scummvm/scumm/wiz_he.cpp

1425 lines
35 KiB
C++
Raw Normal View History

/* ScummVM - Scumm Interpreter
* Copyright (C) 2001 Ludvig Strigeus
2005-01-01 16:09:25 +00:00
* Copyright (C) 2001-2005 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*
*/
#include "stdafx.h"
#include "scumm/intern.h"
#include "scumm/resource.h"
#include "scumm/scumm.h"
#include "scumm/wiz_he.h"
namespace Scumm {
Wiz::Wiz() {
_imagesNum = 0;
memset(&_images, 0, sizeof(_images));
memset(&_polygons, 0, sizeof(_polygons));
}
void Wiz::polygonClear() {
memset(&_polygons, 0, sizeof(_polygons));
}
void Wiz::polygonLoad(const uint8 *polData) {
int slots = READ_LE_UINT32(polData);
polData += 4;
debug(1, "Loading %d polygon slots", slots);
bool flag = 1;
int id, points, vert1x, vert1y, vert2x, vert2y, vert3x, vert3y, vert4x, vert4y;
while (slots--) {
id = READ_LE_UINT32(polData);
points = READ_LE_UINT32(polData + 4);
if (points != 4)
error("Illegal polygon with %d points", points);
vert1x = READ_LE_UINT32(polData + 8);
vert1y = READ_LE_UINT32(polData + 12);
vert2x = READ_LE_UINT32(polData + 16);
vert2y = READ_LE_UINT32(polData + 20);
vert3x = READ_LE_UINT32(polData + 24);
vert3y = READ_LE_UINT32(polData + 28);
vert4x = READ_LE_UINT32(polData + 32);
vert4y = READ_LE_UINT32(polData + 36);
polData += 40;
polygonStore(id, flag, vert1x, vert1y, vert2x, vert2y, vert3x, vert3y, vert4x, vert4y);
}
}
void Wiz::polygonStore(int id, bool flag, int vert1x, int vert1y, int vert2x, int vert2y, int vert3x, int vert3y, int vert4x, int vert4y) {
WizPolygon *wp = NULL;
for (int i = 0; i < ARRAYSIZE(_polygons); ++i) {
if (_polygons[i].id == 0) {
wp = &_polygons[i];
break;
}
}
if (!wp) {
error("Wiz::polygonStore: out of polygon slot, max = %d", ARRAYSIZE(_polygons));
}
wp->vert[0].x = vert1x;
wp->vert[0].y = vert1y;
wp->vert[1].x = vert2x;
wp->vert[1].y = vert2y;
wp->vert[2].x = vert3x;
wp->vert[2].y = vert3y;
wp->vert[3].x = vert4x;
wp->vert[3].y = vert4y;
wp->vert[4].x = vert1x;
wp->vert[4].y = vert1y;
wp->id = id;
wp->numVerts = 5;
wp->flag = flag;
polygonCalcBoundBox(wp->vert, wp->numVerts, wp->bound);
}
void Wiz::polygonRotatePoints(Common::Point *pts, int num, int angle) {
double alpha = angle * PI / 180.;
double cos_alpha = cos(alpha);
double sin_alpha = sin(alpha);
for (int i = 0; i < num; ++i) {
int16 x = pts[i].x;
int16 y = pts[i].y;
pts[i].x = (int16)(x * cos_alpha - y * sin_alpha);
pts[i].y = (int16)(y * cos_alpha + x * sin_alpha);
}
}
void Wiz::polygonCalcBoundBox(Common::Point *vert, int numVerts, Common::Rect &bound) {
bound.left = 10000;
bound.top = 10000;
bound.right = -10000;
bound.bottom = -10000;
// compute bounding box
for (int j = 0; j < numVerts; j++) {
Common::Rect r(vert[j].x, vert[j].y, vert[j].x + 1, vert[j].y + 1);
bound.extend(r);
}
}
void Wiz::polygonErase(int fromId, int toId) {
for (int i = 0; i < ARRAYSIZE(_polygons); i++) {
if (_polygons[i].id >= fromId && _polygons[i].id <= toId)
memset(&_polygons[i], 0, sizeof(WizPolygon));
}
}
int Wiz::polygonHit(int id, int x, int y) {
for (int i = 0; i < ARRAYSIZE(_polygons); i++) {
if ((id == 0 || _polygons[i].id == id) && _polygons[i].bound.contains(x, y)) {
if (polygonContains(_polygons[i], x, y)) {
return _polygons[i].id;
}
}
}
return 0;
}
bool Wiz::polygonDefined(int id) {
for (int i = 0; i < ARRAYSIZE(_polygons); i++)
if (_polygons[i].id == id)
return true;
return false;
}
bool Wiz::polygonContains(const WizPolygon &pol, int x, int y) {
int pi = pol.numVerts - 1;
bool diry = (y < pol.vert[pi].y);
bool curdir;
bool r = false;
for (int i = 0; i < pol.numVerts; i++) {
curdir = (y <= pol.vert[i].y);
if (curdir != diry) {
if (((pol.vert[pi].y - pol.vert[i].y) * (pol.vert[i].x - x) <=
(pol.vert[pi].x - pol.vert[i].x) * (pol.vert[i].y - y)) == diry)
r = !r;
}
pi = i;
diry = curdir;
}
