2003-07-28 01:44:38 +00:00
/* Copyright (C) 1994-2003 Revolution Software Ltd
*
* This program is free software ; you can redistribute it and / or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation ; either version 2
* of the License , or ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 59 Temple Place - Suite 330 , Boston , MA 02111 - 1307 , USA .
*
* $ Header $
*/
//--------------------------------------------------------------------------------------
// ROUTER.CPP by James
// A rehash of Jeremy's original jrouter.c, containing low-level system routines
// for calculating routes between points inside a walk-grid, and constructing
// walk animations from mega-sets.
// jrouter.c undwent 2 major reworks from the original:
// (1) Restructured to allow more flexibility in the mega-sets, ie. more info taken from the walk-data
// - the new George & Nico mega-sets & walk-data were then tested & tweaked in the Sword1 system
// (2) Updated for the new Sword2 system, ie. new object structures
// - now compatible with Sword2, the essential code already having been tested
//--------------------------------------------------------------------------------------
/****************************************************************************
* JROUTER . C polygon router with modular walks
* using a tree of modules
* 21 july 94
* 3 november 94
* System currently works by scanning grid data and coming up with a ROUTE
* as a series of way points ( nodes ) , the smoothest eight directional PATH
* through these nodes is then found , and a WALK created to fit the PATH .
*
* Two funtions are called by the user , RouteFinder creates a route as a
* module list , HardWalk creates an animation list from the module list .
* The split is only provided to allow the possibility of turning the
* autorouter over two game cycles .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*
* Routine timings on osborne 486
*
* Read floor resource ( file already loaded ) 112 pixels
*
* Read mega resource ( file already loaded ) 112 pixels
*
*
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*
* Modified 12 Oct 95
*
* Target Points within 1 pixel of a line are ignored ? ? ?
*
* Modules split into Points within 1 pixel of a line are ignored ? ? ?
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*
* TOTALLY REHASHED BY JAMES FOR NEW MEGAS USING OLD SYSTEM
* THEN REINCARNATED BY JAMES FOR NEW MEGAS USING NEW SYSTEM
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
//#define PLOT_PATHS 1
/*
* Include Files
*/
2003-07-28 03:12:49 +00:00
# include "stdafx.h"
2003-07-28 01:44:38 +00:00
# include "driver/driver96.h"
# include "console.h"
# include "debug.h"
# include "defs.h"
# include "header.h"
# include "interpreter.h"
# include "memory.h"
# include "object.h"
# include "resman.h"
# include "router.h"
//#ifdef PLOT_PATHS
//#include "grengine.h"
//#endif
# define MAX_FRAMES_PER_CYCLE 16
# define NO_DIRECTIONS 8
# define MAX_FRAMES_PER_CHAR (MAX_FRAMES_PER_CYCLE * NO_DIRECTIONS)
# define ROUTE_END_FLAG 255
//---------------------------------------
// TEMP!
int8 forceSlidy ; // 1 = force the use of slidy router (so solid path not used when ending walk in ANY direction)
//---------------------------------------
/*
* Type Defines
*/
# define O_WALKANIM_SIZE 600 // max number of nodes in router output
# define O_GRID_SIZE 200 // max 200 lines & 200 points
# define EXTRA_GRID_SIZE 20 // max 20 lines & 20 points
# define O_ROUTE_SIZE 50 // max number of modules in a route
typedef struct
{
int16 x1 ;
int16 y1 ;
int16 x2 ;
int16 y2 ;
int16 xmin ;
int16 ymin ;
int16 xmax ;
int16 ymax ;
int16 dx ; // x2 - x1
int16 dy ; // y2 - y1
int32 co ; // co = (y1 *dx)- (x1*dy) from an equation for a line y*dx = x*dy + co
} _barData ;
typedef struct
{
int16 x ;
int16 y ;
int16 level ;
int16 prev ;
int16 dist ;
} _nodeData ;
typedef struct
{
int32 nbars ;
_barData * bars ;
int32 nnodes ;
_nodeData * node ;
} _floorData ;
typedef struct
{
int32 x ;
int32 y ;
int32 dirS ;
int32 dirD ;
} _routeData ;
typedef struct
{
int32 x ;
int32 y ;
int32 dir ;
int32 num ;
} _pathData ;
//--------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------
// Function prototypes
int32 GetRoute ( void ) ;
void ExtractRoute ( void ) ;
void LoadWalkGrid ( void ) ;
void SetUpWalkGrid ( Object_mega * ob_mega , int32 x , int32 y , int32 dir ) ;
void LoadWalkData ( Object_walkdata * ob_walkdata ) ;
void PlotCross ( int16 x , int16 y , uint8 colour ) ;
int32 Scan ( int32 ) ;
int32 NewCheck ( int32 , int32 , int32 , int32 , int32 ) ;
int32 LineCheck ( int32 , int32 , int32 , int32 ) ;
int32 VertCheck ( int32 , int32 , int32 ) ;
int32 HorizCheck ( int32 , int32 , int32 ) ;
int32 Check ( int32 , int32 , int32 , int32 ) ;
int32 CheckTarget ( int32 , int32 ) ;
int32 SmoothestPath ( ) ;
int32 SlidyPath ( ) ;
int32 SolidPath ( ) ;
int32 SmoothCheck ( int32 best , int32 p , int32 dirS , int32 dirD ) ;
int32 AddSlowInFrames ( _walkData * walkAnim ) ;
void AddSlowOutFrames ( _walkData * walkAnim ) ;
void SlidyWalkAnimator ( _walkData * walkAnim ) ;
int32 SolidWalkAnimator ( _walkData * walkAnim ) ;
void RouteLine ( int32 x1 , int32 y1 , int32 x2 , int32 y2 , int32 colour ) ;
//--------------------------------------------------------------------------------------
# define MAX_WALKGRIDS 10
int32 walkGridList [ MAX_WALKGRIDS ] ;
//--------------------------------------------------------------------------------------
# define TOTAL_ROUTE_SLOTS 2 // because we only have 2 megas in the game!
mem * route_slots [ TOTAL_ROUTE_SLOTS ] ; // stores pointers to mem blocks containing routes created & used by megas (NULL if slot not in use)
//--------------------------------------------------------------------------------------
// Local Variables
static int32 nbars ;
static int32 nnodes ;
static _barData bars [ O_GRID_SIZE + EXTRA_GRID_SIZE ] ; // because extra bars will be copied into here afer walkgrid loaded
static _nodeData node [ O_GRID_SIZE + EXTRA_GRID_SIZE ] ;
// area for extra route data to block parts of floors and enable routing round mega charaters
static int32 nExtraBars = 0 ;
static int32 nExtraNodes = 0 ;
static _barData extraBars [ EXTRA_GRID_SIZE ] ;
static _nodeData extraNode [ EXTRA_GRID_SIZE ] ;
static int32 startX ;
static int32 startY ;
static int32 startDir ;
static int32 targetX ;
static int32 targetY ;
static int32 targetDir ;
static int32 scaleA ;
static int32 scaleB ;
static _routeData route [ O_ROUTE_SIZE ] ;
static _pathData smoothPath [ O_ROUTE_SIZE ] ;
static _pathData modularPath [ O_ROUTE_SIZE ] ;
static int32 routeLength ;
int32 framesPerStep ;
int32 framesPerChar ;
uint8 nWalkFrames ; // no. of frames per walk cycle
uint8 usingStandingTurnFrames ; // any standing turn frames?
uint8 usingWalkingTurnFrames ; // any walking turn frames?
uint8 usingSlowInFrames ; // any slow-in frames?
uint8 usingSlowOutFrames ; // any slow-out frames?
int32 dx [ NO_DIRECTIONS + MAX_FRAMES_PER_CHAR ] ;
int32 dy [ NO_DIRECTIONS + MAX_FRAMES_PER_CHAR ] ;
int8 modX [ NO_DIRECTIONS ] ;
int8 modY [ NO_DIRECTIONS ] ;
int32 diagonalx = 0 ;
int32 diagonaly = 0 ;
int32 firstStandFrame ;
int32 firstStandingTurnLeftFrame ;
int32 firstStandingTurnRightFrame ;
int32 firstWalkingTurnLeftFrame ; // left walking turn
int32 firstWalkingTurnRightFrame ; // right walking turn
uint32 firstSlowInFrame [ NO_DIRECTIONS ] ;
uint32 numberOfSlowInFrames [ NO_DIRECTIONS ] ;
uint32 leadingLeg [ NO_DIRECTIONS ] ;
int32 firstSlowOutFrame ;
int32 numberOfSlowOutFrames ; // number of slow-out frames on for each leading-leg in each direction
int32 stepCount ;
int32 moduleX ;
int32 moduleY ;
int32 currentDir ;
int32 lastCount ;
int32 frame ;
// ie. total number of slow-out frames = (numberOfSlowOutFrames * 2 * NO_DIRECTIONS)
/*
* CODE
*/
// **************************************************************************
//--------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------
uint8 CheckForCollision ( void )
{
2003-07-28 02:37:47 +00:00
// static uint32 player_pc;
// static uint32 non_player_pc;
2003-07-28 01:44:38 +00:00
uint8 collision = 0 ;
return ( collision ) ;
}
//--------------------------------------------------------------------------------------
uint8 ReturnSlotNo ( uint32 megaId )
{
if ( ID = = CUR_PLAYER_ID ) // George (8)
return ( 0 ) ;
else // One of Nico's mega id's
return ( 1 ) ;
}
//--------------------------------------------------------------------------------------
void AllocateRouteMem ( void )
{
// uint8 slotNo=0;
uint8 slotNo ;
//------------------------------------------
// removed (James23June96)
/*
while ( route_slots [ slotNo ] > 0 )
{
slotNo + + ;
2003-07-28 09:49:46 +00:00
# ifdef _BS2_DEBUG
2003-07-28 01:44:38 +00:00
if ( slotNo = = TOTAL_ROUTE_SLOTS )
Con_fatal_error ( " ERROR: route_slots[] full in AllocateRouteMem() (%s line %u) " , __FILE__ , __LINE__ ) ;
# endif
}
*/
//------------------------------------------
// added (James23June96)
// Player character always always slot 0, while the other mega (normally Nico) always uses slot 1
// Better this way, so that if mega object removed from memory while in middle of route,
// the old route will be safely cleared from memory just before they create a new one
slotNo = ReturnSlotNo ( ID ) ;
// if this slot is already used, then it can't be needed any more
// because this id is creating a new route!
if ( route_slots [ slotNo ] )
{
FreeRouteMem ( ) ;
}
//------------------------------------------
route_slots [ slotNo ] = Twalloc ( 4800 , MEM_locked , UID_walk_anim ) ;
// 12000 bytes were used for this in Sword1 mega compacts, based on 20 bytes per '_walkData' frame
// ie. allowing for 600 frames including end-marker
// Now '_walkData' is 8 bytes, so 8*600 = 4800 bytes.
// Note that a 600 frame walk lasts about 48 seconds! (600fps / 12.5s = 48s)
// megaObject->route_slot_id = slotNo+1; // mega keeps note of which slot contains the pointer to it's walk animation mem block
// +1 so that '0' can mean "not walking"
}
//--------------------------------------------------------------------------------------
_walkData * LockRouteMem ( void )
{
uint8 slotNo = ReturnSlotNo ( ID ) ;
Lock_mem ( route_slots [ slotNo ] ) ;
return ( _walkData * ) route_slots [ slotNo ] - > ad ;
}
//--------------------------------------------------------------------------------------
void FloatRouteMem ( void )
{
uint8 slotNo = ReturnSlotNo ( ID ) ;
Float_mem ( route_slots [ slotNo ] ) ;
}
//--------------------------------------------------------------------------------------
void FreeRouteMem ( void )
{
uint8 slotNo = ReturnSlotNo ( ID ) ;
Free_mem ( route_slots [ slotNo ] ) ; // free the mem block pointed to from this entry of route_slots[]
route_slots [ slotNo ] = NULL ; // clear this route_slots[] entry
}
//--------------------------------------------------------------------------------------
void FreeAllRouteMem ( void )
{
uint8 slotNo ;
for ( slotNo = 0 ; slotNo < TOTAL_ROUTE_SLOTS ; slotNo + + )
{
if ( route_slots [ slotNo ] )
{
Free_mem ( route_slots [ slotNo ] ) ; // free the mem block pointed to from this entry of route_slots[]
route_slots [ slotNo ] = NULL ;
}
}
}
//--------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------
// **************************************************************************
// **************************************************************************
// **************************************************************************
// **************************************************************************
int32 RouteFinder ( Object_mega * ob_mega , Object_walkdata * ob_walkdata , int32 x , int32 y , int32 dir )
{
/****************************************************************************
* RouteFinder . C polygon router with modular walks
* 21 august 94
* 3 november 94
* RouteFinder creates a list of modules that enables HardWalk to create
* an animation list .
