scummvm/graphics/video/qt_decoder.cpp

1325 lines
38 KiB
C++
Raw Normal View History

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
//
// Heavily based on ffmpeg code.
//
// Copyright (c) 2001 Fabrice Bellard.
// First version by Francois Revol revol@free.fr
// Seek function by Gael Chardon gael.dev@4now.net
//
#include "graphics/video/qt_decoder.h"
#include "common/debug.h"
#include "common/endian.h"
#include "common/macresman.h"
#include "common/util.h"
#include "common/zlib.h"
// Audio codecs
#include "sound/decoders/adpcm.h"
#include "sound/decoders/raw.h"
#include "graphics/video/codecs/qdm2.h"
// Video codecs
#include "graphics/video/codecs/cinepak.h"
#include "graphics/video/codecs/mjpeg.h"
#include "graphics/video/codecs/qtrle.h"
#include "graphics/video/codecs/rpza.h"
#include "graphics/video/codecs/smc.h"
namespace Graphics {
////////////////////////////////////////////
// QuickTimeDecoder
////////////////////////////////////////////
QuickTimeDecoder::QuickTimeDecoder() : VideoDecoder() {
_audStream = NULL;
_beginOffset = 0;
_videoCodec = NULL;
_curFrame = -1;
_startTime = _nextFrameStartTime = 0;
_audHandle = Audio::SoundHandle();
_numStreams = 0;
_fd = 0;
_scaledSurface = 0;
_dirtyPalette = false;
_resFork = new Common::MacResManager();
initParseTable();
}
QuickTimeDecoder::~QuickTimeDecoder() {
close();
delete _resFork;
}
uint16 QuickTimeDecoder::getWidth() const {
if (_videoStreamIndex < 0)
return 0;
return _streams[_videoStreamIndex]->width / getScaleMode();
}
uint16 QuickTimeDecoder::getHeight() const {
if (_videoStreamIndex < 0)
return 0;
return _streams[_videoStreamIndex]->height / getScaleMode();
}
uint32 QuickTimeDecoder::getFrameCount() const {
if (_videoStreamIndex < 0)
return 0;
return _streams[_videoStreamIndex]->nb_frames;
}
byte QuickTimeDecoder::getBitsPerPixel() {
if (_videoStreamIndex < 0)
return 0;
return _streams[_videoStreamIndex]->bits_per_sample & 0x1F;
}
uint32 QuickTimeDecoder::getCodecTag() {
if (_videoStreamIndex < 0)
return 0;
return _streams[_videoStreamIndex]->codec_tag;
}
ScaleMode QuickTimeDecoder::getScaleMode() const {
if (_videoStreamIndex < 0)
return kScaleNormal;
return (ScaleMode)(_scaleMode * _streams[_videoStreamIndex]->scaleMode);
}
uint32 QuickTimeDecoder::getFrameDuration() {
if (_videoStreamIndex < 0)
return 0;
uint32 curFrameIndex = 0;
for (int32 i = 0; i < _streams[_videoStreamIndex]->stts_count; i++) {
curFrameIndex += _streams[_videoStreamIndex]->stts_data[i].count;
if ((uint32)_curFrame < curFrameIndex) {
// Ok, now we have what duration this frame has.
return _streams[_videoStreamIndex]->stts_data[i].duration;
}
}
// This should never occur
error ("Cannot find duration for frame %d", _curFrame);
return 0;
}
PixelFormat QuickTimeDecoder::getPixelFormat() const {
if (!_videoCodec)
return PixelFormat::createFormatCLUT8();
return _videoCodec->getPixelFormat();
}
void QuickTimeDecoder::rewind() {
VideoDecoder::reset();
_nextFrameStartTime = 0;
// Restart the audio too
stopAudio();
if (_audioStreamIndex >= 0) {
_curAudioChunk = 0;
_audStream = Audio::makeQueuingAudioStream(_streams[_audioStreamIndex]->sample_rate, _streams[_audioStreamIndex]->channels == 2);
}
startAudio();
}
Codec *QuickTimeDecoder::createCodec(uint32 codecTag, byte bitsPerPixel) {
if (codecTag == MKID_BE('cvid')) {
// Cinepak: As used by most Myst and all Riven videos as well as some Myst ME videos. "The Chief" videos also use this.
return new CinepakDecoder();
} else if (codecTag == MKID_BE('rpza')) {
// Apple Video ("Road Pizza"): Used by some Myst videos.
return new RPZADecoder(getWidth(), getHeight());
} else if (codecTag == MKID_BE('rle ')) {
// QuickTime RLE: Used by some Myst ME videos.
return new QTRLEDecoder(getWidth(), getHeight(), bitsPerPixel);
} else if (codecTag == MKID_BE('smc ')) {
// Apple SMC: Used by some Myst videos.
return new SMCDecoder(getWidth(), getHeight());
} else if (codecTag == MKID_BE('SVQ1')) {
// Sorenson Video 1: Used by some Myst ME videos.
warning ("Sorenson Video 1 not yet supported");
} else if (codecTag == MKID_BE('SVQ3')) {
// Sorenson Video 3: Used by some Myst ME videos.
warning ("Sorenson Video 3 not yet supported");
} else if (codecTag == MKID_BE('jpeg')) {
// Motion JPEG: Used by some Myst ME 10th Anniversary videos.
return new JPEGDecoder();
} else if (codecTag == MKID_BE('QkBk')) {
// CDToons: Used by most of the Broderbund games. This is an unknown format so far.