return r;
}
void Wiz::copyAuxImage(uint8 *dst1, uint8 *dst2, const uint8 *src, int dstw, int dsth, int srcx, int srcy, int srcw, int srch) {
Common::Rect dstRect(srcx, srcy, srcx + srcw, srcy + srch);
dstRect.clip(dstw, dsth);
int rw = dstRect.width();
int rh = dstRect.height();
if (rh <= 0 || rw <= 0)
return;
uint8 *dst1Ptr = dst1 + dstRect.left + dstRect.top * dstw;
uint8 *dst2Ptr = dst2 + dstRect.left + dstRect.top * dstw;
const uint8 *dataPtr = src;
while (rh--) {
uint16 off = READ_LE_UINT16(dataPtr); dataPtr += 2;
const uint8 *dataPtrNext = off + dataPtr;
uint8 *dst1PtrNext = dst1Ptr + dstw;
uint8 *dst2PtrNext = dst2Ptr + dstw;
if (off != 0) {
int w = rw;
while (w > 0) {
uint8 code = *dataPtr++;
if (code & 1) {
code >>= 1;
dst1Ptr += code;
dst2Ptr += code;
w -= code;
} else if (code & 2) {
code = (code >> 2) + 1;
w -= code;
if (w >= 0) {
memset(dst1Ptr, *dataPtr++, code);
dst1Ptr += code;
dst2Ptr += code;
} else {
code += w;
memset(dst1Ptr, *dataPtr, code);
}
} else {
code = (code >> 2) + 1;
w -= code;
if (w >= 0) {
memcpy(dst1Ptr, dst2Ptr, code);
dst1Ptr += code;
dst2Ptr += code;
} else {
code += w;
memcpy(dst1Ptr, dst2Ptr, code);
}
}
}
}
dataPtr = dataPtrNext;
dst1Ptr = dst1PtrNext;
dst2Ptr = dst2PtrNext;
}
}
static bool calcClipRects(int dst_w, int dst_h, int src_x, int src_y, int src_w, int src_h, const Common::Rect *rect, Common::Rect &srcRect, Common::Rect &dstRect) {
Common::Rect r3;
if (rect) {
r3 = *rect;
Common::Rect r4(dst_w, dst_h);
if (r3.intersects(r4)) {
r3.clip(r4);
} else {
return false;
}
} else {
r3 = Common::Rect(dst_w, dst_h);
}
dstRect = Common::Rect(src_x, src_y, src_x + src_w, src_y + src_h);
dstRect.clip(r3);
srcRect = dstRect;
srcRect.moveTo(0, 0);
return srcRect.isValidRect() && dstRect.isValidRect();
}
void Wiz::copyWizImage(uint8 *dst, const uint8 *src, int dstw, int dsth, int srcx, int srcy, int srcw, int srch, const Common::Rect *rect) {
Common::Rect r1, r2;
if (calcClipRects(dstw, dsth, srcx, srcy, srcw, srch, rect, r1, r2)) {
dst += r2.left + r2.top * dstw;
decompressWizImage(dst, dstw, r2, src, r1);
}
}
void Wiz::copyRawWizImage(uint8 *dst, const uint8 *src, int dstw, int dsth, int srcx, int srcy, int srcw, int srch, const Common::Rect *rect, int flags, const uint8 *palPtr, int transColor) {
Common::Rect r1, r2;
if (calcClipRects(dstw, dsth, srcx, srcy, srcw, srch, rect, r1, r2)) {
if (flags & 0x400) {
int l = r1.left;
int r = r1.right;
r1.left = srcw - r;
r1.right = srcw - l;
}
if (flags & 0x800) {
int t = r1.top;
int b = r1.bottom;
r1.top = srch - b;
r1.bottom = srch - t;
}
byte imagePal[256];
if (!palPtr) {
for (int i = 0; i < 256; i++) {
imagePal[i] = i;
}
palPtr = imagePal;
}
int h = r1.height();
int w = r1.width();
dst += r2.left + r2.top * dstw;
while (h--) {
for (int i = 0; i < w; ++i) {
uint8 col = *src++;
if (transColor == -1 || transColor != col) {
dst[i] = palPtr[col];
}
}
dst += dstw;
}
}
}
void Wiz::decompressWizImage(uint8 *dst, int dstPitch, const Common::Rect &dstRect, const uint8 *src, const Common::Rect &srcRect, const uint8 *imagePal) {
const uint8 *dataPtr, *dataPtrNext;
uint8 *dstPtr, *dstPtrNext;
uint32 code;
uint8 databit;
int h, w, xoff;
uint16 off;
dstPtr = dst;
dataPtr = src;
// Skip over the first 'srcRect->top' lines in the data
h = srcRect.top;
while (h--) {
dataPtr += READ_LE_UINT16(dataPtr) + 2;
}
h = srcRect.height();
w = srcRect.width();
if (h <= 0 || w <= 0)
return;
while (h--) {
xoff = srcRect.left;
off = READ_LE_UINT16(dataPtr);
w = srcRect.right - srcRect.left;
dstPtrNext = dstPitch + dstPtr;
dataPtrNext = off + 2 + dataPtr;
dataPtr += 2;
if (off == 0)
goto dec_next;
// Skip over the leftmost 'srcRect->left' pixels.
// TODO: This code could be merged (at a loss of efficency) with the
// loop below which does the actual drawing.