*
* RouteFinder currently works by scanning grid data and coming up with a ROUTE
* as a series of way points ( nodes ) , the smoothest eight directional PATH
* through these nodes is then found , this information is made available to
* HardWalk for a WALK to be created to fit the PATH .
*
* 30 november 94 return values modified
*
* return 0 = failed to find a route
*
* 1 = found a route
*
* 2 = mega already at target
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
int32 routeFlag = 0 ;
int32 solidFlag = 0 ;
_walkData * walkAnim ;
// megaId = id;
SetUpWalkGrid ( ob_mega , x , y , dir ) ;
LoadWalkData ( ob_walkdata ) ;
walkAnim = LockRouteMem ( ) ; // lock the _walkData array (NB. AFTER loading walkgrid & walkdata!)
// **************************************************************************
// All route data now loaded start finding a route
// **************************************************************************
// **************************************************************************
// Check if we can get a route through the floor changed 12 Oct95 JPS
// **************************************************************************
routeFlag = GetRoute ( ) ;
if ( routeFlag = = 2 ) //special case for zero length route
{
if ( targetDir > 7 ) // if target direction specified as any
{
targetDir = startDir ;
}
// just a turn on the spot is required set an end module for the route let the animator deal with it
// modularPath is normally set by ExtractRoute
modularPath [ 0 ] . dir = startDir ;
modularPath [ 0 ] . num = 0 ;
modularPath [ 0 ] . x = startX ;
modularPath [ 0 ] . y = startY ;
modularPath [ 1 ] . dir = targetDir ;
modularPath [ 1 ] . num = 0 ;
modularPath [ 1 ] . x = startX ;
modularPath [ 1 ] . y = startY ;
modularPath [ 2 ] . dir = 9 ;
modularPath [ 2 ] . num = ROUTE_END_FLAG ;
SlidyWalkAnimator ( walkAnim ) ;
routeFlag = 2 ;
}
else if ( routeFlag = = 1 ) // a normal route
{
SmoothestPath ( ) ; //Converts the route to an exact path
// The Route had waypoints and direction options
// The Path is an exact set of lines in 8 directions that reach the target.
// The path is in module format, but steps taken in each direction are not accurate
// if target dir = 8 then the walk isn't linked to an anim so
// we can create a route without sliding and miss the exact target
if ( ! forceSlidy )
{
if ( targetDir = = 8 ) // can end facing ANY direction (ie. exact end position not vital) - so use SOLID walk to avoid sliding to exact position
{
SolidPath ( ) ;
solidFlag = SolidWalkAnimator ( walkAnim ) ;
}
}
if ( ! solidFlag ) // if we failed to create a SOLID route, do a SLIDY one instead
{
SlidyPath ( ) ;
SlidyWalkAnimator ( walkAnim ) ;
}
}
else // Route didn't reach target so assume point was off the floor
{
// routeFlag = 0;
}
# ifdef PLOT_PATHS
# ifdef _WIN32
RenderScreenGDK ( screenDef . buffer , scroll_offset_x , scroll_offset_y , screenDef . width * XBLOCKSIZE ) ;
# else
RenderOffScreenBuffer ( scroll_offset_x , scroll_offset_y , SCREEN_WIDTH , SCREEN_DEPTH ) ;
# endif
FlipScreens ( ) ;
FlushMouseEvents ( ) ; // clear mouse buffer
while ( ! TestForMouseEvent ( ) ) ; // wait for a button press or release
FlushMouseEvents ( ) ; // clear mouse buffer again to prevent rapid fire!
# endif
FloatRouteMem ( ) ; // float the _walkData array again
return routeFlag ; // send back null route
}
/*******************************************************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* GET A ROUTE
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
int32 GetRoute ( void )
{
/****************************************************************************
* GetRoute . C extract a path from walk grid
* 12 october 94
*
* GetRoute currently works by scanning grid data and coming up with a ROUTE
* as a series of way points ( nodes ) .
* static _routeData route [ O_ROUTE_SIZE ] ;
*
* return 0 = failed to find a route
*
* 1 = found a route
*
* 2 = mega already at target
*
* 3 = failed to find a route because target was on a line
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
int32 routeGot = 0 ;
int32 level ;
int32 changed ;
if ( ( startX = = targetX ) & & ( startY = = targetY ) )
routeGot = 2 ;
else // 'else' added by JEL (23jan96) otherwise 'routeGot' affected even when already set to '2' above - causing some 'turns' to walk downwards on the spot
routeGot = CheckTarget ( targetX , targetY ) ; // returns 3 if target on a line ( +- 1 pixel )
if ( routeGot = = 0 ) //still looking for a route check if target is within a pixel of a line
{
// scan through the nodes linking each node to its nearest neighbour until no more nodes change
// This is the routine that finds a route using Scan()
level = 1 ;
do
{
changed = Scan ( level ) ;
level = level + 1 ;
}
while ( changed = = 1 ) ;
// Check to see if the route reached the target
if ( node [ nnodes ] . dist < 9999 )
{
routeGot = 1 ;
ExtractRoute ( ) ; // it did so extract the route as nodes and the directions to go between each node
// route.X,route.Y and route.Dir now hold all the route infomation with the target dir or route continuation
}
}
return routeGot ;
}
/*******************************************************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* THE SLIDY PATH ROUTINES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
int32 SmoothestPath ( )
{
/*
* This is the second big part of the route finder and the the only bit that tries to be clever
* ( the other bits are clever ) .
* This part of the autorouter creates a list of modules from a set of lines running across the screen
* The task is complicated by two things ;
* Firstly in choosing a route through the maze of nodes the routine tries to minimise the amount of each
* individual turn avoiding 90 degree and greater turns ( where possible ) and reduces the total number of
* turns ( subject to two 45 degree turns being better than one 90 degree turn ) .
* Secondly when walking in a given direction the number of steps required to reach the end of that run
* is not calculated accurately . This is because I was unable to derive a function to relate number of
* steps taken between two points to the shrunken step size
*
*/
int32 p ;
int32 dirS ;
int32 dirD ;
int32 dS ;
int32 dD ;
int32 dSS ;
int32 dSD ;
int32 dDS ;
int32 dDD ;
int32 SS ;
int32 SD ;
int32 DS ;
int32 DD ;
int32 i ;
int32 j ;
int32 temp ;
int32 steps ;
int32 option ;
int32 options ;
int32 lastDir ;
int32 nextDirS ;
int32 nextDirD ;
int32 tempturns [ 4 ] ;
int32 turns [ 4 ] ;
int32 turntable [ NO_DIRECTIONS ] = { 0 , 1 , 3 , 5 , 7 , 5 , 3 , 1 } ;
// route.X route.Y and route.Dir start at far end
smoothPath [ 0 ] . x = startX ;
smoothPath [ 0 ] . y = startY ;
smoothPath [ 0 ] . dir = startDir ;
smoothPath [ 0 ] . num = 0 ;
p = 0 ;
lastDir = startDir ;
// for each section of the route
do
{
dirS = route [ p ] . dirS ;
dirD = route [ p ] . dirD ;
nextDirS = route [ p + 1 ] . dirS ;
nextDirD = route [ p + 1 ] . dirD ;
// Check directions into and out of a pair of nodes
// going in
dS = dirS - lastDir ;
if ( dS < 0 )
dS = dS + NO_DIRECTIONS ;
dD = dirD - lastDir ;
if ( dD < 0 )
dD = dD + NO_DIRECTIONS ;
// coming out
dSS = dirS - nextDirS ;
if ( dSS < 0 )
dSS = dSS + NO_DIRECTIONS ;
dDD = dirD - nextDirD ;
if ( dDD < 0 )
dDD = dDD + NO_DIRECTIONS ;
dSD = dirS - nextDirD ;
if ( dSD < 0 )
dSD = dSD + NO_DIRECTIONS ;
dDS = dirD - nextDirS ;
if ( dDS < 0 )
dDS = dDS + NO_DIRECTIONS ;
// Determine the amount of turning involved in each possible path
dS = turntable [ dS ] ;
dD = turntable [ dD ] ;
dSS = turntable [ dSS ] ;
dDD = turntable [ dDD ] ;
dSD = turntable [ dSD ] ;
dDS = turntable [ dDS ] ;
// get the best path out ie assume next section uses best direction
if ( dSD < dSS )
{
dSS = dSD ;
}
if ( dDS < dDD )
{
dDD = dDS ;
}
// rate each option
SS = dS + dSS + 3 ; // Split routes look crap so weight against them
SD = dS + dDD ;
DS = dD + dSS ;
DD = dD + dDD + 3 ;
// set up turns as a sorted array of the turn values
tempturns [ 0 ] = SS ;
turns [ 0 ] = 0 ;
tempturns [ 1 ] = SD ;
turns [ 1 ] = 1 ;
tempturns [ 2 ] = DS ;
turns [ 2 ] = 2 ;
tempturns [ 3 ] = DD ;
turns [ 3 ] = 3 ;
i = 0 ;
do
{
j = 0 ;
do
{
if ( tempturns [ j ] > tempturns [ j + 1 ] )
{
temp = turns [ j ] ;
turns [ j ] = turns [ j + 1 ] ;
turns [ j + 1 ] = temp ;
temp = tempturns [ j ] ;
tempturns [ j ] = tempturns [ j + 1 ] ;
tempturns [ j + 1 ] = temp ;
}
j = j + 1 ;
}
while ( j < 3 ) ;
i = i + 1 ;
}
while ( i < 3 ) ;
// best option matched in order of the priority we would like to see on the screen
// but each option must be checked to see if it can be walked
options = NewCheck ( 1 , route [ p ] . x , route [ p ] . y , route [ p + 1 ] . x , route [ p + 1 ] . y ) ;
2003-07-28 09:49:46 +00:00
# ifdef _BS2_DEBUG
2003-07-28 01:44:38 +00:00
if ( options = = 0 )
{
Zdebug ( " BestTurns fail %d %d %d %d " , route [ p ] . x , route [ p ] . y , route [ p + 1 ] . x , route [ p + 1 ] . y ) ;
Zdebug ( " BestTurns fail %d %d %d %d " , turns [ 0 ] , turns [ 1 ] , turns [ 2 ] , options ) ;
Con_fatal_error ( " BestTurns failed (%s line %u) " , __FILE__ , __LINE__ ) ;
}
# endif
i = 0 ;
steps = 0 ;
do
{
option = 1 < < turns [ i ] ;
if ( option & options )
steps = SmoothCheck ( turns [ i ] , p , dirS , dirD ) ;
i = i + 1 ;
}
while ( ( steps = = 0 ) & & ( i < 4 ) ) ;
# ifdef PLOT_PATHS // plot the best path
if ( steps ! = 0 )
{
i = 0 ;
do
{
RouteLine ( smoothPath [ i ] . x , smoothPath [ i ] . y , smoothPath [ i + 1 ] . x , smoothPath [ i + 1 ] . y , 228 ) ;
i = i + 1 ;
}
while ( i < steps ) ;
}
# endif
2003-07-28 09:49:46 +00:00
# ifdef _BS2_DEBUG
2003-07-28 01:44:38 +00:00
if ( steps = = 0 )
{
Zdebug ( " BestTurns failed %d %d %d %d " , route [ p ] . x , route [ p ] . y , route [ p + 1 ] . x , route [ p + 1 ] . y ) ;
Zdebug ( " BestTurns failed %d %d %d %d " , turns [ 0 ] , turns [ 1 ] , turns [ 2 ] , options ) ;
Con_fatal_error ( " BestTurns failed (%s line %u) " , __FILE__ , __LINE__ ) ;
}
# endif
// route.X route.Y route.dir and bestTurns start at far end
p = p + 1 ;
}
while ( p < ( routeLength ) ) ;
// best turns will end heading as near as possible to target dir rest is down to anim for now
smoothPath [ steps ] . dir = 9 ;
smoothPath [ steps ] . num = ROUTE_END_FLAG ;
return 1 ;
}
int32 SmoothCheck ( int32 best , int32 p , int32 dirS , int32 dirD )
/****************************************************************************
* Slip sliding away
* This path checker checks to see if a walk that exactly follows the path
* would be valid . This should be inherently true for atleast one of the turn
* options .