warning ("CDToons not yet supported");
} else {
warning ("Unsupported codec \'%s\'", tag2str(codecTag));
}
return NULL;
}
void QuickTimeDecoder::startAudio() {
if (_audStream) { // No audio/audio not supported
updateAudioBuffer();
g_system->getMixer()->playStream(Audio::Mixer::kPlainSoundType, &_audHandle, _audStream);
}
}
void QuickTimeDecoder::stopAudio() {
if (_audStream) {
g_system->getMixer()->stopHandle(_audHandle);
_audStream = NULL; // the mixer automatically frees the stream
}
}
void QuickTimeDecoder::pauseVideoIntern(bool pause) {
if (_audStream)
g_system->getMixer()->pauseHandle(_audHandle, pause);
}
Surface *QuickTimeDecoder::decodeNextFrame() {
if (!_videoCodec || _curFrame >= (int32)getFrameCount() - 1)
return NULL;
if (_startTime == 0)
_startTime = g_system->getMillis();
_curFrame++;
_nextFrameStartTime += getFrameDuration();
Common::SeekableReadStream *frameData = getNextFramePacket();
if (frameData) {
Surface *frame = _videoCodec->decodeImage(frameData);
delete frameData;
return scaleSurface(frame);
}
return NULL;
}
Surface *QuickTimeDecoder::scaleSurface(Surface *frame) {
if (getScaleMode() == kScaleNormal)
return frame;
assert(_scaledSurface);
for (uint32 j = 0; j < _scaledSurface->h; j++)
for (uint32 k = 0; k < _scaledSurface->w; k++)
memcpy(_scaledSurface->getBasePtr(k, j), frame->getBasePtr(k * getScaleMode(), j * getScaleMode()), frame->bytesPerPixel);
return _scaledSurface;
}
bool QuickTimeDecoder::endOfVideo() const {
return (!_audStream || _audStream->endOfData()) && (!_videoCodec || VideoDecoder::endOfVideo());
}
uint32 QuickTimeDecoder::getElapsedTime() const {
if (_audStream)
return g_system->getMixer()->getSoundElapsedTime(_audHandle);
return g_system->getMillis() - _startTime;
}
uint32 QuickTimeDecoder::getTimeToNextFrame() const {
if (endOfVideo() || _curFrame < 0)
return 0;
// Convert from the QuickTime rate base to 1000
uint32 nextFrameStartTime = _nextFrameStartTime * 1000 / _streams[_videoStreamIndex]->time_scale;
uint32 elapsedTime = getElapsedTime();
if (nextFrameStartTime <= elapsedTime)
return 0;
return nextFrameStartTime - elapsedTime;
}
bool QuickTimeDecoder::loadFile(const Common::String &filename) {
if (!_resFork->open(filename) || !_resFork->hasDataFork())
return false;
_foundMOOV = _foundMDAT = false;
_numStreams = 0;
_partial = 0;
_videoStreamIndex = _audioStreamIndex = -1;
_startTime = 0;
MOVatom atom = { 0, 0, 0xffffffff };
if (_resFork->hasResFork()) {
// Search for a 'moov' resource
Common::MacResIDArray idArray = _resFork->getResIDArray(MKID_BE('moov'));
if (!idArray.empty())
_fd = _resFork->getResource(MKID_BE('moov'), idArray[0]);
if (_fd) {
atom.size = _fd->size();
if (readDefault(atom) < 0 || !_foundMOOV)
return false;
}
delete _fd;
atom.type = 0;
atom.offset = 0;
atom.size = 0xffffffff;
}
_fd = _resFork->getDataFork();
if (readDefault(atom) < 0 || !_foundMOOV || !_foundMDAT)
return false;
init();
return true;
}
bool QuickTimeDecoder::load(Common::SeekableReadStream &stream) {
_fd = &stream;
_foundMOOV = _foundMDAT = false;
_numStreams = 0;
_partial = 0;
_videoStreamIndex = _audioStreamIndex = -1;
_startTime = 0;
MOVatom atom = { 0, 0, 0xffffffff };
if (readDefault(atom) < 0 || !_foundMOOV || !_foundMDAT) {
_fd = 0;
return false;
}
init();
return true;
}
void QuickTimeDecoder::init() {
// some cleanup : make sure we are on the mdat atom
if((uint32)_fd->pos() != _mdatOffset)
_fd->seek(_mdatOffset, SEEK_SET);
for (uint32 i = 0; i < _numStreams;) {
if (_streams[i]->codec_type == CODEC_TYPE_MOV_OTHER) {// not audio, not video, delete
delete _streams[i];
for (uint32 j = i + 1; j < _numStreams; j++)
_streams[j - 1] = _streams[j];
_numStreams--;
} else
i++;
}
for (uint32 i = 0; i < _numStreams; i++) {
MOVStreamContext *sc = _streams[i];
if (!sc->time_rate)
sc->time_rate = 1;
if (!sc->time_scale)
sc->time_scale = _timeScale;
sc->duration /= sc->time_rate;
sc->ffindex = i;
sc->is_ff_stream = 1;
if (sc->codec_type == CODEC_TYPE_VIDEO && _videoStreamIndex < 0)
_videoStreamIndex = i;
else if (sc->codec_type == CODEC_TYPE_AUDIO && _audioStreamIndex < 0)
_audioStreamIndex = i;
}
if (_audioStreamIndex >= 0 && checkAudioCodecSupport(_streams[_audioStreamIndex]->codec_tag)) {