while (xoff > 0) {
code = *dataPtr++;
databit = code & 1;
code >>= 1;
if (databit) {
xoff -= code;
if (xoff < 0) {
code = -xoff;
goto dec_sub1;
}
} else {
databit = code & 1;
code = (code >> 1) + 1;
if (databit) {
++dataPtr;
xoff -= code;
if (xoff < 0) {
code = -xoff;
--dataPtr;
goto dec_sub2;
}
} else {
dataPtr += code;
xoff -= code;
if (xoff < 0) {
dataPtr += xoff;
code = -xoff;
goto dec_sub3;
}
}
}
}
while (w > 0) {
code = *dataPtr++;
databit = code & 1;
code >>= 1;
if (databit) {
dec_sub1: dstPtr += code;
w -= code;
} else {
databit = code & 1;
code = (code >> 1) + 1;
if (databit) {
dec_sub2: w -= code;
if (w < 0) {
code += w;
}
uint8 color = *dataPtr++;
if (imagePal) {
color = imagePal[color];
}
memset(dstPtr, color, code);
dstPtr += code;
} else {
dec_sub3: w -= code;
if (w < 0) {
code += w;
}
if (imagePal) {
while (code--) {
*dstPtr++ = imagePal[*dataPtr++];
}
} else {
memcpy(dstPtr, dataPtr, code);
dstPtr += code;
dataPtr += code;
}
}
}
}
dec_next:
dataPtr = dataPtrNext;
dstPtr = dstPtrNext;
}
}
int Wiz::isWizPixelNonTransparent(const uint8 *data, int x, int y, int w, int h) {
int ret = 0;
while (y != 0) {
data += READ_LE_UINT16(data) + 2;
--y;
}
uint16 off = READ_LE_UINT16(data); data += 2;
if (off != 0) {
if (x == 0) {
ret = (~*data) & 1;
} else {
do {
uint8 code = *data++;
if (code & 1) {
code >>= 1;
if (code > x) {
ret = 0;
break;
}
x -= code;
} else if (code & 2) {
code = (code >> 2) + 1;
if (code > x) {
ret = 1;
break;
}
x -= code;
++data;
} else {
code = (code >> 2) + 1;
if (code > x) {
ret = 1;
break;
}
x -= code;
data += code;
}
} while (x > 0);
}
}
return ret;
}
uint8 Wiz::getWizPixelColor(const uint8 *data, int x, int y, int w, int h, uint8 color) {
uint8 c = color;
if (x >= 0 && x < w && y >= 0 && y < h) {
while (y != 0) {
data += READ_LE_UINT16(data) + 2;
--y;
}
uint16 off = READ_LE_UINT16(data); data += 2;
if (off != 0) {
if (x == 0) {
c = (*data & 1) ? color : *data;
} else {
do {
uint8 code = *data++;
if (code & 1) {
code >>= 1;
if (code > x) {
c = color;
break;
}
x -= code;
} else if (code & 2) {
code = (code >> 2) + 1;
if (code > x) {
c = *data;
break;
}
x -= code;
++data;
} else {
code = (code >> 2) + 1;
if (code > x) {
c = *(data + x);
break;
}
x -= code;
data += code;
}
} while (x > 0);
}
}
}
return c;
}
uint8 Wiz::getRawWizPixelColor(const uint8 *data, int x, int y, int w, int h, uint8 color) {
uint8 c;
if (x >= 0 && x < w && y >= 0 && y < h) {
c = data[y * w + x];
} else {
c = color;
}
return c;
}
void Wiz::computeWizHistogram(uint32 *histogram, const uint8 *data, const Common::Rect *srcRect) {
int y = srcRect->top;
while (y != 0) {
data += READ_LE_UINT16(data) + 2;
--y;
}
int ih = srcRect->height();
while (ih--) {
uint16 off = READ_LE_UINT16(data); data += 2;
if (off != 0) {
const uint8 *p = data;
int x1 = srcRect->left;
int x2 = srcRect->right;
uint8 code;
while (x1 > 0) {
code = *p++;
if (code & 1) {
code >>= 1;
if (code > x1) {
code -= x1;
x2 -= code;
break;
}
x1 -= code;
} else if (code & 2) {
code = (code >> 2) + 1;
if (code > x1) {
code -= x1;
goto dec_sub2;
}
x1 -= code;
++p;
} else {
code = (code >> 2) + 1;
if (code > x1) {
code -= x1;
p += x1;
goto dec_sub3;
}
x1 -= code;
p += code;
}
}
while (x2 > 0) {
code = *p++;
if (code & 1) {
code >>= 1;
x2 -= code;
} else if (code & 2) {
code = (code >> 2) + 1;
dec_sub2: x2 -= code;
if (x2 < 0) {
code += x2;
}
histogram[*p++] += code;
} else {
code = (code >> 2) + 1;
dec_sub3: x2 -= code;
if (x2 < 0) {
code += x2;
}
int n = code;
while (n--) {
++histogram[*p++];
}
}
}
data += off;
}
}
}
void Wiz::computeRawWizHistogram(uint32 *histogram, const uint8 *data, int srcPitch, const Common::Rect *srcRect) {
data += srcRect->top * srcPitch + srcRect->left;
int iw = srcRect->width();
int ih = srcRect->height();
while (ih--) {
for (int i = 0; i < iw; ++i) {
++histogram[data[i]];
}
data += srcPitch;
}
}
struct wizPackCtx {
uint32 len;
uint8 saveCode;
uint8 saveBuf[0x100];
};
static void wizPackType1Helper1(uint8 *&dst, int len, byte newColor, byte prevColor, wizPackCtx *ctx) {
assert(len > 0);
if (newColor == prevColor) {
do {
int blockLen = MIN(len, 0x7F);