* No longer checks the data it only creates the smoothPath array JPS
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
{
static int32 k ;
int32 tempK ;
int32 x ;
int32 y ;
int32 x2 ;
int32 y2 ;
int32 dx ;
int32 dy ;
int32 dsx ;
int32 dsy ;
int32 ddx ;
int32 ddy ;
int32 dirX ;
int32 dirY ;
int32 ss0 ;
int32 ss1 ;
int32 ss2 ;
int32 sd0 ;
int32 sd1 ;
int32 sd2 ;
if ( p = = 0 )
{
k = 1 ;
}
tempK = 0 ;
x = route [ p ] . x ;
y = route [ p ] . y ;
x2 = route [ p + 1 ] . x ;
y2 = route [ p + 1 ] . y ;
dx = x2 - x ;
dy = y2 - y ;
dirX = 1 ;
dirY = 1 ;
if ( dx < 0 )
{
dx = - dx ;
dirX = - 1 ;
}
if ( dy < 0 )
{
dy = - dy ;
dirY = - 1 ;
}
// set up sd0-ss2 to reflect possible movement in each direction
if ( ( dirS = = 0 ) | | ( dirS = = 4 ) ) // vert and diag
{
ddx = dx ;
ddy = ( dx * diagonaly ) / diagonalx ;
dsy = dy - ddy ;
ddx = ddx * dirX ;
ddy = ddy * dirY ;
dsy = dsy * dirY ;
dsx = 0 ;
sd0 = ( ddx + modX [ dirD ] / 2 ) / modX [ dirD ] ;
ss0 = ( dsy + modY [ dirS ] / 2 ) / modY [ dirS ] ;
sd1 = sd0 / 2 ;
ss1 = ss0 / 2 ;
sd2 = sd0 - sd1 ;
ss2 = ss0 - ss1 ;
}
else
{
ddy = dy ;
ddx = ( dy * diagonalx ) / diagonaly ;
dsx = dx - ddx ;
ddy = ddy * dirY ;
ddx = ddx * dirX ;
dsx = dsx * dirX ;
dsy = 0 ;
sd0 = ( ddy + modY [ dirD ] / 2 ) / modY [ dirD ] ;
ss0 = ( dsx + modX [ dirS ] / 2 ) / modX [ dirS ] ;
sd1 = sd0 / 2 ;
ss1 = ss0 / 2 ;
sd2 = sd0 - sd1 ;
ss2 = ss0 - ss1 ;
}
if ( best = = 0 ) //halfsquare, diagonal, halfsquare
{
smoothPath [ k ] . x = x + dsx / 2 ;
smoothPath [ k ] . y = y + dsy / 2 ;
smoothPath [ k ] . dir = dirS ;
smoothPath [ k ] . num = ss1 ;
k = k + 1 ;
smoothPath [ k ] . x = x + dsx / 2 + ddx ;
smoothPath [ k ] . y = y + dsy / 2 + ddy ;
smoothPath [ k ] . dir = dirD ;
smoothPath [ k ] . num = sd0 ;
k = k + 1 ;
smoothPath [ k ] . x = x + dsx + ddx ;
smoothPath [ k ] . y = y + dsy + ddy ;
smoothPath [ k ] . dir = dirS ;
smoothPath [ k ] . num = ss2 ;
k = k + 1 ;
tempK = k ;
}
else if ( best = = 1 ) //square, diagonal
{
smoothPath [ k ] . x = x + dsx ;
smoothPath [ k ] . y = y + dsy ;
smoothPath [ k ] . dir = dirS ;
smoothPath [ k ] . num = ss0 ;
k = k + 1 ;
smoothPath [ k ] . x = x2 ;
smoothPath [ k ] . y = y2 ;
smoothPath [ k ] . dir = dirD ;
smoothPath [ k ] . num = sd0 ;
k = k + 1 ;
tempK = k ;
}
else if ( best = = 2 ) //diagonal square
{
smoothPath [ k ] . x = x + ddx ;
smoothPath [ k ] . y = y + ddy ;
smoothPath [ k ] . dir = dirD ;
smoothPath [ k ] . num = sd0 ;
k = k + 1 ;
smoothPath [ k ] . x = x2 ;
smoothPath [ k ] . y = y2 ;
smoothPath [ k ] . dir = dirS ;
smoothPath [ k ] . num = ss0 ;
k = k + 1 ;
tempK = k ;
}
else //halfdiagonal, square, halfdiagonal
{
smoothPath [ k ] . x = x + ddx / 2 ;
smoothPath [ k ] . y = y + ddy / 2 ;
smoothPath [ k ] . dir = dirD ;
smoothPath [ k ] . num = sd1 ;
k = k + 1 ;
smoothPath [ k ] . x = x + dsx + ddx / 2 ;
smoothPath [ k ] . y = y + dsy + ddy / 2 ;
smoothPath [ k ] . dir = dirS ;
smoothPath [ k ] . num = ss0 ;
k = k + 1 ;
smoothPath [ k ] . x = x2 ;
smoothPath [ k ] . y = y2 ;
smoothPath [ k ] . dir = dirD ;
smoothPath [ k ] . num = sd2 ;
k = k + 1 ;
tempK = k ;
}
return tempK ;
}
int32 SlidyPath ( )
{
/****************************************************************************
* SlidyPath creates a path based on part steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* currently unused , but is intended for use when just clicking about .
*
* produce a module list from the line data
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
int32 smooth ;
int32 slidy ;
int32 scale ;
int32 stepX ;
int32 stepY ;
int32 deltaX ;
int32 deltaY ;
// strip out the short sections
slidy = 1 ;
smooth = 1 ;
modularPath [ 0 ] . x = smoothPath [ 0 ] . x ;
modularPath [ 0 ] . y = smoothPath [ 0 ] . y ;
modularPath [ 0 ] . dir = smoothPath [ 0 ] . dir ;
modularPath [ 0 ] . num = 0 ;
while ( smoothPath [ smooth ] . num < ROUTE_END_FLAG )
{
scale = scaleA * smoothPath [ smooth ] . y + scaleB ;
deltaX = smoothPath [ smooth ] . x - modularPath [ slidy - 1 ] . x ;
deltaY = smoothPath [ smooth ] . y - modularPath [ slidy - 1 ] . y ;
stepX = modX [ smoothPath [ smooth ] . dir ] ;
stepY = modY [ smoothPath [ smooth ] . dir ] ;
stepX = stepX * scale ;
stepY = stepY * scale ;
stepX = stepX > > 19 ; // quarter a step minimum
stepY = stepY > > 19 ;
if ( ( abs ( deltaX ) > = abs ( stepX ) ) & & ( abs ( deltaY ) > = abs ( stepY ) ) )
{
modularPath [ slidy ] . x = smoothPath [ smooth ] . x ;
modularPath [ slidy ] . y = smoothPath [ smooth ] . y ;
modularPath [ slidy ] . dir = smoothPath [ smooth ] . dir ;
modularPath [ slidy ] . num = 1 ;
slidy + = 1 ;
}
smooth + = 1 ;
}
// in case the last bit had no steps
if ( slidy > 1 )
{
modularPath [ slidy - 1 ] . x = smoothPath [ smooth - 1 ] . x ;
modularPath [ slidy - 1 ] . y = smoothPath [ smooth - 1 ] . y ;
}
// set up the end of the walk
modularPath [ slidy ] . x = smoothPath [ smooth - 1 ] . x ;
modularPath [ slidy ] . y = smoothPath [ smooth - 1 ] . y ;
modularPath [ slidy ] . dir = targetDir ;
modularPath [ slidy ] . num = 0 ;
slidy + = 1 ;
modularPath [ slidy ] . x = smoothPath [ smooth - 1 ] . x ;
modularPath [ slidy ] . y = smoothPath [ smooth - 1 ] . y ;
modularPath [ slidy ] . dir = 9 ;
modularPath [ slidy ] . num = ROUTE_END_FLAG ;
return 1 ;
}
//****************************************************************************
// SLOW IN
int32 AddSlowInFrames ( _walkData * walkAnim )
{
uint32 slowInFrameNo ;
if ( ( usingSlowInFrames ) & & ( modularPath [ 1 ] . num > 0 ) )
{
for ( slowInFrameNo = 0 ; slowInFrameNo < numberOfSlowInFrames [ currentDir ] ; slowInFrameNo + + )
{
walkAnim [ stepCount ] . frame = firstSlowInFrame [ currentDir ] + slowInFrameNo ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = currentDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
}
return ( 1 ) ;
}
else
{
return ( 0 ) ;
}
}
//----------------------------------------------------------------------------
void EarlySlowOut ( Object_mega * ob_mega , Object_walkdata * ob_walkdata )
{
int32 slowOutFrameNo ;
int32 walk_pc ;
_walkData * walkAnim ;
//Zdebug("\nEARLY SLOW-OUT");
LoadWalkData ( ob_walkdata ) ;
//Zdebug("********************************");
//Zdebug("framesPerStep =%d",framesPerStep); // 6;
//Zdebug("numberOfSlowOutFrames =%d",numberOfSlowOutFrames); // 7;
//Zdebug("firstWalkingTurnLeftFrame =%d",firstWalkingTurnLeftFrame); // 120;
//Zdebug("firstWalkingTurnRightFrame =%d",firstWalkingTurnRightFrame); // 216;
//Zdebug("firstSlowOutFrame =%d",firstSlowOutFrame); // 344;
//Zdebug("********************************");
walk_pc = ob_mega - > walk_pc ;
walkAnim = LockRouteMem ( ) ; // lock the _walkData array (NB. AFTER loading walkgrid & walkdata!)
if ( usingSlowOutFrames ) // if this mega does actually have slow-out frames
{
do // overwrite the next step (half a cycle) of the walk (ie .step - 0..5
{
//Zdebug("\nSTEP NUMBER: walkAnim[%d].step = %d",walk_pc,walkAnim[walk_pc].step);
//Zdebug("ORIGINAL FRAME: walkAnim[%d].frame = %d",walk_pc,walkAnim[walk_pc].frame);
// map from existing walk frame across to correct frame number of slow-out - remember, there may be more slow-out frames than walk-frames!
if ( walkAnim [ walk_pc ] . frame > = firstWalkingTurnRightFrame ) // if it's a walking turn-right, rather than a normal step
{
walkAnim [ walk_pc ] . frame - = firstWalkingTurnRightFrame ; // then map it to a normal step frame first
//Zdebug("MAPPED TO WALK: walkAnim[%d].frame = %d (walking turn-right frame --> walk frame)",walk_pc,walkAnim[walk_pc].frame);
}
else if ( walkAnim [ walk_pc ] . frame > = firstWalkingTurnLeftFrame ) // if it's a walking turn-left, rather than a normal step
{
walkAnim [ walk_pc ] . frame - = firstWalkingTurnLeftFrame ; // then map it to a normal step frame first
//Zdebug("MAPPED TO WALK: walkAnim[%d].frame = %d (walking turn-left frame --> walk frame)",walk_pc,walkAnim[walk_pc].frame);
}
walkAnim [ walk_pc ] . frame + = firstSlowOutFrame + ( ( walkAnim [ walk_pc ] . frame / framesPerStep ) * ( numberOfSlowOutFrames - framesPerStep ) ) ;
walkAnim [ walk_pc ] . step = 0 ;
//Zdebug("SLOW-OUT FRAME: walkAnim[%d].frame = %d",walk_pc,walkAnim[walk_pc].frame);
walk_pc + = 1 ;
}
while ( walkAnim [ walk_pc ] . step > 0 ) ;
//Zdebug("\n");
for ( slowOutFrameNo = framesPerStep ; slowOutFrameNo < numberOfSlowOutFrames ; slowOutFrameNo + + ) // add stationary frame(s) (OPTIONAL)
{
walkAnim [ walk_pc ] . frame = walkAnim [ walk_pc - 1 ] . frame + 1 ;
//Zdebug("EXTRA FRAME: walkAnim[%d].frame = %d",walk_pc,walkAnim[walk_pc].frame);
walkAnim [ walk_pc ] . step = 0 ;
walkAnim [ walk_pc ] . dir = walkAnim [ walk_pc - 1 ] . dir ;
walkAnim [ walk_pc ] . x = walkAnim [ walk_pc - 1 ] . x ;
walkAnim [ walk_pc ] . y = walkAnim [ walk_pc - 1 ] . y ;
walk_pc + + ;
}
}
else // this mega doesn't have slow-out frames
{
walkAnim [ walk_pc ] . frame = firstStandFrame + walkAnim [ walk_pc - 1 ] . dir ; // stand in current direction
walkAnim [ walk_pc ] . step = 0 ;
walkAnim [ walk_pc ] . dir = walkAnim [ walk_pc - 1 ] . dir ;
walkAnim [ walk_pc ] . x = walkAnim [ walk_pc - 1 ] . x ;
walkAnim [ walk_pc ] . y = walkAnim [ walk_pc - 1 ] . y ;
walk_pc + + ;
}
walkAnim [ walk_pc ] . frame = 512 ; // end of sequence
walkAnim [ walk_pc ] . step = 99 ; // so that this doesn't happen again while 'george_walking' is still '2'
}
//----------------------------------------------------------------------------
// SLOW OUT
void AddSlowOutFrames ( _walkData * walkAnim )
{
int32 slowOutFrameNo ;
if ( ( usingSlowOutFrames ) & & ( lastCount > = framesPerStep ) ) // if the mega did actually walk, we overwrite the last step (half a cycle) with slow-out frames + add any necessary stationary frames
{
// place stop frames here
// slowdown at the end of the last walk
slowOutFrameNo = lastCount - framesPerStep ;
//Zdebug("SLOW OUT: slowOutFrameNo(%d) = lastCount(%d) - framesPerStep(%d)",slowOutFrameNo,lastCount,framesPerStep);
do // overwrite the last step (half a cycle) of the walk
{
// map from existing walk frame across to correct frame number of slow-out - remember, there may be more slow-out frames than walk-frames!