_audStream = Audio::makeQueuingAudioStream(_streams[_audioStreamIndex]->sample_rate, _streams[_audioStreamIndex]->channels == 2);
_curAudioChunk = 0;
// Make sure the bits per sample transfers to the sample size
if (_streams[_audioStreamIndex]->codec_tag == MKID_BE('raw ') || _streams[_audioStreamIndex]->codec_tag == MKID_BE('twos'))
_streams[_audioStreamIndex]->sample_size = (_streams[_audioStreamIndex]->bits_per_sample / 8) * _streams[_audioStreamIndex]->channels;
startAudio();
}
if (_videoStreamIndex >= 0) {
_videoCodec = createCodec(getCodecTag(), getBitsPerPixel());
if (getScaleMode() != kScaleNormal) {
// We have to initialize the scaled surface
_scaledSurface = new Surface();
_scaledSurface->create(getWidth(), getHeight(), getPixelFormat().bytesPerPixel);
}
}
}
void QuickTimeDecoder::initParseTable() {
static const ParseTable p[] = {
{ &QuickTimeDecoder::readDefault, MKID_BE('dinf') },
{ &QuickTimeDecoder::readLeaf, MKID_BE('dref') },
{ &QuickTimeDecoder::readDefault, MKID_BE('edts') },
{ &QuickTimeDecoder::readELST, MKID_BE('elst') },
{ &QuickTimeDecoder::readHDLR, MKID_BE('hdlr') },
{ &QuickTimeDecoder::readMDAT, MKID_BE('mdat') },
{ &QuickTimeDecoder::readMDHD, MKID_BE('mdhd') },
{ &QuickTimeDecoder::readDefault, MKID_BE('mdia') },
{ &QuickTimeDecoder::readDefault, MKID_BE('minf') },
{ &QuickTimeDecoder::readMOOV, MKID_BE('moov') },
{ &QuickTimeDecoder::readMVHD, MKID_BE('mvhd') },
{ &QuickTimeDecoder::readLeaf, MKID_BE('smhd') },
{ &QuickTimeDecoder::readDefault, MKID_BE('stbl') },
{ &QuickTimeDecoder::readSTCO, MKID_BE('stco') },
{ &QuickTimeDecoder::readSTSC, MKID_BE('stsc') },
{ &QuickTimeDecoder::readSTSD, MKID_BE('stsd') },
{ &QuickTimeDecoder::readSTSS, MKID_BE('stss') },
{ &QuickTimeDecoder::readSTSZ, MKID_BE('stsz') },
{ &QuickTimeDecoder::readSTTS, MKID_BE('stts') },
{ &QuickTimeDecoder::readTKHD, MKID_BE('tkhd') },
{ &QuickTimeDecoder::readTRAK, MKID_BE('trak') },
{ &QuickTimeDecoder::readLeaf, MKID_BE('udta') },
{ &QuickTimeDecoder::readLeaf, MKID_BE('vmhd') },
{ &QuickTimeDecoder::readCMOV, MKID_BE('cmov') },
{ &QuickTimeDecoder::readWAVE, MKID_BE('wave') },
{ 0, 0 }
};
_parseTable = p;
}
int QuickTimeDecoder::readDefault(MOVatom atom) {
uint32 total_size = 0;
MOVatom a;
int err = 0;
a.offset = atom.offset;
while(((total_size + 8) < atom.size) && !_fd->eos() && _fd->pos() < _fd->size() && !err) {
a.size = atom.size;
a.type = 0;
if (atom.size >= 8) {
a.size = _fd->readUint32BE();
a.type = _fd->readUint32BE();
// Some QuickTime videos with resource forks have mdat chunks
// that are of size 0. Adjust it so it's the correct size.
if (a.type == MKID_BE('mdat') && a.size == 0)
a.size = _fd->size();
}
total_size += 8;
a.offset += 8;
debug(4, "type: %08x %.4s sz: %x %x %x", a.type, tag2str(a.type), a.size, atom.size, total_size);
if (a.size == 1) { // 64 bit extended size
warning("64 bit extended size is not supported in QuickTime");
return -1;
}
if (a.size == 0) {
a.size = atom.size - total_size;
if (a.size <= 8)
break;
}
uint32 i = 0;
for (; _parseTable[i].type != 0 && _parseTable[i].type != a.type; i++)
// empty;
if (a.size < 8)
break;
a.size -= 8;
if (_parseTable[i].type == 0) { // skip leaf atoms data
debug(0, ">>> Skipped [%s]", tag2str(a.type));
_fd->seek(a.size, SEEK_CUR);
} else {
uint32 start_pos = _fd->pos();
err = (this->*_parseTable[i].func)(a);
uint32 left = a.size - _fd->pos() + start_pos;
if (left > 0) // skip garbage at atom end
_fd->seek(left, SEEK_CUR);
}
a.offset += a.size;
total_size += a.size;
}
if (!err && total_size < atom.size)
_fd->seek(atom.size - total_size, SEEK_SET);
return err;
}
int QuickTimeDecoder::readLeaf(MOVatom atom) {
if (atom.size > 1)
_fd->seek(atom.size, SEEK_SET);
return 0;
}
int QuickTimeDecoder::readMOOV(MOVatom atom) {
if (readDefault(atom) < 0)
return -1;
// we parsed the 'moov' atom, we can terminate the parsing as soon as we find the 'mdat'
// so we don't parse the whole file if over a network
_foundMOOV = true;
if(_foundMDAT)
return 1; // found both, just go
return 0; // now go for mdat
}
int QuickTimeDecoder::readCMOV(MOVatom atom) {
#ifdef USE_ZLIB
// Read in the dcom atom
_fd->readUint32BE();
if (_fd->readUint32BE() != MKID_BE('dcom'))
return -1;
if (_fd->readUint32BE() != MKID_BE('zlib')) {
warning("Unknown cmov compression type");
return -1;
}
// Read in the cmvd atom