len -= blockLen;
if (dst) {
*dst++ = (blockLen * 2) | 1;
}
++ctx->len;
} while (len > 0);
} else {
do {
int blockLen = MIN(len, 0x40);
len -= blockLen;
if (dst) {
*dst++ = ((blockLen - 1) * 4) | 2;
}
++ctx->len;
if (dst) {
*dst++ = newColor;
}
++ctx->len;
} while (len > 0);
}
}
static void wizPackType1Helper2(uint8 *&dst, int len, wizPackCtx *ctx) {
assert(len > 0);
const uint8 *src = ctx->saveBuf;
do {
int blockLen = MIN(len, 0x40);
len -= blockLen;
if (dst) {
*dst++ = (blockLen - 1) * 4;
}
++ctx->len;
while (blockLen--) {
if (dst) {
*dst++ = *src++;
}
++ctx->len;
}
} while (len > 0);
}
static int wizPackType1(uint8 *dst, const uint8 *src, int srcPitch, const Common::Rect& rCapt, uint8 tColor) {
debug(1, "wizPackType1(%d, [%d,%d,%d,%d])", tColor, rCapt.left, rCapt.top, rCapt.right, rCapt.bottom);
wizPackCtx ctx;
memset(&ctx, 0, sizeof(ctx));
src += rCapt.top * srcPitch + rCapt.left;
int w = rCapt.width();
int h = rCapt.height();
uint8 *nextDstPtr, *curDstPtr;
uint8 curColor, prevColor;
int saveBufPos;
nextDstPtr = curDstPtr = 0;
int dataSize = 0;
while (h--) {
if (dst) {
curDstPtr = dst;
nextDstPtr = dst;
dst += 2;
}
dataSize += 2;
int numBytes = 0;
int i, code;
for (i = 0; i < w; ++i) {
if (src[i] != tColor)
break;
}
if (i != w) {
curDstPtr = dst;
ctx.len = 0;
prevColor = ctx.saveBuf[0] = *src;
const uint8 *curSrcPtr = src + 1;
saveBufPos = 1;
code = (tColor - ctx.saveBuf[0] == 0) ? 1 : 0;
int curw = w;
while (curw--) {
ctx.saveBuf[saveBufPos] = curColor = *curSrcPtr++;
++saveBufPos;
if (code == 0) {
if (curColor == tColor) {
--saveBufPos;
wizPackType1Helper2(curDstPtr, saveBufPos, &ctx);
code = saveBufPos = 1;
ctx.saveBuf[0] = curColor;
numBytes = 0;
prevColor = curColor;
continue;
}
if (saveBufPos > 0x80) {
--saveBufPos;
wizPackType1Helper2(curDstPtr, saveBufPos, &ctx);
saveBufPos = 1;
ctx.saveBuf[0] = curColor;
numBytes = 0;
prevColor = curColor;
continue;
}
if (prevColor != curColor) {
numBytes = saveBufPos - 1;
prevColor = curColor;
continue;
}
code = 1;
if (numBytes != 0) {
if (saveBufPos - numBytes < 3) {
code = 0;
} else {
wizPackType1Helper2(curDstPtr, numBytes, &ctx);
}
}
}
if (prevColor != curColor || saveBufPos - numBytes > 0x80) {
saveBufPos -= numBytes;
--saveBufPos;
wizPackType1Helper1(curDstPtr, saveBufPos, prevColor, tColor, &ctx);
saveBufPos = 1;
numBytes = 0;
ctx.saveBuf[0] = curColor;
code = (tColor - ctx.saveBuf[0] == 0) ? 1 : 0;
}
prevColor = curColor;
}
if (code == 0) {
wizPackType1Helper2(curDstPtr, saveBufPos, &ctx);
} else {
saveBufPos -= numBytes;
wizPackType1Helper1(curDstPtr, saveBufPos, prevColor, tColor, &ctx);
}
dataSize += ctx.len;
src += srcPitch;
if (dst) {
dst += ctx.len;
*(uint16 *)nextDstPtr = TO_LE_16(ctx.len);
}
}
}
return dataSize;
}
static int wizPackType0(uint8 *dst, const uint8 *src, int srcPitch, const Common::Rect& rCapt, uint8 tColor) {
int w = rCapt.width();
int h = rCapt.height();
int size = w * h;
if (dst) {
src += rCapt.top * srcPitch + rCapt.left;
while (h--) {
memcpy(dst, src, w);
dst += w;
src += srcPitch;
}
}
return size;
}
void ScummEngine_v72he::captureWizImage(int resType, int resNum, const Common::Rect& r, bool frontBuffer, int compType) {
debug(1, "ScummEngine_v72he::captureWizImage(%d, %d, %d, [%d,%d,%d,%d])", resType, resNum, compType, r.left, r.top, r.right, r.bottom);
uint8 *src = NULL;
VirtScreen *pvs = &virtscr[kMainVirtScreen];
if (frontBuffer) {
src = pvs->getPixels(0, 0);
} else {
src = pvs->getBackPixels(0, 0);
}
Common::Rect rCapt(0, 0, pvs->w, pvs->h);
if (rCapt.intersects(r)) {
rCapt.clip(r);
const uint8 *palPtr = _currentPalette;
int w = rCapt.width();
int h = rCapt.height();
int tColor = (VAR_WIZ_TCOLOR != 0xFF) ? VAR(VAR_WIZ_TCOLOR) : 5;
// compute compressed size
int dataSize = 0;
int headerSize = palPtr ? 1080 : 36;
switch (compType) {
case 1:
dataSize = wizPackType1(0, src, pvs->pitch, rCapt, tColor);
break;
case 0:
dataSize = wizPackType0(0, src, pvs->pitch, rCapt, tColor);
break;
default:
warning("unhandled compression type %d", compType);
break;
}
// alignment
dataSize = (dataSize + 1) & ~1;
int wizSize = headerSize + dataSize;
// write header
