003-07-28 01:47:41 +00:00
#include "driver96.h"
#include "d_draw.h"
#include "render.h"
#include "menu.h"
#include "palette.h"
#include "rdwin.h"
2003-07-28 01:47:41 +00:00
char shitColourTable[1024];
static uint8 *lightMask = 0;
// --------------------------------------------------------------------------
2003-07-28 01:47:41 +00:00
//
// int32 MirrorSprite(uint8 *dst, uint8 *src, int16 w, int16 h)
2003-07-28 01:47:41 +00:00
//
// This function takes the sprite pointed to by src and creates a mirror
// image of it in dst.
2003-07-28 01:47:41 +00:00
//
// --------------------------------------------------------------------------
2003-07-28 01:47:41 +00:00
int32 MirrorSprite(uint8 *dst, uint8 *src, int16 w, int16 h) {
2003-07-28 01:47:41 +00:00
int16 x, y;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
*dst++ = *(src + w - x - 1);
2003-07-28 01:47:41 +00:00
}
src += w;
}
return RD_OK;
2003-07-28 01:47:41 +00:00
}
// --------------------------------------------------------------------------
2003-07-28 01:47:41 +00:00
//
// int32 DecompressRLE256(uint8 *dest, uint8 *source, int32 decompSize)
2003-07-28 01:47:41 +00:00
//
// This function takes a compressed frame of a sprite (with up to 256 colours)
// and decompresses it into the area of memory marked by the destination
// pointer. The decompSize is used to measure when the decompression process
// has completed.
2003-07-28 01:47:41 +00:00
//
// --------------------------------------------------------------------------
int32 DecompressRLE256(uint8 *dest, uint8 *source, int32 decompSize) {
2003-07-28 01:47:41 +00:00
// PARAMETERS:
// source points to the start of the sprite data for input
2003-07-28 01:47:41 +00:00
// decompSize gives size of decompressed data in bytes
// dest points to start of destination buffer for decompressed
// data
2003-07-28 01:47:41 +00:00
uint8 headerByte; // block header byte
uint8 *endDest = dest + decompSize; // pointer to byte after end of decomp buffer
2003-07-28 01:47:41 +00:00
int32 rv;
while(1) {
2003-07-28 01:47:41 +00:00
// FLAT block
// read FLAT block header & increment 'scan' to first pixel
// of block
headerByte = *source++;
2003-07-28 01:47:41 +00:00
// if this isn't a zero-length block
if (headerByte) {
if (dest + headerByte > endDest) {
2003-07-28 01:47:41 +00:00
rv = 1;
break;
}
// set the next 'headerByte' pixels to the next colour
// at 'source'
memset(dest, *source, headerByte);
2003-07-28 01:47:41 +00:00
// increment destination pointer to just after this
// block
dest += headerByte;
// increment source pointer to just after this colour
source++;
// if we've decompressed all of the data
if (dest == endDest) {
rv = 0; // return "OK"
2003-07-28 01:47:41 +00:00
break;
}
}
2003-07-28 01:47:41 +00:00
// RAW block
// read RAW block header & increment 'scan' to first pixel of
// block
headerByte = *source++;
2003-07-28 01:47:41 +00:00
// if this isn't a zero-length block
if (headerByte) {
if (dest + headerByte > endDest) {
2003-07-28 01:47:41 +00:00
rv = 1;
break;
}
// copy the next 'headerByte' pixels from source to
// destination
memcpy(dest,source,headerByte);
// increment destination pointer to just after this
// block
dest += headerByte;
// increment source pointer to just after this block
source += headerByte;
2003-07-28 01:47:41 +00:00
// if we've decompressed all of the data
if (dest == endDest) {
rv = 0; // return "OK"
2003-07-28 01:47:41 +00:00
break;
}
}
}
return rv;
2003-07-28 01:47:41 +00:00
}
// --------------------------------------------------------------------------
2003-07-28 01:47:41 +00:00
//
// void UnwindRaw16(uint8 *dest, uint8 *source, uint8 blockSize, uint8 *colTable)
2003-07-28 01:47:41 +00:00
//
// This function unwinds a run of colour 16 data into 256 colour palette data.