uint32 compressedSize = _fd->readUint32BE() - 12;
if (_fd->readUint32BE() != MKID_BE('cmvd'))
return -1;
uint32 uncompressedSize = _fd->readUint32BE();
// Read in data
byte *compressedData = (byte *)malloc(compressedSize);
_fd->read(compressedData, compressedSize);
// Create uncompressed stream
byte *uncompressedData = (byte *)malloc(uncompressedSize);
// Uncompress the data
unsigned long dstLen = uncompressedSize;
if (!Common::uncompress(uncompressedData, &dstLen, compressedData, compressedSize)) {
warning ("Could not uncompress cmov chunk");
return -1;
}
// Load data into a new MemoryReadStream and assign _fd to be that
Common::SeekableReadStream *oldStream = _fd;
_fd = new Common::MemoryReadStream(uncompressedData, uncompressedSize, DisposeAfterUse::YES);
// Read the contents of the uncompressed data
MOVatom a = { MKID_BE('moov'), 0, uncompressedSize };
int err = readDefault(a);
// Assign the file handle back to the original handle
free(compressedData);
delete _fd;
_fd = oldStream;
return err;
#else
warning ("zlib not found, cannot read QuickTime cmov atom");
return -1;
#endif
}
int QuickTimeDecoder::readMVHD(MOVatom atom) {
byte version = _fd->readByte(); // version
_fd->readByte(); _fd->readByte(); _fd->readByte(); // flags
if (version == 1) {
warning("QuickTime version 1");
_fd->readUint32BE(); _fd->readUint32BE();
_fd->readUint32BE(); _fd->readUint32BE();
} else {
_fd->readUint32BE(); // creation time
_fd->readUint32BE(); // modification time
}
_timeScale = _fd->readUint32BE(); // time scale
debug(0, "time scale = %i\n", _timeScale);
// duration
_duration = (version == 1) ? (_fd->readUint32BE(), _fd->readUint32BE()) : _fd->readUint32BE();
_fd->readUint32BE(); // preferred scale
_fd->readUint16BE(); // preferred volume
_fd->seek(10, SEEK_CUR); // reserved
// We only need two values from the movie display matrix. Most of the values are just
// skipped. xMod and yMod are 16:16 fixed point numbers, the last part of the 3x3 matrix
// is 2:30.
uint32 xMod = _fd->readUint32BE();
_fd->skip(12);
uint32 yMod = _fd->readUint32BE();
_fd->skip(16);
if (xMod != yMod)
error("X and Y resolution modifiers differ");
if (xMod == 0x8000)
_scaleMode = kScaleHalf;
else if (xMod == 0x4000)
_scaleMode = kScaleQuarter;
else
_scaleMode = kScaleNormal;
debug(1, "readMVHD(): scaleMode = %d", (int)_scaleMode);
_fd->readUint32BE(); // preview time
_fd->readUint32BE(); // preview duration
_fd->readUint32BE(); // poster time
_fd->readUint32BE(); // selection time
_fd->readUint32BE(); // selection duration
_fd->readUint32BE(); // current time
_fd->readUint32BE(); // next track ID
return 0;
}
int QuickTimeDecoder::readTRAK(MOVatom atom) {
MOVStreamContext *sc = new MOVStreamContext();
if (!sc)
return -1;
sc->sample_to_chunk_index = -1;
sc->codec_type = CODEC_TYPE_MOV_OTHER;
sc->start_time = 0; // XXX: check
_streams[_numStreams++] = sc;
return readDefault(atom);
}
// this atom contains actual media data
int QuickTimeDecoder::readMDAT(MOVatom atom) {
if (atom.size == 0) // wrong one (MP4)
return 0;
_foundMDAT = true;
_mdatOffset = atom.offset;
_mdatSize = atom.size;
if (_foundMOOV)
return 1; // found both, just go
_fd->seek(atom.size, SEEK_CUR);
return 0; // now go for moov
}
int QuickTimeDecoder::readTKHD(MOVatom atom) {
MOVStreamContext *st = _streams[_numStreams - 1];
byte version = _fd->readByte();
_fd->readByte(); _fd->readByte();
_fd->readByte(); // flags
//
//MOV_TRACK_ENABLED 0x0001
//MOV_TRACK_IN_MOVIE 0x0002
//MOV_TRACK_IN_PREVIEW 0x0004
//MOV_TRACK_IN_POSTER 0x0008
//
if (version == 1) {
_fd->readUint32BE(); _fd->readUint32BE();
_fd->readUint32BE(); _fd->readUint32BE();
} else {
_fd->readUint32BE(); // creation time
_fd->readUint32BE(); // modification time
}
/* st->id = */_fd->readUint32BE(); // track id (NOT 0 !)
_fd->readUint32BE(); // reserved
//st->start_time = 0; // check
(version == 1) ? (_fd->readUint32BE(), _fd->readUint32BE()) : _fd->readUint32BE(); // highlevel (considering edits) duration in movie timebase
_fd->readUint32BE(); // reserved
_fd->readUint32BE(); // reserved
_fd->readUint16BE(); // layer
_fd->readUint16BE(); // alternate group
_fd->readUint16BE(); // volume
_fd->readUint16BE(); // reserved
// We only need the two values from the displacement matrix for a track.