uint8 *wizImg = createResource(resType, resNum, dataSize + headerSize);
*(uint32 *)(wizImg + 0x00) = MKID('AWIZ');
*(uint32 *)(wizImg + 0x04) = TO_BE_32(wizSize);
*(uint32 *)(wizImg + 0x08) = MKID('WIZH');
*(uint32 *)(wizImg + 0x0C) = TO_BE_32(0x14);
*(uint32 *)(wizImg + 0x10) = TO_LE_32(compType);
*(uint32 *)(wizImg + 0x14) = TO_LE_32(w);
*(uint32 *)(wizImg + 0x18) = TO_LE_32(h);
int curSize = 0x1C;
if (palPtr) {
*(uint32 *)(wizImg + 0x1C) = MKID('RGBS');
*(uint32 *)(wizImg + 0x20) = TO_BE_32(0x308);
memcpy(wizImg + 0x24, palPtr, 0x300);
*(uint32 *)(wizImg + 0x324) = MKID('RMAP');
*(uint32 *)(wizImg + 0x328) = TO_BE_32(0x10C);
*(uint32 *)(wizImg + 0x32C) = 0;
curSize = 0x330;
for (int i = 0; i < 256; ++i) {
wizImg[curSize] = i;
++curSize;
}
}
*(uint32 *)(wizImg + curSize + 0x0) = MKID('WIZD');
*(uint32 *)(wizImg + curSize + 0x4) = TO_BE_32(dataSize + 8);
curSize += 8;
// write compressed data
switch (compType) {
case 1:
wizPackType1(wizImg + headerSize, src, pvs->pitch, rCapt, tColor);
break;
case 0:
wizPackType0(wizImg + headerSize, src, pvs->pitch, rCapt, tColor);
break;
default:
break;
}
}
}
void ScummEngine_v72he::displayWizImage(const WizImage *pwi) {
if (_fullRedraw) {
assert(_wiz._imagesNum < ARRAYSIZE(_wiz._images));
memcpy(&_wiz._images[_wiz._imagesNum], pwi, sizeof(WizImage));
++_wiz._imagesNum;
} else if (pwi->flags & 0x40) {
drawWizPolygon(pwi->resNum, pwi->state, pwi->x1, pwi->flags);
} else {
drawWizImage(rtImage, pwi);
}
}
void ScummEngine_v72he::getWizImageDim(int resnum, int state, int32 &w, int32 &h) {
const uint8 *dataPtr = getResourceAddress(rtImage, resnum);
assert(dataPtr);
const uint8 *wizh = findWrappedBlock(MKID('WIZH'), dataPtr, state, 0);
2005-02-27 00:42:52 +00:00
assert(wizh);
w = READ_LE_UINT32(wizh + 0x4);
h = READ_LE_UINT32(wizh + 0x8);
}
uint8 *ScummEngine_v72he::drawWizImage(int restype, const WizImage *pwi) {
debug(1, "drawWizImage(%d, %d, %d, %d, 0x%X)", restype, pwi->resNum, pwi->x1, pwi->y1, pwi->flags);
uint8 *dst = NULL;
const uint8 *dataPtr = getResourceAddress(restype, pwi->resNum);
if (dataPtr) {
const uint8 *rmap = NULL;
const uint8 *xmap = findWrappedBlock(MKID('XMAP'), dataPtr, pwi->state, 0);
const uint8 *wizh = findWrappedBlock(MKID('WIZH'), dataPtr, pwi->state, 0);
assert(wizh);
uint32 comp = READ_LE_UINT32(wizh + 0x0);
uint32 width = READ_LE_UINT32(wizh + 0x4);
uint32 height = READ_LE_UINT32(wizh + 0x8);
assert(comp == 0 || comp == 1 || comp == 2 || comp == 3 || comp == 10 || comp == 11);
const uint8 *wizd = findWrappedBlock(MKID('WIZD'), dataPtr, pwi->state, 0);
assert(wizd);
if (pwi->flags & 1) {
const uint8 *pal = findWrappedBlock(MKID('RGBS'), dataPtr, pwi->state, 0);
assert(pal);
setPaletteFromPtr(pal, 256);
}
if (pwi->flags & 2) {
rmap = findWrappedBlock(MKID('RMAP'), dataPtr, pwi->state, 0);
assert(rmap);
const uint8 *rgbs = findWrappedBlock(MKID('RGBS'), dataPtr, pwi->state, 0);
assert(rgbs);
warning("drawWizImage() unhandled flag 0x2");
// XXX modify 'RMAP' buffer
}
if (pwi->flags & 4) {
warning("WizImage printing is unimplemented");
return NULL;
}
uint32 cw, ch;
if (pwi->flags & 0x20) {
dst = (uint8 *)malloc(width * height);
int color = 255; // FIXME: should be (VAR_WIZ_TCOLOR != 0xFF) ? VAR(VAR_WIZ_TCOLOR) : 5;
memset(dst, color, width * height);
cw = width;
ch = height;
} else {
VirtScreen *pvs = &virtscr[kMainVirtScreen];
if (pwi->flags & 0x10) {
dst = pvs->getPixels(0, pvs->topline);
} else {
dst = pvs->getBackPixels(0, pvs->topline);
}
cw = pvs->w;
ch = pvs->h;
}
Common::Rect rScreen(cw, ch);
// XXX handle 'XMAP' / 'RMAP' data
if (comp == 1) {
if (pwi->flags & 0x80) {
warning("drawWizImage() unhandled flag 0x80");
} else if (pwi->flags & 0x100) {
warning("drawWizImage() unhandled flag 0x100");
} else {
_wiz.copyWizImage(dst, wizd, cw, ch, pwi->x1, pwi->y1, width, height, &rScreen);
}
} else if (comp == 0 || comp == 2 || comp == 3) {
const uint8 *trns = findWrappedBlock(MKID('TRNS'), dataPtr, pwi->state, 0);
int color = (trns == NULL) ? VAR(VAR_WIZ_TCOLOR) : -1;
const uint8 *pal = xmap;
if (pwi->flags & 2) {
pal = rmap + 4;
}