// --------------------------------------------------------------------------
2003-07-28 01:47:41 +00:00
void UnwindRaw16(uint8 *dest, uint8 *source, uint8 blockSize, uint8 *colTable) {
// for each pair of pixels
while (blockSize > 1) {
// 1st colour = number in table at position given by upper
// nibble of source byte
*dest++ = colTable[(*source) >> 4];
2003-07-28 01:47:41 +00:00
// 2nd colour = number in table at position given by lower
// nibble of source byte
*dest++ = colTable[(*source) & 0x0f];
2003-07-28 01:47:41 +00:00
// point to next source byte
source++;
2003-07-28 01:47:41 +00:00
// decrement count of how many pixels left to read
blockSize -= 2;
}
// if there's a final odd pixel
if (blockSize) {
// colour = number in table at position given by upper nibble
// of source byte
*dest++ = colTable[(*source) >> 4];
}
}
// --------------------------------------------------------------------------
2003-07-28 01:47:41 +00:00
//
// int32 DecompressRLE16(uint8 *dest, uint8 *source, int32 decompSize, uint8 *colTable)
2003-07-28 01:47:41 +00:00
//
// This function takes a compressed frame of a sprite (with up to 16 colours)
// and decompresses it into the area of memory marked by the destination
// pointer. The decompSize is used to measure when the decompression process
// has completed. The colour table which maps the 16 encoded colours to the
// current palette is passed in to colTable.
2003-07-28 01:47:41 +00:00
//
// --------------------------------------------------------------------------
int32 DecompressRLE16(uint8 *dest, uint8 *source, int32 decompSize, uint8 *colTable) {
2003-07-28 01:47:41 +00:00
// PARAMETERS:
// source points to the start of the sprite data for input
2003-07-28 01:47:41 +00:00
// decompSize gives size of decompressed data in bytes
// dest points to start of destination buffer for decompressed
// data
// colTable points to a 16-byte table of colours used to encode
// the RAW pixels into 4-bits each
2003-07-28 01:47:41 +00:00
uint8 headerByte; // block header byte
uint8 *endDest = dest + decompSize; // pointer to byte after end of decomp buffer
2003-07-28 01:47:41 +00:00
int32 rv;
while(1) {
2003-07-28 01:47:41 +00:00
// FLAT block
// read FLAT block header & increment 'scan' to first pixel
// of block
headerByte = *source++;
2003-07-28 01:47:41 +00:00
// if this isn't a zero-length block
if (headerByte) {
if (dest + headerByte > endDest) {
2003-07-28 01:47:41 +00:00
rv = 1;
break;
}
// set the next 'headerByte' pixels to the next
// colour at 'source'
memset(dest, *source, headerByte);
// increment destination pointer to just after this
// block
dest += headerByte;
// increment source pointer to just after this colour
source++;
2003-07-28 01:47:41 +00:00
// if we've decompressed all of the data
if (dest == endDest) {
rv = 0; // return "OK"
2003-07-28 01:47:41 +00:00
break;
}
}
2003-07-28 01:47:41 +00:00
// RAW block
// read RAW block header & increment 'scan' to first pixel of
// block
headerByte = *source++;
2003-07-28 01:47:41 +00:00
// if this isn't a zero-length block
if (headerByte) {
if (dest + headerByte > endDest) {
2003-07-28 01:47:41 +00:00
rv = 1;
break;
}
// copy the next 'headerByte' pixels from source to
// destination (NB. 2 pixels per byte)
UnwindRaw16(dest, source, headerByte, colTable);
2003-07-28 01:47:41 +00:00
// increment destination pointer to just after this
// block
dest += headerByte;
2003-07-28 01:47:41 +00:00
// increment source pointer to just after this block
// (NB. headerByte gives pixels, so /2 for bytes)
source += (headerByte + 1) / 2;
2003-07-28 01:47:41 +00:00
// if we've decompressed all of the data
if (dest >= endDest) {
rv = 0; // return "OK"
break;
2003-07-28 01:47:41 +00:00
}
}
}
return rv;
2003-07-28 01:47:41 +00:00
}
2003-09-08 17:24:00 +00:00
// The surface functions are used by the in-game dialogs and for displaying
// cutscene subtitles. Everything that isn't needed for those cases (blending,
// scaling, etc.) has been removed.