// See readMVHD() for more information.
uint32 xMod = _fd->readUint32BE();
_fd->skip(12);
uint32 yMod = _fd->readUint32BE();
_fd->skip(16);
if (xMod != yMod)
error("X and Y resolution modifiers differ");
if (xMod == 0x8000)
st->scaleMode = kScaleHalf;
else if (xMod == 0x4000)
st->scaleMode = kScaleQuarter;
else
st->scaleMode = kScaleNormal;
debug(1, "readTKHD(): scaleMode = %d", (int)_scaleMode);
// these are fixed-point, 16:16
// uint32 tkWidth = _fd->readUint32BE() >> 16; // track width
// uint32 tkHeight = _fd->readUint32BE() >> 16; // track height
return 0;
}
// edit list atom
int QuickTimeDecoder::readELST(MOVatom atom) {
_fd->readByte(); // version
_fd->readByte(); _fd->readByte(); _fd->readByte(); // flags
uint32 editCount = _streams[_numStreams - 1]->edit_count = _fd->readUint32BE(); // entries
for (uint32 i = 0; i < editCount; i++){
_fd->readUint32BE(); // Track duration
_fd->readUint32BE(); // Media time
_fd->readUint32BE(); // Media rate
}
debug(0, "track[%i].edit_count = %i", _numStreams - 1, _streams[_numStreams - 1]->edit_count);
if (editCount != 1)
warning("Multiple edit list entries. Things may go awry");
return 0;
}
int QuickTimeDecoder::readHDLR(MOVatom atom) {
MOVStreamContext *st = _streams[_numStreams - 1];
_fd->readByte(); // version
_fd->readByte(); _fd->readByte(); _fd->readByte(); // flags
// component type
uint32 ctype = _fd->readUint32LE();
uint32 type = _fd->readUint32BE(); // component subtype
debug(0, "ctype= %s (0x%08lx)", tag2str(ctype), (long)ctype);
debug(0, "stype= %s", tag2str(type));
if(ctype == MKID_BE('mhlr')) // MOV
debug(0, "MOV detected");
else if(ctype == 0) {
warning("MP4 streams are not supported");
return -1;
}
if (type == MKID_BE('vide'))
st->codec_type = CODEC_TYPE_VIDEO;
else if (type == MKID_BE('soun'))
st->codec_type = CODEC_TYPE_AUDIO;
_fd->readUint32BE(); // component manufacture
_fd->readUint32BE(); // component flags
_fd->readUint32BE(); // component flags mask
if (atom.size <= 24)
return 0; // nothing left to read
// .mov: PASCAL string
byte len = _fd->readByte();
_fd->seek(len, SEEK_CUR);
_fd->seek(atom.size - (_fd->pos() - atom.offset), SEEK_CUR);
return 0;
}
int QuickTimeDecoder::readMDHD(MOVatom atom) {
MOVStreamContext *st = _streams[_numStreams - 1];
byte version = _fd->readByte();
if (version > 1)
return 1; // unsupported
_fd->readByte(); _fd->readByte();
_fd->readByte(); // flags
if (version == 1) {
_fd->readUint32BE(); _fd->readUint32BE();
_fd->readUint32BE(); _fd->readUint32BE();
} else {
_fd->readUint32BE(); // creation time
_fd->readUint32BE(); // modification time
}
st->time_scale = _fd->readUint32BE();
st->duration = (version == 1) ? (_fd->readUint32BE(), _fd->readUint32BE()) : _fd->readUint32BE(); // duration
_fd->readUint16BE(); // language
_fd->readUint16BE(); // quality
return 0;
}
int QuickTimeDecoder::readSTSD(MOVatom atom) {
MOVStreamContext *st = _streams[_numStreams - 1];
_fd->readByte(); // version
_fd->readByte(); _fd->readByte(); _fd->readByte(); // flags
uint32 entries = _fd->readUint32BE();
while (entries--) { //Parsing Sample description table
MOVatom a = { 0, 0, 0 };
uint32 start_pos = _fd->pos();
int size = _fd->readUint32BE(); // size
uint32 format = _fd->readUint32BE(); // data format
_fd->readUint32BE(); // reserved
_fd->readUint16BE(); // reserved
_fd->readUint16BE(); // index
debug(0, "size=%d 4CC= %s codec_type=%d", size, tag2str(format), st->codec_type);
st->codec_tag = format;
if (st->codec_type == CODEC_TYPE_VIDEO) {
debug(0, "Video Codec FourCC: \'%s\'", tag2str(format));
_fd->readUint16BE(); // version
_fd->readUint16BE(); // revision level
_fd->readUint32BE(); // vendor
_fd->readUint32BE(); // temporal quality
_fd->readUint32BE(); // spacial quality
st->width = _fd->readUint16BE(); // width
st->height = _fd->readUint16BE(); // height
_fd->readUint32BE(); // horiz resolution
_fd->readUint32BE(); // vert resolution
_fd->readUint32BE(); // data size, always 0
uint16 frames_per_sample = _fd->readUint16BE(); // frames per samples
debug(0, "frames/samples = %d", frames_per_sample);
byte codec_name[32];
_fd->read(codec_name, 32); // codec name, pascal string (FIXME: true for mp4?)
if (codec_name[0] <= 31) {
memcpy(st->codec_name, &codec_name[1], codec_name[0]);
st->codec_name[codec_name[0]] = 0;
}
st->bits_per_sample = _fd->readUint16BE(); // depth
st->color_table_id = _fd->readUint16BE(); // colortable id
// These are set in mov_read_stts and might already be set!