walkAnim [ slowOutFrameNo ] . frame + = firstSlowOutFrame + ( ( walkAnim [ slowOutFrameNo ] . frame / framesPerStep ) * ( numberOfSlowOutFrames - framesPerStep ) ) ;
walkAnim [ slowOutFrameNo ] . step = 0 ; // because no longer a normal walk-step
//Zdebug("walkAnim[%d].frame = %d",slowOutFrameNo,walkAnim[slowOutFrameNo].frame);
slowOutFrameNo + = 1 ;
}
while ( slowOutFrameNo < lastCount ) ;
for ( slowOutFrameNo = framesPerStep ; slowOutFrameNo < numberOfSlowOutFrames ; slowOutFrameNo + + ) // add stationary frame(s) (OPTIONAL)
{
walkAnim [ stepCount ] . frame = walkAnim [ stepCount - 1 ] . frame + 1 ;
//Zdebug("EXTRA FRAMES: walkAnim[%d].frame = %d",stepCount,walkAnim[stepCount].frame);
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = walkAnim [ stepCount - 1 ] . dir ;
walkAnim [ stepCount ] . x = walkAnim [ stepCount - 1 ] . x ;
walkAnim [ stepCount ] . y = walkAnim [ stepCount - 1 ] . y ;
stepCount + = 1 ;
}
}
}
//----------------------------------------------------------------------------
void SlidyWalkAnimator ( _walkData * walkAnim )
/****************************************************************************
* Skidding every where HardWalk creates an animation that exactly fits the
* smoothPath and uses foot slipping to fit whole steps into the route
* Parameters : georgeg , mouseg
* Returns : rout
*
* produce a module list from the line data
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
{
static int32 left = 0 ;
int32 p ;
int32 lastDir ;
int32 lastRealDir ;
int32 turnDir ;
int32 scale ;
int32 step ;
int32 module ;
int32 moduleEnd ;
int32 module16X ;
int32 module16Y ;
int32 stepX ;
int32 stepY ;
int32 errorX ;
int32 errorY ;
int32 lastErrorX ;
int32 lastErrorY ;
int32 frameCount ;
int32 frames ;
p = 0 ;
lastDir = modularPath [ 0 ] . dir ;
currentDir = modularPath [ 1 ] . dir ;
if ( currentDir = = NO_DIRECTIONS )
{
currentDir = lastDir ;
}
moduleX = startX ;
moduleY = startY ;
module16X = moduleX < < 16 ;
module16Y = moduleY < < 16 ;
stepCount = 0 ;
//****************************************************************************
// SLIDY
// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
//****************************************************************************
//Zdebug("\nSLIDY: STARTING THE WALK");
module = framesPerChar + lastDir ;
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
//****************************************************************************
// SLIDY
// TURN TO START THE WALK
//****************************************************************************
//Zdebug("\nSLIDY: TURNING TO START THE WALK");
// rotate if we need to
if ( lastDir ! = currentDir )
{
// get the direction to turn
turnDir = currentDir - lastDir ;
if ( turnDir < 0 )
turnDir + = NO_DIRECTIONS ;
if ( turnDir > 4 )
turnDir = - 1 ;
else if ( turnDir > 0 )
turnDir = 1 ;
// rotate to new walk direction
// for george and nico put in a head turn at the start
if ( usingStandingTurnFrames )
{
if ( turnDir < 0 ) // new frames for turn frames 29oct95jps
{
module = firstStandingTurnLeftFrame + lastDir ;
}
else
{
module = firstStandingTurnRightFrame + lastDir ;
}
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
}
// rotate till were facing new dir then go back 45 degrees
while ( lastDir ! = currentDir )
{
lastDir + = turnDir ;
if ( turnDir < 0 ) // new frames for turn frames 29oct95jps
{
if ( lastDir < 0 )
lastDir + = NO_DIRECTIONS ;
module = firstStandingTurnLeftFrame + lastDir ;
}
else
{
if ( lastDir > 7 )
lastDir - = NO_DIRECTIONS ;
module = firstStandingTurnRightFrame + lastDir ;
}
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
}
// the back 45 degrees bit
stepCount - = 1 ; // step back one because new head turn for george takes us past the new dir
}
// his head is in the right direction
lastRealDir = currentDir ;
//****************************************************************************
// SLIDY: THE SLOW IN
AddSlowInFrames ( walkAnim ) ;
//****************************************************************************
//****************************************************************************
// SLIDY
// THE WALK
//****************************************************************************
//Zdebug("\nSLIDY: THE WALK");
//---------------------------------------------------
// start the walk on the left or right leg, depending on how the slow-in frames were drawn
if ( leadingLeg [ currentDir ] = = 0 ) // (0=left; 1=right)
left = 0 ; // start the walk on the left leg (ie. at beginning of the first step of the walk cycle)
else
left = framesPerStep ; // start the walk on the right leg (ie. at beginning of the second step of the walk cycle)
//---------------------------------------------------
lastCount = stepCount ;
lastDir = 99 ; // this ensures that we don't put in turn frames for the start
currentDir = 99 ; // this ensures that we don't put in turn frames for the start
do
{
while ( modularPath [ p ] . num = = 0 )
{
p = p + 1 ;
if ( currentDir ! = 99 )
lastRealDir = currentDir ;
lastDir = currentDir ;
lastCount = stepCount ;
}
//calculate average amount to lose in each step on the way to the next node
currentDir = modularPath [ p ] . dir ;
if ( currentDir < NO_DIRECTIONS )
{
module = currentDir * framesPerStep * 2 + left ;
if ( left = = 0 )
left = framesPerStep ;
else
left = 0 ;
moduleEnd = module + framesPerStep ;
step = 0 ;
scale = ( scaleA * moduleY + scaleB ) ;
do
{
module16X + = dx [ module ] * scale ;
module16Y + = dy [ module ] * scale ;
moduleX = module16X > > 16 ;
moduleY = module16Y > > 16 ;
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = step ; // normally 0,1,2,3,4,5,0,1,2,etc
walkAnim [ stepCount ] . dir = currentDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
step + = 1 ;
module + = 1 ;
}
while ( module < moduleEnd ) ;
stepX = modX [ modularPath [ p ] . dir ] ;
stepY = modY [ modularPath [ p ] . dir ] ;
errorX = modularPath [ p ] . x - moduleX ;
errorX = errorX * stepX ;
errorY = modularPath [ p ] . y - moduleY ;
errorY = errorY * stepY ;
if ( ( errorX < 0 ) | | ( errorY < 0 ) )
{
modularPath [ p ] . num = 0 ; // the end of the path
// okay those last steps took us past our target but do we want to scoot or moonwalk
frames = stepCount - lastCount ;
errorX = modularPath [ p ] . x - walkAnim [ stepCount - 1 ] . x ;
errorY = modularPath [ p ] . y - walkAnim [ stepCount - 1 ] . y ;
if ( frames > framesPerStep )
{
lastErrorX = modularPath [ p ] . x - walkAnim [ stepCount - 7 ] . x ;
lastErrorY = modularPath [ p ] . y - walkAnim [ stepCount - 7 ] . y ;
if ( stepX = = 0 )
{
if ( 3 * abs ( lastErrorY ) < abs ( errorY ) ) //the last stop was closest
{
stepCount - = framesPerStep ;
if ( left = = 0 )
left = framesPerStep ;
else
left = 0 ;
}
}
else
{
if ( 3 * abs ( lastErrorX ) < abs ( errorX ) ) //the last stop was closest
{
stepCount - = framesPerStep ;
if ( left = = 0 )
left = framesPerStep ;
else
left = 0 ;
}
}
}
errorX = modularPath [ p ] . x - walkAnim [ stepCount - 1 ] . x ;
errorY = modularPath [ p ] . y - walkAnim [ stepCount - 1 ] . y ;
// okay we've reached the end but we still have an error
if ( errorX ! = 0 )
{
frameCount = 0 ;
frames = stepCount - lastCount ;
do
{
frameCount + = 1 ;
walkAnim [ lastCount + frameCount - 1 ] . x + = errorX * frameCount / frames ;
}
while ( frameCount < frames ) ;
}
if ( errorY ! = 0 )
{
frameCount = 0 ;
frames = stepCount - lastCount ;
do
{
frameCount + = 1 ;
walkAnim [ lastCount + frameCount - 1 ] . y + = errorY * frameCount / frames ;
}
while ( frameCount < frames ) ;
}
// Now is the time to put in the turn frames for the last turn
if ( frames < framesPerStep )
currentDir = 99 ; // this ensures that we don't put in turn frames for this walk or the next
if ( currentDir ! = 99 )
lastRealDir = currentDir ;
// check each turn condition in turn
if ( ( ( lastDir ! = 99 ) & & ( currentDir ! = 99 ) ) & & ( usingWalkingTurnFrames ) ) // only for george
{
lastDir = currentDir - lastDir ; //1 and -7 going right -1 and 7 going left
if ( ( ( lastDir = = - 1 ) | | ( lastDir = = 7 ) ) | | ( ( lastDir = = - 2 ) | | ( lastDir = = 6 ) ) )
{
// turn at the end of the last walk
frame = lastCount - framesPerStep ;
do
{
walkAnim [ frame ] . frame + = firstWalkingTurnLeftFrame ; //was 104; //turning left
frame + = 1 ;
}
while ( frame < lastCount ) ;
}
if ( ( ( lastDir = = 1 ) | | ( lastDir = = - 7 ) ) | | ( ( lastDir = = 2 ) | | ( lastDir = = - 6 ) ) )
{
// turn at the end of the current walk
frame = lastCount - framesPerStep ;
do
{
walkAnim [ frame ] . frame + = firstWalkingTurnRightFrame ; // was 200; // turning right
frame + = 1 ;
}
while ( frame < lastCount ) ;
}
lastDir = currentDir ;
}
// all turns checked
lastCount = stepCount ;
moduleX = walkAnim [ stepCount - 1 ] . x ;
moduleY = walkAnim [ stepCount - 1 ] . y ;
module16X = moduleX < < 16 ;
module16Y = moduleY < < 16 ;
}
}
}
while ( modularPath [ p ] . dir < NO_DIRECTIONS ) ;
2003-07-28 09:49:46 +00:00
# ifdef _BS2_DEBUG
2003-07-28 01:44:38 +00:00
if ( lastRealDir = = 99 )
{
Con_fatal_error ( " SlidyWalkAnimatorlast direction error (%s line %u) " , __FILE__ , __LINE__ ) ;
}
# endif
//****************************************************************************
// SLIDY: THE SLOW OUT
AddSlowOutFrames ( walkAnim ) ;
//****************************************************************************
// SLIDY
// TURNS TO END THE WALK ?