2003-07-28 01:47:41 +00:00
int32 CreateSurface(_spriteInfo *s, uint8 **sprite) {
uint8 *newSprite;
2003-07-28 01:47:41 +00:00
*sprite = (uint8 *) malloc(s->w * s->h);
if (!*sprite)
return RDERR_OUTOFMEMORY;
2003-07-28 01:47:41 +00:00
if (s->type & RDSPR_NOCOMPRESSION) {
memcpy(*sprite, s->data, s->w * s->h);
} else {
if ((s->type >> 8) == (RDSPR_RLE16 >> 8)) {
if (DecompressRLE16(*sprite, s->data, s->w * s->h, s->colourTable)) {
free(*sprite);
return RDERR_DECOMPRESSION;
}
} else {
if (DecompressRLE256(*sprite, s->data, s->w * s->h)) {
free(*sprite);
return RDERR_DECOMPRESSION;
}
2003-07-28 01:47:41 +00:00
}
if (s->type & RDSPR_FLIP) {
2003-07-28 01:47:41 +00:00
newSprite = (uint8 *) malloc(s->w * s->h);
if (!newSprite) {
free(*sprite);
return RDERR_OUTOFMEMORY;
2003-07-28 01:47:41 +00:00
}
MirrorSprite(newSprite, *sprite, s->w, s->h);
free(*sprite);
*sprite = newSprite;
2003-07-28 01:47:41 +00:00
}
}
return RD_OK;
2003-07-28 01:47:41 +00:00
}
void DrawSurface(_spriteInfo *s, uint8 *surface, ScummVM::Rect *clipRect) {
ScummVM::Rect rd, rs;
uint16 x, y, srcPitch;
uint8 *src, *dst;
2003-07-28 01:47:41 +00:00
rs.left = 0;
rs.right = s->w;
rs.top = 0;
rs.bottom = s->h;
srcPitch = s->w;
2003-07-28 01:47:41 +00:00
if (s->type & RDSPR_DISPLAYALIGN) {
rd.top = s->y;
rd.left = s->x;
} else {
rd.top = s->y - scrolly;
rd.left = s->x - scrollx;
}
rd.right = rd.left + rs.right;
rd.bottom = rd.top + rs.bottom;
if (clipRect) {
if (clipRect->left > rd.left) {
rs.left += (clipRect->left - rd.left);
rd.left = clipRect->left;
}
2003-07-28 01:47:41 +00:00
if (clipRect->top > rd.top) {
rs.top += (clipRect->top - rd.top);
rd.top = clipRect->top;
2003-07-28 01:47:41 +00:00
}
if (clipRect->right < rd.right) {
rd.right = clipRect->right;
}
if (clipRect->bottom < rd.bottom) {
rd.bottom = clipRect->bottom;
}
if (rd.width() <= 0 || rd.height() <= 0)
return;
}
src = surface + rs.top * srcPitch + rs.left;
dst = lpBackBuffer + screenWide * rd.top + rd.left;
// Surfaces are always transparent.
for (y = 0; y < rd.height(); y++) {
for (x = 0; x < rd.width(); x++) {
if (src[x])
dst[x] = src[x];
2003-07-28 01:47:41 +00:00
}
src += srcPitch;
dst += screenWide;
2003-07-28 01:47:41 +00:00
}
UploadRect(&rd);
SetNeedRedraw();
2003-07-28 01:47:41 +00:00
}
void DeleteSurface(uint8 *surface) {
free(surface);
2003-07-28 01:47:41 +00:00
}
#define SCALE_MAXWIDTH 512
#define SCALE_MAXHEIGHT 512
uint16 xScale[SCALE_MAXWIDTH];
uint16 yScale[SCALE_MAXHEIGHT];
// FIXME: I'm sure this could be optimized. There's plenty of data copying and
// mallocing here.
int32 DrawSprite(_spriteInfo *s) {
uint8 *src, *dst;
uint8 *sprite, *newSprite;
uint8 *backbuf = NULL;
uint8 red, green, blue;
uint16 scale;
int16 i, j;
uint16 srcPitch;
bool freeSprite = false;
bool clipped = false;
ScummVM::Rect rd, rs;
// -----------------------------------------------------------------
// Decompression and mirroring
// -----------------------------------------------------------------
if (s->type & RDSPR_NOCOMPRESSION)
sprite = s->data;
else {
sprite = (uint8 *) malloc(s->w * s->h);
freeSprite = true;
if (!sprite)
return RDERR_OUTOFMEMORY;
if ((s->type >> 8) == (RDSPR_RLE16 >> 8)) {
if (DecompressRLE16(sprite, s->data, s->w * s->h, s->colourTable)) {
free(sprite);
return RDERR_DECOMPRESSION;
}
} else {
if (DecompressRLE256(sprite, s->data, s->w * s->h)) {
free(sprite);
return RDERR_DECOMPRESSION;
}
}
}
if (s->type & RDSPR_FLIP) {
newSprite = (uint8 *) malloc(s->w * s->h);
if (newSprite == NULL) {
if (freeSprite)
free(sprite);
return RDERR_OUTOFMEMORY;
}
MirrorSprite(newSprite, sprite, s->w, s->h);
if (freeSprite)
free(sprite);
sprite = newSprite;
freeSprite = true;
}
// -----------------------------------------------------------------
// Positioning and clipping.