// st->codec->time_base.den = 25;
// st->codec->time_base.num = 1;
// figure out the palette situation
byte colorDepth = st->bits_per_sample & 0x1F;
bool colorGreyscale = (st->bits_per_sample & 0x20) != 0;
debug(0, "color depth: %d", colorDepth);
// if the depth is 2, 4, or 8 bpp, file is palettized
if (colorDepth == 2 || colorDepth == 4 || colorDepth == 8) {
_dirtyPalette = true;
if (colorGreyscale) {
debug(0, "Greyscale palette");
// compute the greyscale palette
uint16 colorCount = 1 << colorDepth;
int16 colorIndex = 255;
byte colorDec = 256 / (colorCount - 1);
for (byte j = 0; j < colorCount; j++) {
_palette[j * 3] = _palette[j * 3 + 1] = _palette[j * 3 + 2] = colorIndex;
colorIndex -= colorDec;
if (colorIndex < 0)
colorIndex = 0;
}
} else if (st->color_table_id & 0x08) {
// if flag bit 3 is set, use the default palette
//uint16 colorCount = 1 << colorDepth;
warning("Predefined palette! %dbpp", colorDepth);
#if 0
byte *color_table;
byte r, g, b;
if (colorDepth == 2)
color_table = ff_qt_default_palette_4;
else if (colorDepth == 4)
color_table = ff_qt_default_palette_16;
else
color_table = ff_qt_default_palette_256;
for (byte j = 0; j < color_count; j++) {
r = color_table[j * 4 + 0];
g = color_table[j * 4 + 1];
b = color_table[j * 4 + 2];
_palette_control.palette[j] = (r << 16) | (g << 8) | (b);
}
#endif
} else {
debug(0, "Palette from file");
// load the palette from the file
uint32 colorStart = _fd->readUint32BE();
/* uint16 colorCount = */ _fd->readUint16BE();
uint16 colorEnd = _fd->readUint16BE();
for (uint32 j = colorStart; j <= colorEnd; j++) {
// each R, G, or B component is 16 bits;
// only use the top 8 bits; skip alpha bytes
// up front
_fd->readByte();
_fd->readByte();
_palette[j * 3] = _fd->readByte();
_fd->readByte();
_palette[j * 3 + 1] = _fd->readByte();
_fd->readByte();
_palette[j * 3 + 2] = _fd->readByte();
_fd->readByte();
}
}
st->palettized = true;
} else
st->palettized = false;
} else if (st->codec_type == CODEC_TYPE_AUDIO) {
debug(0, "Audio Codec FourCC: \'%s\'", tag2str(format));
st->stsd_version = _fd->readUint16BE();
_fd->readUint16BE(); // revision level
_fd->readUint32BE(); // vendor
st->channels = _fd->readUint16BE(); // channel count
st->bits_per_sample = _fd->readUint16BE(); // sample size
// do we need to force to 16 for AMR ?
// handle specific s8 codec
_fd->readUint16BE(); // compression id = 0
_fd->readUint16BE(); // packet size = 0
st->sample_rate = (_fd->readUint32BE() >> 16);
debug(0, "stsd version =%d", st->stsd_version);
if (st->stsd_version == 0) {
// Not used, except in special cases. See below.
st->samples_per_frame = st->bytes_per_frame = 0;
} else if (st->stsd_version == 1) {
// Read QT version 1 fields. In version 0 these dont exist.
st->samples_per_frame = _fd->readUint32BE();
debug(0, "stsd samples_per_frame =%d", st->samples_per_frame);
_fd->readUint32BE(); // bytes per packet
st->bytes_per_frame = _fd->readUint32BE();
debug(0, "stsd bytes_per_frame =%d", st->bytes_per_frame);
_fd->readUint32BE(); // bytes per sample
} else {
warning("Unsupported QuickTime STSD audio version %d", st->stsd_version);
return 1;
}
// Version 0 videos (such as the Riven ones) don't have this set,
// but we need it later on. Add it in here.
if (format == MKID_BE('ima4')) {
st->samples_per_frame = 64;
st->bytes_per_frame = 34 * st->channels;
}
} else {
// other codec type, just skip (rtp, mp4s, tmcd ...)
_fd->seek(size - (_fd->pos() - start_pos), SEEK_CUR);
}
// this will read extra atoms at the end (wave, alac, damr, avcC, SMI ...)
a.size = size - (_fd->pos() - start_pos);
if (a.size > 8)
readDefault(a);
else if (a.size > 0)
_fd->seek(a.size, SEEK_CUR);
}
if (st->codec_type == CODEC_TYPE_AUDIO && st->sample_rate == 0 && st->time_scale > 1)
st->sample_rate= st->time_scale;
return 0;
}
int QuickTimeDecoder::readSTSC(MOVatom atom) {
MOVStreamContext *st = _streams[_numStreams - 1];
_fd->readByte(); // version
_fd->readByte(); _fd->readByte(); _fd->readByte(); // flags
st->sample_to_chunk_sz = _fd->readUint32BE();
debug(0, "track[%i].stsc.entries = %i", _numStreams - 1, st->sample_to_chunk_sz);
st->sample_to_chunk = new MOVstsc[st->sample_to_chunk_sz];
if (!st->sample_to_chunk)
return -1;
for (uint32 i = 0; i < st->sample_to_chunk_sz; i++) {
st->sample_to_chunk[i].first = _fd->readUint32BE();
st->sample_to_chunk[i].count = _fd->readUint32BE();