//****************************************************************************
// We've done the walk now put in any turns at the end
if ( targetDir = = 8 ) // ANY direction -> stand in the last direction
{
module = firstStandFrame + lastRealDir ;
targetDir = lastRealDir ;
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastRealDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
}
if ( targetDir = = 9 ) // 'stance' was non-zero
{
if ( stepCount = = 0 )
{
module = framesPerChar + lastRealDir ;
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastRealDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
}
}
else if ( targetDir ! = lastRealDir ) // rotate to targetDir
{
// rotate to target direction
turnDir = targetDir - lastRealDir ;
if ( turnDir < 0 )
turnDir + = NO_DIRECTIONS ;
if ( turnDir > 4 )
turnDir = - 1 ;
else if ( turnDir > 0 )
turnDir = 1 ;
// rotate to target direction
// for george and nico put in a head turn at the start
if ( usingStandingTurnFrames )
{
if ( turnDir < 0 ) // new frames for turn frames 29oct95jps
{
module = firstStandingTurnLeftFrame + lastDir ;
}
else
{
module = firstStandingTurnRightFrame + lastDir ;
}
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastRealDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
}
// rotate if we need to
while ( lastRealDir ! = targetDir )
{
lastRealDir + = turnDir ;
if ( turnDir < 0 ) // new frames for turn frames 29oct95jps
{
if ( lastRealDir < 0 )
lastRealDir + = NO_DIRECTIONS ;
module = firstStandingTurnLeftFrame + lastRealDir ;
}
else
{
if ( lastRealDir > 7 )
lastRealDir - = NO_DIRECTIONS ;
module = firstStandingTurnRightFrame + lastRealDir ;
}
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastRealDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
}
module = firstStandFrame + lastRealDir ;
walkAnim [ stepCount - 1 ] . frame = module ;
}
else // just stand at the end
{
module = firstStandFrame + lastRealDir ;
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastRealDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
}
walkAnim [ stepCount ] . frame = 512 ;
walkAnim [ stepCount ] . step = 99 ;
stepCount + = 1 ;
walkAnim [ stepCount ] . frame = 512 ;
walkAnim [ stepCount ] . step = 99 ;
stepCount + = 1 ;
walkAnim [ stepCount ] . frame = 512 ;
walkAnim [ stepCount ] . step = 99 ;
//-------------------------------------------
// write all the frames to "debug.txt"
//Zdebug("\nTHE WALKDATA:");
for ( frame = 0 ; frame < = stepCount ; frame + + )
{
//Zdebug("walkAnim[%d].frame=%d",frame,walkAnim[frame].frame);
}
//-------------------------------------------
// Zdebug("RouteFinder RouteSize is %d", stepCount);
return ;
}
/*******************************************************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* THE SOLID PATH ROUTINES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
int32 SolidPath ( )
{
/****************************************************************************
* SolidPath creates a path based on whole steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* currently unused , but is intended for use when just clicking about .
*
* produce a module list from the line data
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
int32 smooth ;
int32 solid ;
int32 scale ;
int32 stepX ;
int32 stepY ;
int32 deltaX ;
int32 deltaY ;
// strip out the short sections
solid = 1 ;
smooth = 1 ;
modularPath [ 0 ] . x = smoothPath [ 0 ] . x ;
modularPath [ 0 ] . y = smoothPath [ 0 ] . y ;
modularPath [ 0 ] . dir = smoothPath [ 0 ] . dir ;
modularPath [ 0 ] . num = 0 ;
do
{
scale = scaleA * smoothPath [ smooth ] . y + scaleB ;
deltaX = smoothPath [ smooth ] . x - modularPath [ solid - 1 ] . x ;
deltaY = smoothPath [ smooth ] . y - modularPath [ solid - 1 ] . y ;
stepX = modX [ smoothPath [ smooth ] . dir ] ;
stepY = modY [ smoothPath [ smooth ] . dir ] ;
stepX = stepX * scale ;
stepY = stepY * scale ;
stepX = stepX > > 16 ;
stepY = stepY > > 16 ;
if ( ( abs ( deltaX ) > = abs ( stepX ) ) & & ( abs ( deltaY ) > = abs ( stepY ) ) )
{
modularPath [ solid ] . x = smoothPath [ smooth ] . x ;
modularPath [ solid ] . y = smoothPath [ smooth ] . y ;
modularPath [ solid ] . dir = smoothPath [ smooth ] . dir ;
modularPath [ solid ] . num = 1 ;
solid + = 1 ;
}
smooth + = 1 ;
}
while ( smoothPath [ smooth ] . num < ROUTE_END_FLAG ) ;
// in case the last bit had no steps
if ( solid = = 1 ) //there were no paths so put in a dummy end
{
solid = 2 ;
modularPath [ 1 ] . dir = smoothPath [ 0 ] . dir ;
modularPath [ 1 ] . num = 0 ;
}
modularPath [ solid - 1 ] . x = smoothPath [ smooth - 1 ] . x ;
modularPath [ solid - 1 ] . y = smoothPath [ smooth - 1 ] . y ;
// set up the end of the walk
modularPath [ solid ] . x = smoothPath [ smooth - 1 ] . x ;
modularPath [ solid ] . y = smoothPath [ smooth - 1 ] . y ;
modularPath [ solid ] . dir = 9 ;
modularPath [ solid ] . num = ROUTE_END_FLAG ;
return 1 ;
}
int32 SolidWalkAnimator ( _walkData * walkAnim )
{
/****************************************************************************
* SolidWalk creates an animation based on whole steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* is intended for use when just clicking about .
*
* produce a module list from the line data
*
* returns 0 if solid route not found
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
int32 p ;
int32 i ;
int32 left ;
int32 lastDir ;
int32 turnDir ;
int32 scale ;
int32 step ;
int32 module ;
int32 module16X ;
int32 module16Y ;
int32 errorX ;
int32 errorY ;
int32 moduleEnd ;
int32 slowStart = 0 ;
// start at the beginning for a change
lastDir = modularPath [ 0 ] . dir ;
p = 1 ;
currentDir = modularPath [ 1 ] . dir ;
module = framesPerChar + lastDir ;
moduleX = startX ;
moduleY = startY ;
module16X = moduleX < < 16 ;
module16Y = moduleY < < 16 ;
stepCount = 0 ;
//****************************************************************************
// SOLID
// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
//****************************************************************************
//Zdebug("\nSOLID: STARTING THE WALK");
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
//****************************************************************************
// SOLID
// TURN TO START THE WALK
//****************************************************************************
//Zdebug("\nSOLID: TURNING TO START THE WALK");
// rotate if we need to
if ( lastDir ! = currentDir )
{
// get the direction to turn
turnDir = currentDir - lastDir ;
if ( turnDir < 0 )
turnDir + = NO_DIRECTIONS ;
if ( turnDir > 4 )
turnDir = - 1 ;
else if ( turnDir > 0 )
turnDir = 1 ;
// rotate to new walk direction
// for george and nico put in a head turn at the start
if ( usingStandingTurnFrames )
{
if ( turnDir < 0 ) // new frames for turn frames 29oct95jps
{
module = firstStandingTurnLeftFrame + lastDir ;
}
else
{
module = firstStandingTurnRightFrame + lastDir ;
}
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
}
// rotate till were facing new dir then go back 45 degrees
while ( lastDir ! = currentDir )
{
lastDir + = turnDir ;
if ( turnDir < 0 ) // new frames for turn frames 29oct95jps
{
if ( lastDir < 0 )
lastDir + = NO_DIRECTIONS ;
module = firstStandingTurnLeftFrame + lastDir ;
}
else
{
if ( lastDir > 7 )
lastDir - = NO_DIRECTIONS ;
module = firstStandingTurnRightFrame + lastDir ;
}
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = lastDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
}
// the back 45 degrees bit
stepCount - = 1 ; // step back one because new head turn for george takes us past the new dir
}
//****************************************************************************
// SOLID: THE SLOW IN
slowStart = AddSlowInFrames ( walkAnim ) ;
//****************************************************************************
// SOLID
// THE WALK
//****************************************************************************
//Zdebug("\nSOLID: THE WALK");
//---------------------------------------------------
// start the walk on the left or right leg, depending on how the slow-in frames were drawn
if ( leadingLeg [ currentDir ] = = 0 ) // (0=left; 1=right)
left = 0 ; // start the walk on the left leg (ie. at beginning of the first step of the walk cycle)
else
left = framesPerStep ; // start the walk on the right leg (ie. at beginning of the second step of the walk cycle)
//---------------------------------------------------
lastCount = stepCount ;
lastDir = 99 ; // this ensures that we don't put in turn frames for the start
currentDir = 99 ; // this ensures that we don't put in turn frames for the start
do
{
while ( modularPath [ p ] . num > 0 )
{
currentDir = modularPath [ p ] . dir ;
if ( currentDir < NO_DIRECTIONS )
{
module = currentDir * framesPerStep * 2 + left ;
if ( left = = 0 )
left = framesPerStep ;
else
left = 0 ;
moduleEnd = module + framesPerStep ;
step = 0 ;
scale = ( scaleA * moduleY + scaleB ) ;
do
{
module16X + = dx [ module ] * scale ;
module16Y + = dy [ module ] * scale ;
moduleX = module16X > > 16 ;
moduleY = module16Y > > 16 ;
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = step ; // normally 0,1,2,3,4,5,0,1,2,etc
walkAnim [ stepCount ] . dir = currentDir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
module + = 1 ;
step + = 1 ;
}
while ( module < moduleEnd ) ;
errorX = modularPath [ p ] . x - moduleX ;
errorX = errorX * modX [ modularPath [ p ] . dir ] ;
errorY = modularPath [ p ] . y - moduleY ;
errorY = errorY * modY [ modularPath [ p ] . dir ] ;
if ( ( errorX < 0 ) | | ( errorY < 0 ) )
{
modularPath [ p ] . num = 0 ;
stepCount - = framesPerStep ;
if ( left = = 0 )
left = framesPerStep ;
else
left = 0 ;
// Okay this is the end of a section
moduleX = walkAnim [ stepCount - 1 ] . x ;
moduleY = walkAnim [ stepCount - 1 ] . y ;
module16X = moduleX < < 16 ;
module16Y = moduleY < < 16 ;
modularPath [ p ] . x = moduleX ;
modularPath [ p ] . y = moduleY ;
// Now is the time to put in the turn frames for the last turn
if ( ( stepCount - lastCount ) < framesPerStep ) // no step taken
{
if ( slowStart = = 1 ) // clean up if a slow in but no walk
{
//stepCount -= 3;
stepCount - = numberOfSlowInFrames [ currentDir ] ; // (James08sep97)
//lastCount -= 3;
lastCount - = numberOfSlowInFrames [ currentDir ] ; // (James08sep97)
slowStart = 0 ;
}
currentDir = 99 ; // this ensures that we don't put in turn frames for this walk or the next
}
// check each turn condition in turn
if ( ( ( lastDir ! = 99 ) & & ( currentDir ! = 99 ) ) & & ( usingWalkingTurnFrames ) ) // only for george
{
lastDir = currentDir - lastDir ; //1 and -7 going right -1 and 7 going left
if ( ( ( lastDir = = - 1 ) | | ( lastDir = = 7 ) ) | | ( ( lastDir = = - 2 ) | | ( lastDir = = 6 ) ) )
{
// turn at the end of the last walk
frame = lastCount - framesPerStep ;
do
{
walkAnim [ frame ] . frame + = firstWalkingTurnLeftFrame ; // was 104; //turning left
frame + = 1 ;
}
while ( frame < lastCount ) ;
}
if ( ( ( lastDir = = 1 ) | | ( lastDir = = - 7 ) ) | | ( ( lastDir = = 2 ) | | ( lastDir = = - 6 ) ) )
{
// turn at the end of the current walk
frame = lastCount - framesPerStep ;
do
{
walkAnim [ frame ] . frame + = firstWalkingTurnRightFrame ; // was 200; // turning right
frame + = 1 ;
}
while ( frame < lastCount ) ;
}
}
// all turns checked
lastCount = stepCount ;
}
}
}
p = p + 1 ;
lastDir = currentDir ;
slowStart = 0 ; //can only be valid first time round
}
while ( modularPath [ p ] . dir < NO_DIRECTIONS ) ;
//****************************************************************************
// SOLID: THE SLOW OUT
AddSlowOutFrames ( walkAnim ) ;
//****************************************************************************
module = framesPerChar + modularPath [ p - 1 ] . dir ;
walkAnim [ stepCount ] . frame = module ;
walkAnim [ stepCount ] . step = 0 ;
walkAnim [ stepCount ] . dir = modularPath [ p - 1 ] . dir ;
walkAnim [ stepCount ] . x = moduleX ;
walkAnim [ stepCount ] . y = moduleY ;
stepCount + = 1 ;
walkAnim [ stepCount ] . frame = 512 ;
walkAnim [ stepCount ] . step = 99 ;
stepCount + = 1 ;
walkAnim [ stepCount ] . frame = 512 ;
walkAnim [ stepCount ] . step = 99 ;
stepCount + = 1 ;
walkAnim [ stepCount ] . frame = 512 ;
walkAnim [ stepCount ] . step = 99 ;
//-------------------------------------------
// write all the frames to "debug.txt"
//Zdebug("\nTHE WALKDATA:");
for ( frame = 0 ; frame < = stepCount ; frame + + )
{
//Zdebug("walkAnim[%d].frame=%d",frame,walkAnim[frame].frame);
}
//-------------------------------------------
//****************************************************************************
// SOLID
// NO END TURNS
//****************************************************************************
// Zdebug("RouteFinder RouteSize is %d", stepCount);
// now check the route
i = 0 ;
do
{
if ( ! Check ( modularPath [ i ] . x , modularPath [ i ] . y , modularPath [ i + 1 ] . x , modularPath [ i + 1 ] . y ) )
p = 0 ;
# ifdef PLOT_PATHS
RouteLine ( modularPath [ i ] . x , modularPath [ i ] . y , modularPath [ i + 1 ] . x , modularPath [ i + 1 ] . y , 227 ) ;
# endif
i + = 1 ;
}
while ( i < p - 1 ) ;
if ( p ! = 0 )
{
targetDir = modularPath [ p - 1 ] . dir ;
}
if ( p ! = 0 )
{
if ( CheckTarget ( moduleX , moduleY ) = = 3 ) // new target on a line
{
p = 0 ;
//Zdebug("Solid walk target was on a line %d %d", moduleX, moduleY);
}
}
return p ;
}
/*******************************************************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* THE SCAN ROUTINES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
int32 Scan ( int32 level )
/*******************************************************************************
* Called successively from RouteFinder until no more changes take place in the
* grid array ie he best path has been found
*
* Scans through every point in the node array and checks if there is a route
* between each point and if this route gives a new route .