_wiz.copyRawWizImage(dst, wizd, cw, ch, pwi->x1, pwi->y1, width, height, &rScreen, pwi->flags, pal, color);
} else {
warning("unhandled wiz compression type %d", comp);
}
if (!(pwi->flags & 0x20)) {
Common::Rect rImage(pwi->x1, pwi->y1, pwi->x1 + width, pwi->y1 + height);
if (rImage.intersects(rScreen)) {
rImage.clip(rScreen);
if (!(pwi->flags & 8) && pwi->flags & 0x18) {
++rImage.bottom;
markRectAsDirty(kMainVirtScreen, rImage);
} else {
gdi.copyVirtScreenBuffers(rImage);
}
}
}
}
return dst;
}
struct PolygonDrawData {
struct InterArea {
bool valid;
int32 xmin;
int32 xmax;
int32 x1;
int32 y1;
int32 x2;
int32 y2;
};
Common::Point pto;
InterArea *ia;
int areasNum;
PolygonDrawData(int n) {
areasNum = n;
ia = new InterArea[areasNum];
memset(ia, 0, sizeof(InterArea) * areasNum);
}
~PolygonDrawData() {
delete[] ia;
}
void calcIntersection(const Common::Point *p1, const Common::Point *p2, const Common::Point *p3, const Common::Point *p4) {
int32 x1_acc = p1->x << 0x10;
int32 x3_acc = p3->x << 0x10;
int32 y3_acc = p3->y << 0x10;
uint16 dy = ABS(p2->y - p1->y) + 1;
int32 x1_step = ((p2->x - p1->x) << 0x10) / dy;
int32 x3_step = ((p4->x - p3->x) << 0x10) / dy;
int32 y3_step = ((p4->y - p3->y) << 0x10) / dy;
int iaidx = p1->y - pto.y;
while (dy--) {
assert(iaidx >= 0 && iaidx < areasNum);
InterArea *pia = &ia[iaidx];
int32 tx1 = x1_acc >> 0x10;
int32 tx3 = x3_acc >> 0x10;
int32 ty3 = y3_acc >> 0x10;
if (!pia->valid || pia->xmin > tx1) {
pia->xmin = tx1;
pia->x1 = tx3;
pia->y1 = ty3;
}
if (!pia->valid || pia->xmax < tx1) {
pia->xmax = tx1;
pia->x2 = tx3;
pia->y2 = ty3;
}
pia->valid = true;
x1_acc += x1_step;
x3_acc += x3_step;
y3_acc += y3_step;
if (p2->y <= p1->y) {
--iaidx;
} else {
++iaidx;
}
}
}
};
void ScummEngine_v72he::drawWizPolygon(int resnum, int state, int id, int flags) {
int i;
WizPolygon *wp = NULL;
for (i = 0; i < ARRAYSIZE(_wiz._polygons); ++i) {
if (_wiz._polygons[i].id == id) {
wp = &_wiz._polygons[i];
break;
}
}
if (!wp) {
error("Polygon %d is not defined", id);
}
if (wp->numVerts != 5) {
error("Invalid point count %d for Polygon %d", wp->numVerts, id);
}
WizImage wi;
wi.resNum = resnum;
wi.state = state;
wi.x1 = wi.y1 = 0;
wi.flags = 0x20;
uint8 *srcWizBuf = drawWizImage(rtImage, &wi);
if (srcWizBuf) {
uint8 *dst;
VirtScreen *pvs = &virtscr[kMainVirtScreen];
if (flags & 0x10) {
dst = pvs->getPixels(0, 0);
} else {
dst = pvs->getBackPixels(0, 0);
}
if (wp->bound.left < 0 || wp->bound.top < 0 || wp->bound.right >= pvs->w || wp->bound.bottom >= pvs->h) {
error("Invalid coords polygon %d", wp->id);
}
int32 wizW, wizH;
getWizImageDim(resnum, state, wizW, wizH);
Common::Point bbox[4];
bbox[0].x = 0;
bbox[0].y = 0;
bbox[1].x = wizW - 1;
bbox[1].y = 0;
bbox[2].x = wizW - 1;
bbox[2].y = wizH - 1;
bbox[3].x = 0;
bbox[3].y = wizH - 1;
int16 xmin_p, xmax_p, ymin_p, ymax_p;
xmin_p = xmax_p = wp->vert[0].x;
ymin_p = ymax_p = wp->vert[0].y;
for (i = 1; i < 4; ++i) {
xmin_p = MIN(wp->vert[i].x, xmin_p);
xmax_p = MAX(wp->vert[i].x, xmax_p);
ymin_p = MIN(wp->vert[i].y, ymin_p);
ymax_p = MAX(wp->vert[i].y, ymax_p);
}
int16 xmin_b, xmax_b, ymin_b, ymax_b;
xmin_b = 0;
xmax_b = wizW - 1;
ymin_b = 0;
ymax_b = wizH - 1;
PolygonDrawData pdd(ymax_p - ymin_p + 1);
pdd.pto.x = xmin_p;
pdd.pto.y = ymin_p;
for (i = 0; i < 3; ++i) {
pdd.calcIntersection(&wp->vert[i], &wp->vert[i + 1], &bbox[i], &bbox[i + 1]);
}
pdd.calcIntersection(&wp->vert[3], &wp->vert[0], &bbox[3], &bbox[0]);
uint yoff = pdd.pto.y * pvs->w;
for (i = 0; i < pdd.areasNum; ++i) {
PolygonDrawData::InterArea *pia = &pdd.ia[i];
uint16 dx = pia->xmax - pia->xmin + 1;
uint8 *dstPtr = dst + pia->xmin + yoff;
int32 x_acc = pia->x1 << 0x10;
int32 y_acc = pia->y1 << 0x10;
int32 x_step = ((pia->x2 - pia->x1) << 0x10) / dx;
int32 y_step = ((pia->y2 - pia->y1) << 0x10) / dx;
while (dx--) {
uint srcWizOff = (y_acc >> 0x10) * wizW + (x_acc >> 0x10);
assert(srcWizOff < (uint32)(wizW * wizH));
x_acc += x_step;
y_acc += y_step;
*dstPtr++ = srcWizBuf[srcWizOff];
}
yoff += pvs->pitch;
}
if (flags & 0x10) {
markRectAsDirty(kMainVirtScreen, wp->bound);
} else {
gdi.copyVirtScreenBuffers(wp->bound);
}
free(srcWizBuf);
}
}
void ScummEngine_v72he::flushWizBuffer() {