// -----------------------------------------------------------------
if (!(s->type & RDSPR_DISPLAYALIGN)) {
s->x += parallaxScrollx;
s->y += parallaxScrolly;
}
s->y += 40;
// A scale factor 0 or 256 means don't scale. Why do they use two
// different values to mean the same thing? Normalize it here for
// convenience.
scale = (s->scale == 0) ? 256 : s->scale;
rs.top = 0;
rs.left = 0;
if (scale != 256) {
rs.right = s->scaledWidth;
rs.bottom = s->scaledHeight;
srcPitch = s->scaledWidth;
} else {
rs.right = s->w;
rs.bottom = s->h;
srcPitch = s->w;
}
rd.top = s->y;
rd.left = s->x;
if (!(s->type & RDSPR_DISPLAYALIGN)) {
rd.top -= scrolly;
rd.left -= scrollx;
}
rd.right = rd.left + rs.right;
rd.bottom = rd.top + rs.bottom;
// Check if the sprite would end up completely outside the screen.
if (rd.left > 640 || rd.top > 440 || rd.right < 0 || rd.bottom < 40) {
if (freeSprite)
free(sprite);
return RD_OK;
}
if (rd.top < 40) {
rs.top = 40 - rd.top;
rd.top = 40;
clipped = true;
}
if (rd.bottom > 440) {
rd.bottom = 440;
rs.bottom = rs.top + (rd.bottom - rd.top);
clipped = true;
}
if (rd.left < 0) {
rs.left = -rd.left;
rd.left = 0;
clipped = true;
}
if (rd.right > 640) {
rd.right = 640;
rs.right = rs.left + (rd.right - rd.left);
clipped = true;
}
// -----------------------------------------------------------------
// Scaling
// -----------------------------------------------------------------
if (scale != 256) {
if ((renderCaps & RDBLTFX_ARITHMETICSTRETCH) && !clipped)
backbuf = lpBackBuffer + screenWide * rd.top + rd.left;
if (s->scaledWidth > SCALE_MAXWIDTH || s->scaledHeight > SCALE_MAXHEIGHT) {
if (freeSprite)
free(sprite);
return RDERR_NOTIMPLEMENTED;
}
newSprite = (uint8 *) malloc(s->scaledWidth * s->scaledHeight);
if (newSprite == NULL) {
if (freeSprite)
free(sprite);
return RDERR_OUTOFMEMORY;
}
if (scale < 256) {
SquashImage(newSprite, s->scaledWidth, s->scaledWidth, s->scaledHeight, sprite, s->w, s->w, s->h, backbuf);
} else {
if (s->scale > 512) {
if (freeSprite)
free(sprite);
return RDERR_INVALIDSCALING;
}
StretchImage(newSprite, s->scaledWidth, s->scaledWidth, s->scaledHeight, sprite, s->w, s->w, s->h, backbuf);
}
if (freeSprite)
free(sprite);
sprite = newSprite;
freeSprite = true;
}
// -----------------------------------------------------------------
// Light masking
// -----------------------------------------------------------------
// The light mask is an optional layer that covers the entire room
// and which is used to simulate light and shadows. Scaled sprites
// (actors, presumably) are always affected.