*
* This routine could probably halve its processing time if it doubled up on the
* checks after each route check
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
{
int32 i ;
int32 k ;
int32 x1 ;
int32 y1 ;
int32 x2 ;
int32 y2 ;
int32 distance ;
int32 changed = 0 ;
// For all the nodes that have new values and a distance less than enddist
// ie dont check for new routes from a point we checked before or from a point
// that is already further away than the best route so far.
i = 0 ;
do
{
if ( ( node [ i ] . dist < node [ nnodes ] . dist ) & & ( node [ i ] . level = = level ) )
{
x1 = node [ i ] . x ;
y1 = node [ i ] . y ;
k = nnodes ;
do
{
if ( node [ k ] . dist > node [ i ] . dist )
{
x2 = node [ k ] . x ;
y2 = node [ k ] . y ;
if ( abs ( x2 - x1 ) > ( 4.5 * abs ( y2 - y1 ) ) )
{
distance = ( 8 * abs ( x2 - x1 ) + 18 * abs ( y2 - y1 ) ) / ( 54 * 8 ) + 1 ;
}
else
{
distance = ( 6 * abs ( x2 - x1 ) + 36 * abs ( y2 - y1 ) ) / ( 36 * 14 ) + 1 ;
}
if ( ( distance + node [ i ] . dist < node [ nnodes ] . dist ) & & ( distance + node [ i ] . dist < node [ k ] . dist ) )
{
if ( NewCheck ( 0 , x1 , y1 , x2 , y2 ) )
{
node [ k ] . level = level + 1 ;
node [ k ] . dist = distance + node [ i ] . dist ;
node [ k ] . prev = i ;
changed = 1 ;
}
}
}
k - = 1 ;
}
while ( k > 0 ) ;
}
i = i + 1 ;
}
while ( i < nnodes ) ;
return changed ;
}
int32 NewCheck ( int32 status , int32 x1 , int32 y1 , int32 x2 , int32 y2 )
/*******************************************************************************
* NewCheck routine checks if the route between two points can be achieved
* without crossing any of the bars in the Bars array .
*
* NewCheck differs from check in that that 4 route options are considered
* corresponding to actual walked routes .
*
* Note distance doesnt take account of shrinking ? ? ?
*
* Note Bars array must be properly calculated ie min max dx dy co
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
{
int32 dx ;
int32 dy ;
int32 dlx ;
int32 dly ;
int32 dirX ;
int32 dirY ;
int32 step1 ;
int32 step2 ;
int32 step3 ;
int32 steps ;
int32 options ;
steps = 0 ;
options = 0 ;
dx = x2 - x1 ;
dy = y2 - y1 ;
dirX = 1 ;
dirY = 1 ;
if ( dx < 0 )
{
dx = - dx ;
dirX = - 1 ;
}
if ( dy < 0 )
{
dy = - dy ;
dirY = - 1 ;
}
//make the route options
if ( ( diagonaly * dx ) > ( diagonalx * dy ) ) // dir = 1,2 or 2,3 or 5,6 or 6,7
{
dly = dy ;
dlx = ( dy * diagonalx ) / diagonaly ;
dx = dx - dlx ;
dlx = dlx * dirX ;
dly = dly * dirY ;
dx = dx * dirX ;
dy = 0 ;
//options are
//square, diagonal a code 1 route
step1 = Check ( x1 , y1 , x1 + dx , y1 ) ;
if ( step1 ! = 0 )
{
step2 = Check ( x1 + dx , y1 , x2 , y2 ) ;
if ( step2 ! = 0 )
{
steps = step1 + step2 ; // yes
options = options + 2 ;
# ifdef PLOT_PATHS
if ( status = = 1 )
{
RouteLine ( x1 , y1 , x1 + dx , y1 , 231 ) ;
RouteLine ( x1 + dx , y1 , x2 , y2 , 231 ) ;
}
# endif
}
}
//diagonal, square a code 2 route
if ( ( steps = = 0 ) | | ( status = = 1 ) )
{
step1 = Check ( x1 , y1 , x1 + dlx , y1 + dly ) ;
if ( step1 ! = 0 )
{
step2 = Check ( x1 + dlx , y2 , x2 , y2 ) ;
if ( step2 ! = 0 )
{
steps = step1 + step2 ; // yes
options = options + 4 ;
# ifdef PLOT_PATHS
if ( status = = 1 )
{
RouteLine ( x1 , y1 , x1 + dlx , y1 + dly , 231 ) ;
RouteLine ( x1 + dlx , y2 , x2 , y2 , 231 ) ;
}
# endif
}
}
}
//halfsquare, diagonal, halfsquare a code 0 route
if ( ( steps = = 0 ) | | ( status = = 1 ) )
{
step1 = Check ( x1 , y1 , x1 + dx / 2 , y1 ) ;
if ( step1 ! = 0 )
{
step2 = Check ( x1 + dx / 2 , y1 , x1 + dx / 2 + dlx , y2 ) ;
if ( step2 ! = 0 )
{
step3 = Check ( x1 + dx / 2 + dlx , y2 , x2 , y2 ) ;
if ( step3 ! = 0 )
{
steps = step1 + step2 + step3 ; // yes
options = options + 1 ;
# ifdef PLOT_PATHS
if ( status = = 1 )
{
RouteLine ( x1 , y1 , x1 + dx / 2 , y1 , 231 ) ;
RouteLine ( x1 + dx / 2 , y1 , x1 + dx / 2 + dlx , y2 , 231 ) ;
RouteLine ( x1 + dx / 2 + dlx , y2 , x2 , y2 , 231 ) ;
}
# endif
}
}
}
}
//halfdiagonal, square, halfdiagonal a code 3 route
if ( ( steps = = 0 ) | | ( status = = 1 ) )
{
step1 = Check ( x1 , y1 , x1 + dlx / 2 , y1 + dly / 2 ) ;
if ( step1 ! = 0 )
{
step2 = Check ( x1 + dlx / 2 , y1 + dly / 2 , x1 + dx + dlx / 2 , y1 + dly / 2 ) ;
if ( step2 ! = 0 )
{
step3 = Check ( x1 + dx + dlx / 2 , y1 + dly / 2 , x2 , y2 ) ;
if ( step3 ! = 0 )
{
steps = step1 + step2 + step3 ; // yes
# ifdef PLOT_PATHS
if ( status = = 1 )
{
RouteLine ( x1 , y1 , x1 + dlx / 2 , y1 + dly / 2 , 231 ) ;
RouteLine ( x1 + dlx / 2 , y1 + dly / 2 , x1 + dx + dlx / 2 , y1 + dly / 2 , 231 ) ;
RouteLine ( x1 + dx + dlx / 2 , y1 + dly / 2 , x2 , y2 , 231 ) ;
}
# endif
options = options + 8 ;
}
}
}
}
}
else // dir = 7,0 or 0,1 or 3,4 or 4,5
{
dlx = dx ;
dly = ( dx * diagonaly ) / diagonalx ;
dy = dy - dly ;
dlx = dlx * dirX ;
dly = dly * dirY ;
dy = dy * dirY ;
dx = 0 ;
//options are
//square, diagonal a code 1 route
step1 = Check ( x1 , y1 , x1 , y1 + dy ) ;
if ( step1 ! = 0 )
{
step2 = Check ( x1 , y1 + dy , x2 , y2 ) ;
if ( step2 ! = 0 )
{
steps = step1 + step2 ; // yes
# ifdef PLOT_PATHS
if ( status = = 1 )
{
RouteLine ( x1 , y1 , x1 , y1 + dy , 231 ) ;
RouteLine ( x1 , y1 + dy , x2 , y2 , 231 ) ;
}
# endif
options = options + 2 ;
}
}
//diagonal, square a code 2 route
if ( ( steps = = 0 ) | | ( status = = 1 ) )
{
step1 = Check ( x1 , y1 , x2 , y1 + dly ) ;
if ( step1 ! = 0 )
{
step2 = Check ( x2 , y1 + dly , x2 , y2 ) ;
if ( step2 ! = 0 )
{
steps = step1 + step2 ; // yes
# ifdef PLOT_PATHS
if ( status = = 1 )
{
RouteLine ( x1 , y1 , x2 , y1 + dly , 231 ) ;
RouteLine ( x2 , y1 + dly , x2 , y2 , 231 ) ;
}
# endif
options = options + 4 ;
}
}
}
//halfsquare, diagonal, halfsquare a code 0 route
if ( ( steps = = 0 ) | | ( status = = 1 ) )
{
step1 = Check ( x1 , y1 , x1 , y1 + dy / 2 ) ;
if ( step1 ! = 0 )
{
step2 = Check ( x1 , y1 + dy / 2 , x2 , y1 + dy / 2 + dly ) ;
if ( step2 ! = 0 )
{
step3 = Check ( x2 , y1 + dy / 2 + dly , x2 , y2 ) ;
if ( step3 ! = 0 )
{
steps = step1 + step2 + step3 ; // yes
# ifdef PLOT_PATHS
if ( status = = 1 )
{
RouteLine ( x1 , y1 , x1 , y1 + dy / 2 , 231 ) ;
RouteLine ( x1 , y1 + dy / 2 , x2 , y1 + dy / 2 + dly , 231 ) ;
RouteLine ( x2 , y1 + dy / 2 + dly , x2 , y2 , 231 ) ;
}
# endif
options = options + 1 ;
}
}
}
}
//halfdiagonal, square, halfdiagonal a code 3 route
if ( ( steps = = 0 ) | | ( status = = 1 ) )
{
step1 = Check ( x1 , y1 , x1 + dlx / 2 , y1 + dly / 2 ) ;
if ( step1 ! = 0 )
{
step2 = Check ( x1 + dlx / 2 , y1 + dly / 2 , x1 + dlx / 2 , y1 + dy + dly / 2 ) ;
if ( step2 ! = 0 )
{
step3 = Check ( x1 + dlx / 2 , y1 + dy + dly / 2 , x2 , y2 ) ;
if ( step3 ! = 0 )
{
steps = step1 + step2 + step3 ; // yes
options = options + 8 ;
# ifdef PLOT_PATHS
if ( status = = 1 )
{
RouteLine ( x1 , y1 , x1 + dlx / 2 , y1 + dly / 2 , 231 ) ;
RouteLine ( x1 + dlx / 2 , y1 + dly / 2 , x1 + dlx / 2 , y1 + dy + dly / 2 , 231 ) ;
RouteLine ( x1 + dlx / 2 , y1 + dy + dly / 2 , x2 , y2 , 231 ) ;
}
# endif
}
}
}
}
}
if ( status = = 0 )
{
status = steps ;
}
else
{
status = options ;
}
return status ;
}
/*******************************************************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* CHECK ROUTINES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
int32 Check ( int32 x1 , int32 y1 , int32 x2 , int32 y2 )
{
//call the fastest line check for the given line
//returns 1 if line didn't cross any bars
int32 steps ;
if ( ( x1 = = x2 ) & & ( y1 = = y2 ) )
{
steps = 1 ;
}
else if ( x1 = = x2 )
{
steps = VertCheck ( x1 , y1 , y2 ) ;
}
else if ( y1 = = y2 )
{
steps = HorizCheck ( x1 , y1 , x2 ) ;
}
else
{
steps = LineCheck ( x1 , y1 , x2 , y2 ) ;
}
return steps ;
}
int32 LineCheck ( int32 x1 , int32 y1 , int32 x2 , int32 y2 )
{
int32 dirx ;
int32 diry ;
int32 co ;
int32 slope ;
int32 i ;
int32 xc ;
int32 yc ;
int32 xmin ;
int32 ymin ;
int32 xmax ;
int32 ymax ;
int32 linesCrossed = 1 ;
if ( x1 > x2 )
{
xmin = x2 ;
xmax = x1 ;
}
else
{
xmin = x1 ;
xmax = x2 ;
}
if ( y1 > y2 )
{
ymin = y2 ;
ymax = y1 ;
}
else
{
ymin = y1 ;
ymax = y2 ;
}
//line set to go one step in chosen direction