for (int i = 0; i < _wiz._imagesNum; ++i) {
WizImage *pwi = &_wiz._images[i];
if (pwi->flags & 0x40) {
drawWizPolygon(pwi->resNum, pwi->state, pwi->x1, pwi->flags);
} else {
drawWizImage(rtImage, pwi);
}
}
_wiz._imagesNum = 0;
}
void ScummEngine_v80he::loadImgSpot(int resId, int state, int16 &x, int16 &y) {
const uint8 *dataPtr = getResourceAddress(rtImage, resId);
2005-02-26 00:35:23 +00:00
assert(dataPtr);
const uint8 *spotPtr = findWrappedBlock(MKID('SPOT'), dataPtr, state, 0);
if (spotPtr) {
x = (int16)READ_LE_UINT32(spotPtr + 0);
y = (int16)READ_LE_UINT32(spotPtr + 4);
} else {
x = 0;
y = 0;
}
}
void ScummEngine_v80he::loadWizCursor(int resId, int resType, bool state) {
int16 x, y;
loadImgSpot(resId, 0, x, y);
if (x < 0) {
x = 0;
} else if (x > 32) {
x = 32;
}
if (y < 0) {
y = 0;
} else if (y > 32) {
y = 32;
}
WizImage wi;
wi.resNum = resId;
wi.x1 = wi.y1 = 0;
wi.state = 0;
wi.flags = 0x20;
uint8 *cursor = drawWizImage(rtImage, &wi);
int32 cw, ch;
getWizImageDim(resId, 0, cw, ch);
setCursorFromBuffer(cursor, cw, ch, cw);
setCursorHotspot(x, y);
free(cursor);
}
void ScummEngine_v90he::drawWizComplexPolygon(int resnum, int state, int po_x, int po_y, int arg14, int angle, int zoom, const Common::Rect *r) {
Common::Point pts[4];
int32 w, h;
getWizImageDim(resnum, state, w, h);
pts[1].x = pts[2].x = w / 2 - 1;
pts[0].x = pts[0].y = pts[1].y = pts[3].x = -w / 2;
pts[2].y = pts[3].y = h / 2 - 1;
// transform points
if (zoom != 256) {
for (int i = 0; i < 4; ++i) {
pts[i].x = pts[i].x * zoom / 256;
pts[i].y = pts[i].y * zoom / 256;
}
}
if (angle)
_wiz.polygonRotatePoints(pts, 4, angle);
for (int i = 0; i < 4; ++i) {
pts[i].x += po_x;
pts[i].y += po_y;
}
// XXX drawWizPolygonPoints(resnum, state, pts, r, VAR(117));
warning("ScummEngine_v90he::drawWizComplexPolygon() partially implemented");
}
void ScummEngine_v90he::displayWizComplexImage(const WizParameters *params) {
// XXX merge with ScummEngine_v72he::displayWizImage
int zoom = 256;
if (params->processFlags & 0x8) {
zoom = params->zoom;
}
int rotationAngle = 0;
if (params->processFlags & 0x10) {
rotationAngle = params->angle;
}
int state = 0;
if (params->processFlags & 0x400) {
state = params->img.state;
}
int flags = 0;
if (params->processFlags & 0x20) {
flags = params->img.flags;
}
int po_x = 0;
int po_y = 0;
if (params->processFlags & 0x1) {
po_x = params->img.x1;
po_y = params->img.y1;
}
int unk = 0;
if (params->processFlags & 0x4) {
unk = params->unk_15C;
}
const Common::Rect *r = NULL;
if (params->processFlags & 0x200) {
r = &params->box;
}
if (_fullRedraw) {
assert(_wiz._imagesNum < ARRAYSIZE(_wiz._images));
WizImage *pwi = &_wiz._images[_wiz._imagesNum];
pwi->resNum = params->img.resNum;
pwi->x1 = po_x;
pwi->y1 = po_y;
pwi->state = state;
pwi->flags = flags;
pwi->unk = unk;
++_wiz._imagesNum;
} else if (params->processFlags & 0x18) {
drawWizComplexPolygon(params->img.resNum, state, po_x, po_y, unk, rotationAngle, zoom, r);
} else if (flags & 0x40) {
drawWizPolygon(params->img.resNum, state, po_x, flags); // XXX , VAR(117));
} else {
if ((flags & 0x200) || (flags & 0x24)) {
warning("ScummEngine_v90he::displayWizComplexImage() unhandled flags = 0x%X", flags);
}
// XXX flags 0x200, 0x24
WizImage wi;
wi.resNum = params->img.resNum;
wi.x1 = po_x;
wi.y1 = po_y;
wi.state = state;
wi.flags = flags;
wi.unk = unk;
drawWizImage(rtImage, &wi);
}
}
void ScummEngine_v90he::processWizImage(const WizParameters *params) {
2005-02-27 00:49:09 +00:00
debug(1, "processWizImage: processMode %d", params->processMode);
switch (params->processMode) {
case 1:
displayWizComplexImage(params);
break;
case 2:
captureWizImage(rtImage, params->img.resNum, params->box, (params->img.flags & kWIFBlitToFrontVideoBuffer) == kWIFBlitToFrontVideoBuffer, params->compType);
break;
case 3:
if (params->processFlags & 0x800) {
File f;
if (!f.open((const char *)params->filename, File::kFileReadMode)) {
warning("Unable to open for read '%s'", params->filename);
} else {
uint32 id = f.readUint32BE();
if (id != MKID('AWIZ') && id != MKID('MULT')) {
VAR(VAR_GAME_LOADED) = -1;
} else {
uint32 size = f.readUint32BE();