if ((renderCaps & RDBLTFX_SHADOWBLEND) && lightMask && (scale != 256 || (s->type & RDSPR_SHADOW))) {
uint8 *lightMap;
if (!freeSprite) {
newSprite = (uint8 *) malloc(s->w * s->h);
memcpy(newSprite, sprite, s->w * s->h);
sprite = newSprite;
freeSprite = true;
}
src = sprite + rs.top * srcPitch + rs.left;
lightMap = lightMask + (rd.top + scrolly - 40) * locationWide + rd.left + scrollx;
for (i = 0; i < rs.height(); i++) {
for (j = 0; j < rs.width(); j++) {
if (src[j] && lightMap[j]) {
uint8 r = ((32 - lightMap[j]) * palCopy[src[j]][0]) >> 5;
uint8 g = ((32 - lightMap[j]) * palCopy[src[j]][1]) >> 5;
uint8 b = ((32 - lightMap[j]) * palCopy[src[j]][2]) >> 5;
src[j] = QuickMatch(r, g, b);
}
}
src += srcPitch;
lightMap += locationWide;
}
}
// -----------------------------------------------------------------
// Drawing
// -----------------------------------------------------------------
src = sprite + rs.top * srcPitch + rs.left;
dst = lpBackBuffer + screenWide * rd.top + rd.left;
if (s->type & RDSPR_BLEND) {
if (renderCaps & RDBLTFX_ALLHARDWARE) {
for (i = 0; i < rs.height(); i++) {
for (j = 0; j < rs.width(); j++) {
if (src[j] && ((i & 1) == (j & 1)))
dst[j] = src[j];
}
src += srcPitch;
dst += screenWide;
}
} else {
if (s->blend & 0x01) {
red = s->blend >> 8;
for (i = 0; i < rs.height(); i++) {
for (j = 0; j < rs.width(); j++) {
if (src[j]) {
uint8 r = (palCopy[src[j]][0] * red + palCopy[dst[j]][0] * (8 - red)) >> 3;
uint8 g = (palCopy[src[j]][1] * red + palCopy[dst[j]][1] * (8 - red)) >> 3;
uint8 b = (palCopy[src[j]][2] * red + palCopy[dst[j]][2] * (8 - red)) >> 3;
dst[j] = QuickMatch(r, g, b);
}
}
src += srcPitch;
dst += screenWide;
}
} else if (s->blend & 0x02) {
// FIXME: This case looks bogus to me. The
// same value for the red, green and blue
// parameters, and we multiply with the source
// color's palette index rather than its color
// component.
//
// But as far as I can see, that's how the
// original
// code did it.
//
// Does anyone know where this case was used
// anyway?
red = palCopy[s->blend >> 8][0];
green = palCopy[s->blend >> 8][0];
blue = palCopy[s->blend >> 8][0];
for (i = 0; i < rs.height(); i++) {
for (j = 0; j < rs.width(); j++) {
if (src[j]) {
uint8 r = (src[j] * red + (16 - src[j]) * palCopy[dst[j]][0]) >> 4;
uint8 g = (src[j] * green + (16 - src[j]) * palCopy[dst[j]][1]) >> 4;
uint8 b = (src[j] * blue + (16 - src[j]) * palCopy[dst[j]][2]) >> 4;
dst[j] = QuickMatch(r, g, b);
}
}
src += srcPitch;
dst += screenWide;
}
} else {
warning("DrawSprite: Invalid blended sprite");
if (freeSprite)
free(sprite);
return RDERR_UNKNOWNTYPE;
}
}
} else {
if (s->type & RDSPR_TRANS) {
for (i = 0; i < rs.height(); i++) {
for (j = 0; j < rs.width(); j++) {
if (src[j])
dst[j] = src[j];
}
src += srcPitch;
dst += screenWide;
}
} else {
for (i = 0; i < rs.height(); i++) {
memcpy(dst, src, rs.width());
src += srcPitch;
dst += screenWide;
}
}
}
if (freeSprite)
free(sprite);
// UploadRect(&rd);
SetNeedRedraw();
return RD_OK;
2003-07-28 01:47:41 +00:00
}
int32 OpenLightMask(_spriteInfo *s) {
// FIXME: The light mask is only needed on higher graphics detail
// settings, so to save memory we could simply ignore it on lower
// settings. But then we need to figure out how to ensure that it
// is properly loaded if the user changes the settings in mid-game.
2003-07-28 01:47:41 +00:00
if (lightMask)
return RDERR_NOTCLOSED;
2003-07-28 01:47:41 +00:00
lightMask = (uint8 *) malloc(s->w * s->h);
if (!lightMask)
return RDERR_OUTOFMEMORY;
2003-07-28 01:47:41 +00:00
if (DecompressRLE256(lightMask, s->data, s->w * s->h))
return RDERR_DECOMPRESSION;
2003-07-28 01:47:41 +00:00
return RD_OK;
2003-07-28 01:47:41 +00:00
}
int32 CloseLightMask(void) {
2003-07-28 01:47:41 +00:00
if (!lightMask)
return RDERR_NOTOPEN;
2003-07-28 01:47:41 +00:00
free(lightMask);
lightMask = 0;
return RD_OK;
2003-07-28 01:47:41 +00:00
}