//so ignore if it hits anything
dirx = x2 - x1 ;
diry = y2 - y1 ;
co = ( y1 * dirx ) - ( x1 * diry ) ; //new line equation
i = 0 ;
do
{
// this is the inner inner loop
if ( ( xmax > = bars [ i ] . xmin ) & & ( xmin < = bars [ i ] . xmax ) ) //skip if not on module
{
if ( ( ymax > = bars [ i ] . ymin ) & & ( ymin < = bars [ i ] . ymax ) ) //skip if not on module
{
// okay its a valid line calculate an intersept
// wow but all this arithmatic we must have loads of time
slope = ( bars [ i ] . dx * diry ) - ( bars [ i ] . dy * dirx ) ; // slope it he slope between the two lines
if ( slope ! = 0 ) //assuming parallel lines don't cross
{
//calculate x intercept and check its on both lines
xc = ( ( bars [ i ] . co * dirx ) - ( co * bars [ i ] . dx ) ) / slope ;
if ( ( xc > = xmin - 1 ) & & ( xc < = xmax + 1 ) ) //skip if not on module
{
if ( ( xc > = bars [ i ] . xmin - 1 ) & & ( xc < = bars [ i ] . xmax + 1 ) ) //skip if not on line
{
yc = ( ( bars [ i ] . co * diry ) - ( co * bars [ i ] . dy ) ) / slope ;
if ( ( yc > = ymin - 1 ) & & ( yc < = ymax + 1 ) ) //skip if not on module
{
if ( ( yc > = bars [ i ] . ymin - 1 ) & & ( yc < = bars [ i ] . ymax + 1 ) ) //skip if not on line
{
linesCrossed = 0 ;
}
}
}
}
}
}
}
i = i + 1 ;
}
while ( ( i < nbars ) & & linesCrossed ) ;
return linesCrossed ;
}
int32 HorizCheck ( int32 x1 , int32 y , int32 x2 )
{
int32 dy ;
int32 i ;
int32 xc ;
int32 xmin ;
int32 xmax ;
int32 linesCrossed = 1 ;
if ( x1 > x2 )
{
xmin = x2 ;
xmax = x1 ;
}
else
{
xmin = x1 ;
xmax = x2 ;
}
//line set to go one step in chosen direction
//so ignore if it hits anything
i = 0 ;
do
{
// this is the inner inner loop
if ( ( xmax > = bars [ i ] . xmin ) & & ( xmin < = bars [ i ] . xmax ) ) //skip if not on module
{
if ( ( y > = bars [ i ] . ymin ) & & ( y < = bars [ i ] . ymax ) ) //skip if not on module
{
// okay its a valid line calculate an intersept
// wow but all this arithmatic we must have loads of time
if ( bars [ i ] . dy = = 0 )
{
linesCrossed = 0 ;
}
else
{
dy = y - bars [ i ] . y1 ;
xc = bars [ i ] . x1 + ( bars [ i ] . dx * dy ) / bars [ i ] . dy ;
if ( ( xc > = xmin - 1 ) & & ( xc < = xmax + 1 ) ) //skip if not on module
{
linesCrossed = 0 ;
}
}
}
}
i = i + 1 ;
}
while ( ( i < nbars ) & & linesCrossed ) ;
return linesCrossed ;
}
int32 VertCheck ( int32 x , int32 y1 , int32 y2 )
{
int32 dx ;
int32 i ;
int32 yc ;
int32 ymin ;
int32 ymax ;
int32 linesCrossed = 1 ;
if ( y1 > y2 )
{
ymin = y2 ;
ymax = y1 ;
}
else
{
ymin = y1 ;
ymax = y2 ;
}
//line set to go one step in chosen direction
//so ignore if it hits anything
i = 0 ;
do // this is the inner inner loop
{
if ( ( x > = bars [ i ] . xmin ) & & ( x < = bars [ i ] . xmax ) ) //overlapping
{
if ( ( ymax > = bars [ i ] . ymin ) & & ( ymin < = bars [ i ] . ymax ) ) //skip if not on module
{
// okay its a valid line calculate an intersept
// wow but all this arithmatic we must have loads of time
if ( bars [ i ] . dx = = 0 ) //both lines vertical and overlap in x and y so they cross
{
linesCrossed = 0 ;
}
else
{
dx = x - bars [ i ] . x1 ;
yc = bars [ i ] . y1 + ( bars [ i ] . dy * dx ) / bars [ i ] . dx ;
if ( ( yc > = ymin - 1 ) & & ( yc < = ymax + 1 ) ) //the intersept overlaps
{
linesCrossed = 0 ;
}
}
}
}
i = i + 1 ;
}
while ( ( i < nbars ) & & linesCrossed ) ;
return linesCrossed ;
}
int32 CheckTarget ( int32 x , int32 y )
/*******************************************************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
{
int32 dx ;
int32 dy ;
int32 i ;
int32 xc ;
int32 yc ;
int32 xmin ;
int32 xmax ;
int32 ymin ;
int32 ymax ;
int32 onLine = 0 ;
xmin = x - 1 ;
xmax = x + 1 ;
ymin = y - 1 ;
ymax = y + 1 ;
// check if point +- 1 is on the line
//so ignore if it hits anything
i = 0 ;
do
{
// this is the inner inner loop
if ( ( xmax > = bars [ i ] . xmin ) & & ( xmin < = bars [ i ] . xmax ) ) //overlapping line
{
if ( ( ymax > = bars [ i ] . ymin ) & & ( ymin < = bars [ i ] . ymax ) ) //overlapping line
{
// okay this line overlaps the target calculate an y intersept for x
if ( bars [ i ] . dx = = 0 ) // vertical line so we know it overlaps y
{
yc = 0 ;
}
else
{
dx = x - bars [ i ] . x1 ;
yc = bars [ i ] . y1 + ( bars [ i ] . dy * dx ) / bars [ i ] . dx ;
}
if ( ( yc > = ymin ) & & ( yc < = ymax ) ) //overlapping point for y
{
onLine = 3 ; // target on a line so drop out
//Zdebug("RouteFail due to target on a line %d %d",x,y);
}
else
{
if ( bars [ i ] . dy = = 0 ) // vertical line so we know it overlaps y
{
xc = 0 ;
}
else
{
dy = y - bars [ i ] . y1 ;
xc = bars [ i ] . x1 + ( bars [ i ] . dx * dy ) / bars [ i ] . dy ;
}
if ( ( xc > = xmin ) & & ( xc < = xmax ) ) //skip if not on module
{
onLine = 3 ; // target on a line so drop out
//Zdebug("RouteFail due to target on a line %d %d",x,y);
}
}
}
}
i = i + 1 ;
}
while ( ( i < nbars ) & & ( onLine = = 0 ) ) ;
return onLine ;
}
/*******************************************************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* THE SETUP ROUTINES
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
//------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------
void LoadWalkData ( Object_walkdata * ob_walkdata )
{
uint8 direction ;
uint16 firstFrameOfDirection ;
uint16 walkFrameNo ;
uint32 frameCounter = 0 ; // starts at frame 0 of mega set (16sep96 JEL)
nWalkFrames = ob_walkdata - > nWalkFrames ;
usingStandingTurnFrames = ob_walkdata - > usingStandingTurnFrames ;
usingWalkingTurnFrames = ob_walkdata - > usingWalkingTurnFrames ;
usingSlowInFrames = ob_walkdata - > usingSlowInFrames ;
usingSlowOutFrames = ob_walkdata - > usingSlowOutFrames ;
numberOfSlowOutFrames = usingSlowOutFrames ; // 0 = not using slow out frames; non-zero = using that many frames for each leading leg for each direction
memcpy ( & numberOfSlowInFrames [ 0 ] , ob_walkdata - > nSlowInFrames , NO_DIRECTIONS * sizeof ( numberOfSlowInFrames [ 0 ] ) ) ;
memcpy ( & leadingLeg [ 0 ] , ob_walkdata - > leadingLeg , NO_DIRECTIONS * sizeof ( leadingLeg [ 0 ] ) ) ;
memcpy ( & dx [ 0 ] , ob_walkdata - > dx , NO_DIRECTIONS * ( nWalkFrames + 1 ) * sizeof ( dx [ 0 ] ) ) ;
memcpy ( & dy [ 0 ] , ob_walkdata - > dy , NO_DIRECTIONS * ( nWalkFrames + 1 ) * sizeof ( dy [ 0 ] ) ) ;
//---------------------------------------------------------
for ( direction = 0 ; direction < NO_DIRECTIONS ; direction + + )
{
firstFrameOfDirection = direction * nWalkFrames ;
modX [ direction ] = 0 ;
modY [ direction ] = 0 ;
for ( walkFrameNo = firstFrameOfDirection ; walkFrameNo < ( firstFrameOfDirection + ( nWalkFrames / 2 ) ) ; walkFrameNo + + )
{
modX [ direction ] + = dx [ walkFrameNo ] ; // eg. modX[0] is the sum of the x-step sizes for the first half of the walk cycle for direction 0
modY [ direction ] + = dy [ walkFrameNo ] ;
}
}
diagonalx = modX [ 3 ] ;
diagonaly = modY [ 3 ] ;
//----------------------------------------------------
// interpret the walk data
//----------------------------------------------------
framesPerStep = nWalkFrames / 2 ;
framesPerChar = nWalkFrames * NO_DIRECTIONS ;
// offset pointers added Oct 30 95 JPS
// mega id references removed 16sep96 by JEL
//---------------------
// WALK FRAMES
// start on frame 0
frameCounter + = framesPerChar ;
//---------------------
// STAND FRAMES
firstStandFrame = frameCounter ; // stand frames come after the walk frames
frameCounter + = NO_DIRECTIONS ; // one stand frame for each direction
//---------------------
// STANDING TURN FRAMES - OPTIONAL!
if ( usingStandingTurnFrames )
{
firstStandingTurnLeftFrame = frameCounter ; // standing turn-left frames come after the slow-out frames
frameCounter + = NO_DIRECTIONS ; // one for each direction
firstStandingTurnRightFrame = frameCounter ; // standing turn-left frames come after the standing turn-right frames
frameCounter + = NO_DIRECTIONS ; // one for each direction
}
else
{
firstStandingTurnLeftFrame = firstStandFrame ; // refer instead to the normal stand frames
firstStandingTurnRightFrame = firstStandFrame ; // -"-
}
//---------------------
// WALKING TURN FRAMES - OPTIONAL!