f.seek(0, SEEK_SET);
byte *p = createResource(rtImage, params->img.resNum, size);
if (f.read(p, size) != size) {
nukeResource(rtImage, params->img.resNum);
warning("i/o error when reading '%s'", params->filename);
VAR(VAR_GAME_LOADED) = -2;
} else {
VAR(VAR_GAME_LOADED) = 0;
}
}
f.close();
}
}
break;
case 4:
if (params->processFlags & 0x800) {
if (params->unk_14C != 0) {
VAR(119) = -1;
} else {
File f;
if (!f.open((const char *)params->filename, File::kFileWriteMode)) {
warning("Unable to open for write '%s'", params->filename);
VAR(119) = -3;
} else {
byte *p = getResourceAddress(rtImage, params->img.resNum);
uint32 size = READ_BE_UINT32(p + 4);
if (f.write(p, size) != size) {
warning("i/o error when writing '%s'", params->filename);
VAR(119) = -2;
} else {
VAR(119) = 0;
}
f.close();
}
}
}
break;
case 6:
// HE 99+
case 7:
case 8:
case 9:
case 10:
case 11:
case 12:
2005-02-27 00:42:52 +00:00
warning("Unhandled processWizImage mode %d", params->processMode);
break;
default:
2005-02-27 00:42:52 +00:00
debug(1, "Invalid processWizImage mode %d", params->processMode);
}
}
int ScummEngine_v90he::getWizImageStates(int resnum) {
const uint8 *dataPtr = getResourceAddress(rtImage, resnum);
assert(dataPtr);
if (READ_UINT32(dataPtr) == MKID('MULT')) {
const byte *offs, *wrap;
wrap = findResource(MKID('WRAP'), dataPtr);
if (wrap == NULL)
return 1;
offs = findResourceData(MKID('OFFS'), wrap);
if (offs == NULL)
return 1;
return getResourceDataSize(offs) / 4;
} else {
return 1;
}
}
int ScummEngine_v90he::isWizPixelNonTransparent(int restype, int resnum, int state, int x, int y, int flags) {
int ret = 0;
const uint8 *data = getResourceAddress(restype, resnum);
assert(data);
const uint8 *wizh = findWrappedBlock(MKID('WIZH'), data, state, 0);
assert(wizh);
uint32 c = READ_LE_UINT32(wizh + 0x0);
int w = READ_LE_UINT32(wizh + 0x4);
int h = READ_LE_UINT32(wizh + 0x8);
const uint8 *wizd = findWrappedBlock(MKID('WIZD'), data, state, 0);
assert(wizd);
if (x >= 0 && x < w && y >= 0 && y < h) {
if (flags & 0x400) {
x = w - x - 1;
}
if (flags & 0x800) {
y = h - y - 1;
}
if (c == 1) {
ret = _wiz.isWizPixelNonTransparent(wizd, x, y, w, h);
} else if (c == 0 || c == 2 || c == 3) {
ret = _wiz.getRawWizPixelColor(wizd, x, y, w, h, VAR(VAR_WIZ_TCOLOR)) != VAR(VAR_WIZ_TCOLOR) ? 1 : 0;
}
}
return ret;
}
uint8 ScummEngine_v90he::getWizPixelColor(int restype, int resnum, int state, int x, int y, int flags) {
uint8 color;
const uint8 *data = getResourceAddress(restype, resnum);
assert(data);
const uint8 *wizh = findWrappedBlock(MKID('WIZH'), data, state, 0);
assert(wizh);
uint32 c = READ_LE_UINT32(wizh + 0x0);
uint32 w = READ_LE_UINT32(wizh + 0x4);
uint32 h = READ_LE_UINT32(wizh + 0x8);
const uint8 *wizd = findWrappedBlock(MKID('WIZD'), data, state, 0);
assert(wizd);
if (c == 1) {
color = _wiz.getWizPixelColor(wizd, x, y, w, h, VAR(VAR_WIZ_TCOLOR));
} else if (c == 0 || c == 2 || c == 3) {
color = _wiz.getRawWizPixelColor(wizd, x, y, w, h, VAR(VAR_WIZ_TCOLOR));
} else {
color = VAR(VAR_WIZ_TCOLOR);
}
return color;
}
int ScummEngine_v90he::computeWizHistogram(int resnum, int state, int x, int y, int w, int h) {
writeVar(0, 0);
defineArray(0, kDwordArray, 0, 0, 0, 255);
if (readVar(0) != 0) {
const uint8 *data = getResourceAddress(rtImage, resnum);
assert(data);
const uint8 *wizh = findWrappedBlock(MKID('WIZH'), data, state, 0);
assert(wizh);
uint32 ic = READ_LE_UINT32(wizh + 0x0);
uint32 iw = READ_LE_UINT32(wizh + 0x4);
uint32 ih = READ_LE_UINT32(wizh + 0x8);
const uint8 *wizd = findWrappedBlock(MKID('WIZD'), data, state, 0);
assert(wizd);
Common::Rect rWiz(iw, ih);
Common::Rect rCap(x, y, w + 1, h + 1);
if (rCap.intersects(rWiz)) {
rCap.clip(rWiz);
uint32 histogram[0x100];
memset(histogram, 0, sizeof(histogram));
if (ic == 1) {
_wiz.computeWizHistogram(histogram, wizd, &rCap);
} else if (ic == 0 || ic == 2 || ic == 3) {
_wiz.computeRawWizHistogram(histogram, wizd, w, &rCap);
} else {
warning("Unable to return histogram for type %d", ic);
}
for (int i = 0; i < 0x100; ++i) {
writeArray(0, 0, i, histogram[i]);
}
}
}
return readVar(0);
}
} // End of namespace Scumm