st->sample_to_chunk[i].id = _fd->readUint32BE();
//printf ("Sample to Chunk[%d]: First = %d, Count = %d\n", i, st->sample_to_chunk[i].first, st->sample_to_chunk[i].count);
}
return 0;
}
int QuickTimeDecoder::readSTSS(MOVatom atom) {
MOVStreamContext *st = _streams[_numStreams - 1];
_fd->readByte(); // version
_fd->readByte(); _fd->readByte(); _fd->readByte(); // flags
st->keyframe_count = _fd->readUint32BE();
debug(0, "keyframe_count = %d", st->keyframe_count);
st->keyframes = new uint32[st->keyframe_count];
if (!st->keyframes)
return -1;
for (uint32 i = 0; i < st->keyframe_count; i++) {
st->keyframes[i] = _fd->readUint32BE();
debug(6, "keyframes[%d] = %d", i, st->keyframes[i]);
}
return 0;
}
int QuickTimeDecoder::readSTSZ(MOVatom atom) {
MOVStreamContext *st = _streams[_numStreams - 1];
_fd->readByte(); // version
_fd->readByte(); _fd->readByte(); _fd->readByte(); // flags
st->sample_size = _fd->readUint32BE();
st->sample_count = _fd->readUint32BE();
debug(5, "sample_size = %d sample_count = %d", st->sample_size, st->sample_count);
if (st->sample_size)
return 0; // there isn't any table following
st->sample_sizes = new uint32[st->sample_count];
if (!st->sample_sizes)
return -1;
for(uint32 i = 0; i < st->sample_count; i++) {
st->sample_sizes[i] = _fd->readUint32BE();
debug(6, "sample_sizes[%d] = %d", i, st->sample_sizes[i]);
}
return 0;
}
static uint32 ff_gcd(uint32 a, uint32 b) {
if(b) return ff_gcd(b, a%b);
else return a;
}
int QuickTimeDecoder::readSTTS(MOVatom atom) {
MOVStreamContext *st = _streams[_numStreams - 1];
uint32 duration = 0;
uint32 total_sample_count = 0;
_fd->readByte(); // version
_fd->readByte(); _fd->readByte(); _fd->readByte(); // flags
st->stts_count = _fd->readUint32BE();
st->stts_data = new MOVstts[st->stts_count];
debug(0, "track[%i].stts.entries = %i", _numStreams - 1, st->stts_count);
st->time_rate = 0;
for (int32 i = 0; i < st->stts_count; i++) {
int sample_duration;
int sample_count;
sample_count = _fd->readUint32BE();
sample_duration = _fd->readUint32BE();
st->stts_data[i].count = sample_count;
st->stts_data[i].duration = sample_duration;
st->time_rate = ff_gcd(st->time_rate, sample_duration);
debug(0, "sample_count=%d, sample_duration=%d", sample_count, sample_duration);
duration += sample_duration * sample_count;
total_sample_count += sample_count;
}
st->nb_frames = total_sample_count;
if (duration)
st->duration = duration;
return 0;
}
int QuickTimeDecoder::readSTCO(MOVatom atom) {
MOVStreamContext *st = _streams[_numStreams - 1];
_fd->readByte(); // version
_fd->readByte(); _fd->readByte(); _fd->readByte(); // flags
st->chunk_count = _fd->readUint32BE();
st->chunk_offsets = new uint32[st->chunk_count];
if (!st->chunk_offsets)
return -1;
for (uint32 i = 0; i < st->chunk_count; i++) {
// WORKAROUND/HACK: The offsets in Riven videos (ones inside the Mohawk archives themselves)
// have offsets relative to the archive and not the video. This is quite nasty. We subtract
// the initial offset of the stream to get the correct value inside of the stream.
st->chunk_offsets[i] = _fd->readUint32BE() - _beginOffset;
}
for (uint32 i = 0; i < _numStreams; i++) {
MOVStreamContext *sc2 = _streams[i];
if(sc2 && sc2->chunk_offsets){
uint32 first = sc2->chunk_offsets[0];
uint32 last = sc2->chunk_offsets[sc2->chunk_count - 1];
if(first >= st->chunk_offsets[st->chunk_count - 1] || last <= st->chunk_offsets[0])
_ni = 1;
}
}
return 0;
}
int QuickTimeDecoder::readWAVE(MOVatom atom) {
if (_numStreams < 1)
return 0;
MOVStreamContext *st = _streams[_numStreams - 1];
if (atom.size > (1 << 30))
return -1;
if (st->codec_tag == MKID_BE('QDM2')) // Read extradata for QDM2
st->extradata = _fd->readStream(atom.size - 8);
else if (atom.size > 8)
return readDefault(atom);
else
_fd->skip(atom.size);
return 0;
}
void QuickTimeDecoder::close() {
stopAudio();
delete _videoCodec; _videoCodec = 0;
for (uint32 i = 0; i < _numStreams; i++)
delete _streams[i];
delete _fd;
_fd = 0;
if (_scaledSurface) {
_scaledSurface->free();
delete _scaledSurface;
_scaledSurface = 0;
}
// The audio stream is deleted automatically
_audStream = NULL;
VideoDecoder::reset();
}
Common::SeekableReadStream *QuickTimeDecoder::getNextFramePacket() {
if (_videoStreamIndex < 0)
return NULL;
// First, we have to track down which chunk holds the sample and which sample in the chunk contains the frame we are looking for.