if ( usingWalkingTurnFrames )
{
firstWalkingTurnLeftFrame = frameCounter ; // walking left-turn frames come after the stand frames
frameCounter + = framesPerChar ;
firstWalkingTurnRightFrame = frameCounter ; // walking right-turn frames come after the walking left-turn frames
frameCounter + = framesPerChar ;
}
else
{
firstWalkingTurnLeftFrame = 0 ;
firstWalkingTurnRightFrame = 0 ;
}
//---------------------
// SLOW-IN FRAMES - OPTIONAL!
if ( usingSlowInFrames ) // slow-in frames come after the walking right-turn frames
{
for ( direction = 0 ; direction < NO_DIRECTIONS ; direction + + )
{
firstSlowInFrame [ direction ] = frameCounter ; // make note of frame number of first slow-in frame for each direction
frameCounter + = numberOfSlowInFrames [ direction ] ; // can be a different number of slow-in frames in each direction
}
}
//---------------------
// SLOW-OUT FRAMES - OPTIONAL!
if ( usingSlowOutFrames )
{
firstSlowOutFrame = frameCounter ; // slow-out frames come after the slow-in frames
}
//---------------------
}
/*******************************************************************************
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* THE ROUTE EXTRACTOR
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
void ExtractRoute ( )
/****************************************************************************
* ExtractRoute gets route from the node data after a full scan , route is
* written with just the basic way points and direction options for heading
* to the next point .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
{
int32 prev ;
int32 prevx ;
int32 prevy ;
int32 last ;
int32 point ;
int32 p ;
int32 dirx ;
int32 diry ;
int32 dir ;
int32 dx ;
int32 dy ;
// extract the route from the node data
prev = nnodes ;
last = prev ;
point = O_ROUTE_SIZE - 1 ;
route [ point ] . x = node [ last ] . x ;
route [ point ] . y = node [ last ] . y ;
do
{
point = point - 1 ;
prev = node [ last ] . prev ;
prevx = node [ prev ] . x ;
prevy = node [ prev ] . y ;
route [ point ] . x = prevx ;
route [ point ] . y = prevy ;
last = prev ;
}
while ( prev > 0 ) ;
// now shuffle route down in the buffer
routeLength = 0 ;
do
{
route [ routeLength ] . x = route [ point ] . x ;
route [ routeLength ] . y = route [ point ] . y ;
point = point + 1 ;
routeLength = routeLength + 1 ;
}
while ( point < O_ROUTE_SIZE ) ;
routeLength = routeLength - 1 ;
// okay the route exists as a series point now put in some directions
p = 0 ;
do
{
# ifdef PLOT_PATHS
BresenhamLine ( route [ p + 1 ] . x - 128 , route [ p + 1 ] . y - 128 , route [ p ] . x - 128 , route [ p ] . y - 128 , ( uint8 * ) screen_ad , true_pixel_size_x , pixel_size_y , ROUTE_END_FLAG ) ;
# endif
dx = route [ p + 1 ] . x - route [ p ] . x ;
dy = route [ p + 1 ] . y - route [ p ] . y ;
dirx = 1 ;
diry = 1 ;
if ( dx < 0 )
{
dx = - dx ;
dirx = - 1 ;
}
if ( dy < 0 )
{
dy = - dy ;
diry = - 1 ;
}
if ( ( diagonaly * dx ) > ( diagonalx * dy ) ) // dir = 1,2 or 2,3 or 5,6 or 6,7
{
dir = 4 - 2 * dirx ; // 2 or 6
route [ p ] . dirS = dir ;
dir = dir + diry * dirx ; // 1,3,5 or 7
route [ p ] . dirD = dir ;
}
else // dir = 7,0 or 0,1 or 3,4 or 4,5
{
dir = 2 + 2 * diry ; // 0 or 4
route [ p ] . dirS = dir ;
dir = 4 - 2 * dirx ; // 2 or 6
dir = dir + diry * dirx ; // 1,3,5 or 7
route [ p ] . dirD = dir ;
}
p = p + 1 ;
}
while ( p < ( routeLength ) ) ;
// set the last dir to continue previous route unless specified
if ( targetDir = = 8 ) // ANY direction
{
route [ p ] . dirS = route [ p - 1 ] . dirS ;
route [ p ] . dirD = route [ p - 1 ] . dirD ;
}
else
{
route [ p ] . dirS = targetDir ;
route [ p ] . dirD = targetDir ;
}
return ;
}
//*******************************************************************************
void RouteLine ( int32 x1 , int32 y1 , int32 x2 , int32 y2 , int32 colour )
{
if ( x1 ) ;
if ( x2 ) ;
if ( y1 ) ;
if ( y2 ) ;
if ( colour ) ;
// BresenhamLine(x1-128, y1-128, x2-128, y2-128, (uint8*)screen_ad, true_pixel_size_x, pixel_size_y, colour);
return ;
}
//*******************************************************************************
void SetUpWalkGrid ( Object_mega * ob_mega , int32 x , int32 y , int32 dir )
{
int32 i ;
LoadWalkGrid ( ) ; // get walk grid file + extra grid into 'bars' & 'node' arrays
// copy the mega structure into the local variables for use in all subroutines
startX = ob_mega - > feet_x ;
startY = ob_mega - > feet_y ;
startDir = ob_mega - > current_dir ;
targetX = x ;
targetY = y ;
targetDir = dir ;
scaleA = ob_mega - > scale_a ;
scaleB = ob_mega - > scale_b ;
// mega's current position goes into first node
node [ 0 ] . x = startX ;
node [ 0 ] . y = startY ;
node [ 0 ] . level = 1 ;
node [ 0 ] . prev = 0 ;
node [ 0 ] . dist = 0 ;
// reset other nodes
for ( i = 1 ; i < nnodes ; i + + )
{
node [ i ] . level = 0 ;
node [ i ] . prev = 0 ;
node [ i ] . dist = 9999 ;
}
// target position goes into final node
node [ nnodes ] . x = targetX ;
node [ nnodes ] . y = targetY ;
node [ nnodes ] . level = 0 ;
node [ nnodes ] . prev = 0 ;
node [ nnodes ] . dist = 9999 ;
}
//------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------
void PlotWalkGrid ( void )
{
int32 j ;
LoadWalkGrid ( ) ; // get walk grid file + extra grid into 'bars' & 'node' arrays
//-------------------------------
// lines
for ( j = 0 ; j < nbars ; j + + )
{
DrawLine ( bars [ j ] . x1 , bars [ j ] . y1 , bars [ j ] . x2 , bars [ j ] . y2 , 254 ) ;
}
//-------------------------------
// nodes
for ( j = 1 ; j < nnodes ; j + + ) // leave node 0 for start node
{
PlotCross ( node [ j ] . x , node [ j ] . y , 184 ) ;
}
//-------------------------------
}
//------------------------------------------------------------------------------------------
void PlotCross ( int16 x , int16 y , uint8 colour )
{
DrawLine ( x - 1 , y - 1 , x + 1 , y + 1 , colour ) ;
DrawLine ( x + 1 , y - 1 , x - 1 , y + 1 , colour ) ;
}
//------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------
void LoadWalkGrid ( void )
{
// _standardHeader header;
_walkGridHeader floorHeader ;
uint32 j ;
uint8 * fPolygrid ;
int entry ;
uint32 theseBars ;
uint32 theseNodes ;
nbars = 0 ; // reset counts
nnodes = 1 ; // leave node 0 for start-node
//-------------------------------
// STATIC GRIDS (added/removed by object logics)
for ( entry = 0 ; entry < MAX_WALKGRIDS ; entry + + ) // go through walkgrid list
{
if ( walkGridList [ entry ] )
{
fPolygrid = res_man . Res_open ( walkGridList [ entry ] ) ; // open walk grid file
// memmove( (uint8*)&header, fPolygrid, sizeof(_standardHeader) );
fPolygrid + = sizeof ( _standardHeader ) ;
memmove ( ( uint8 * ) & floorHeader , fPolygrid , sizeof ( _walkGridHeader ) ) ;
fPolygrid + = sizeof ( _walkGridHeader ) ;
//-------------------------------
// how many bars & nodes are we getting from this walkgrid file
theseBars = floorHeader . numBars ;
theseNodes = floorHeader . numNodes ;
//-------------------------------
// check that we're not going to exceed the max allowed in the complete walkgrid arrays
2003-07-28 09:49:46 +00:00
# ifdef _BS2_DEBUG
2003-07-28 01:44:38 +00:00
if ( ( nbars + theseBars ) > = O_GRID_SIZE )
Con_fatal_error ( " Adding walkgrid(%d): %d+%d bars exceeds max %d (%s line %u) " , walkGridList [ entry ] , nbars , theseBars , O_GRID_SIZE , __FILE__ , __LINE__ ) ;
if ( ( nnodes + theseNodes ) > = O_GRID_SIZE )
Con_fatal_error ( " Adding walkgrid(%d): %d+%d nodes exceeds max %d (%s line %u) " , walkGridList [ entry ] , nnodes , theseBars , O_GRID_SIZE , __FILE__ , __LINE__ ) ;
# endif
//-------------------------------
// lines
memmove ( ( uint8 * ) & bars [ nbars ] , fPolygrid , theseBars * sizeof ( _barData ) ) ;
fPolygrid + = theseBars * sizeof ( _barData ) ; //move pointer to start of node data
//-------------------------------
// nodes
for ( j = 0 ; j < theseNodes ; j + + ) // leave node 0 for start node
{
memmove ( ( uint8 * ) & node [ nnodes + j ] . x , fPolygrid , 2 * sizeof ( int16 ) ) ;
fPolygrid + = 2 * sizeof ( int16 ) ;
}
//-------------------------------
res_man . Res_close ( walkGridList [ entry ] ) ; // close walk grid file
nbars + = theseBars ; // increment counts of total bars & nodes in whole walkgrid
nnodes + = theseNodes ;
}
}
//-------------------------------
// EXTRA GRIDS (moveable grids added by megas)
// Note that these will be checked against allowed max at the time of creating them
//-------------------------------
// extra lines
memmove ( ( uint8 * ) & bars [ nbars ] , ( uint8 * ) & extraBars [ 0 ] , nExtraBars * sizeof ( _barData ) ) ;
nbars + = nExtraBars ;
//-------------------------------
// extra nodes
memmove ( ( uint8 * ) & node [ nnodes ] , ( uint8 * ) & extraNode [ 0 ] , nExtraNodes * sizeof ( _nodeData ) ) ;
nnodes + = nExtraNodes ;
//-------------------------------
}
//------------------------------------------------------------------------------------------
void ClearWalkGridList ( void )
{
int entry ;
for ( entry = 0 ; entry < MAX_WALKGRIDS ; entry + + )
walkGridList [ entry ] = 0 ;
}
//------------------------------------------------------------------------------------------
// called from FN_add_walkgrid
void AddWalkGrid ( int32 gridResource )
{
int entry ;
// first, scan list to see if this grid is already included
entry = 0 ;
while ( ( entry < MAX_WALKGRIDS ) & & ( walkGridList [ entry ] ! = gridResource ) )
entry + + ;
if ( entry = = MAX_WALKGRIDS ) // if this new resource isn't already in the list, then add it, (otherwise finish)
{
// scan the list for a free slot
entry = 0 ;
while ( ( entry < MAX_WALKGRIDS ) & & ( walkGridList [ entry ] ) )
entry + + ;
if ( entry < MAX_WALKGRIDS ) // if we found a free slot
walkGridList [ entry ] = gridResource ;
else
Con_fatal_error ( " ERROR: walkGridList[] full in %s line %d " , __FILE__ , __LINE__ ) ;
}
}
//--------------------------------------------------------------------------------------
// called from FN_remove_walkgrid
void RemoveWalkGrid ( int32 gridResource )
{
int entry ;
// first, scan list to see if this grid is actually there
entry = 0 ;
while ( ( entry < MAX_WALKGRIDS ) & & ( walkGridList [ entry ] ! = gridResource ) )
entry + + ;
if ( entry < MAX_WALKGRIDS ) // if we've found it in the list, reset entry to zero (otherwise just ignore the request)
walkGridList [ entry ] = 0 ;
}
//--------------------------------------------------------------------------------------