int32 totalSampleCount = 0;
int32 sampleInChunk = 0;
int32 actualChunk = -1;
for (uint32 i = 0; i < _streams[_videoStreamIndex]->chunk_count; i++) {
int32 sampleToChunkIndex = -1;
for (uint32 j = 0; j < _streams[_videoStreamIndex]->sample_to_chunk_sz; j++)
if (i >= _streams[_videoStreamIndex]->sample_to_chunk[j].first - 1)
sampleToChunkIndex = j;
if (sampleToChunkIndex < 0)
error("This chunk (%d) is imaginary", sampleToChunkIndex);
totalSampleCount += _streams[_videoStreamIndex]->sample_to_chunk[sampleToChunkIndex].count;
if (totalSampleCount > getCurFrame()) {
actualChunk = i;
sampleInChunk = _streams[_videoStreamIndex]->sample_to_chunk[sampleToChunkIndex].count - totalSampleCount + getCurFrame();
break;
}
}
if (actualChunk < 0) {
warning ("Could not find data for frame %d", getCurFrame());
return NULL;
}
// Next seek to that frame
_fd->seek(_streams[_videoStreamIndex]->chunk_offsets[actualChunk]);
// Then, if the chunk holds more than one frame, seek to where the frame we want is located
for (int32 i = getCurFrame() - sampleInChunk; i < getCurFrame(); i++) {
if (_streams[_videoStreamIndex]->sample_size != 0)
_fd->skip(_streams[_videoStreamIndex]->sample_size);
else
_fd->skip(_streams[_videoStreamIndex]->sample_sizes[i]);
}
// Finally, read in the raw data for the frame
//printf ("Frame Data[%d]: Offset = %d, Size = %d\n", getCurFrame(), _fd->pos(), _streams[_videoStreamIndex]->sample_sizes[getCurFrame()]);
if (_streams[_videoStreamIndex]->sample_size != 0)
return _fd->readStream(_streams[_videoStreamIndex]->sample_size);
return _fd->readStream(_streams[_videoStreamIndex]->sample_sizes[getCurFrame()]);
}
bool QuickTimeDecoder::checkAudioCodecSupport(uint32 tag) {
// Check if the codec is a supported codec
if (tag == MKID_BE('twos') || tag == MKID_BE('raw ') || tag == MKID_BE('ima4'))
return true;
#ifdef GRAPHICS_QDM2_H
if (tag == MKID_BE('QDM2'))
return true;
#endif
warning("Audio Codec Not Supported: \'%s\'", tag2str(tag));
return false;
}
Audio::AudioStream *QuickTimeDecoder::createAudioStream(Common::SeekableReadStream *stream) {
if (!stream || _audioStreamIndex < 0)
return NULL;
if (_streams[_audioStreamIndex]->codec_tag == MKID_BE('twos') || _streams[_audioStreamIndex]->codec_tag == MKID_BE('raw ')) {
// Fortunately, most of the audio used in Myst videos is raw...
uint16 flags = 0;
if (_streams[_audioStreamIndex]->codec_tag == MKID_BE('raw '))
flags |= Audio::FLAG_UNSIGNED;
if (_streams[_audioStreamIndex]->channels == 2)
flags |= Audio::FLAG_STEREO;
if (_streams[_audioStreamIndex]->bits_per_sample == 16)
flags |= Audio::FLAG_16BITS;
uint32 dataSize = stream->size();
byte *data = (byte *)malloc(dataSize);
stream->read(data, dataSize);
delete stream;
return Audio::makeRawStream(data, dataSize, _streams[_audioStreamIndex]->sample_rate, flags);
} else if (_streams[_audioStreamIndex]->codec_tag == MKID_BE('ima4')) {
// Riven uses this codec (as do some Myst ME videos)
return Audio::makeADPCMStream(stream, DisposeAfterUse::YES, stream->size(), Audio::kADPCMApple, _streams[_audioStreamIndex]->sample_rate, _streams[_audioStreamIndex]->channels, 34);
#ifdef GRAPHICS_QDM2_H
} else if (_streams[_audioStreamIndex]->codec_tag == MKID_BE('QDM2')) {
// Several Myst ME videos use this codec
return makeQDM2Stream(stream, _streams[_audioStreamIndex]->extradata);
#endif
}
error("Unsupported audio codec");
return NULL;
}
void QuickTimeDecoder::updateAudioBuffer() {
if (!_audStream)
return;
// Keep three streams in buffer so that if/when the first two end, it goes right into the next
for (; _audStream->numQueuedStreams() < 3 && _curAudioChunk < _streams[_audioStreamIndex]->chunk_count; _curAudioChunk++) {
Common::MemoryWriteStreamDynamic *wStream = new Common::MemoryWriteStreamDynamic();
_fd->seek(_streams[_audioStreamIndex]->chunk_offsets[_curAudioChunk]);
// First, we have to get the sample count
uint32 sampleCount = 0;
for (uint32 j = 0; j < _streams[_audioStreamIndex]->sample_to_chunk_sz; j++)
if (_curAudioChunk >= (_streams[_audioStreamIndex]->sample_to_chunk[j].first - 1))
sampleCount = _streams[_audioStreamIndex]->sample_to_chunk[j].count;
assert(sampleCount);
// Then calculate the right sizes
while (sampleCount > 0) {
uint32 samples = 0, size = 0;
if (_streams[_audioStreamIndex]->samples_per_frame >= 160) {
samples = _streams[_audioStreamIndex]->samples_per_frame;
size = _streams[_audioStreamIndex]->bytes_per_frame;
} else if (_streams[_audioStreamIndex]->samples_per_frame > 1) {
samples = MIN<uint32>((1024 / _streams[_audioStreamIndex]->samples_per_frame) * _streams[_audioStreamIndex]->samples_per_frame, sampleCount);
size = (samples / _streams[_audioStreamIndex]->samples_per_frame) * _streams[_audioStreamIndex]->bytes_per_frame;
} else {
samples = MIN<uint32>(1024, sampleCount);
size = samples * _streams[_audioStreamIndex]->sample_size;
}
// Now, we read in the data for this data and output it
byte *data = (byte *)malloc(size);
_fd->read(data, size);
wStream->write(data, size);
free(data);
sampleCount -= samples;
}
// Now queue the buffer
_audStream->queueAudioStream(createAudioStream(new Common::MemoryReadStream(wStream->getData(), wStream->size(), DisposeAfterUse::YES)));
delete wStream;
}
}
} // End of namespace Graphics