scummvm/common/array.h

463 lines
12 KiB
C
Raw Normal View History

2011-04-16 12:08:33 +00:00
/* ScummVM - Graphic Adventure Engine
*
2011-04-16 12:08:33 +00:00
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
2014-04-05 16:18:42 +00:00
*
*/
#ifndef COMMON_ARRAY_H
#define COMMON_ARRAY_H
#include "common/scummsys.h"
#include "common/algorithm.h"
2012-02-24 11:15:44 +00:00
#include "common/textconsole.h" // For error()
2012-01-06 21:56:21 +00:00
#include "common/memory.h"
namespace Common {
/**
* This class implements a dynamically sized container, which
* can be accessed similar to a regular C++ array. Accessing
* elements is performed in constant time (like with plain arrays).
* In addition, one can append, insert and remove entries (this
* is the 'dynamic' part). Doing that in general takes time
* proportional to the number of elements in the array.
*
* The container class closest to this in the C++ standard library is
2012-01-06 21:56:21 +00:00
* std::vector. However, there are some differences.
*/
template<class T>
class Array {
public:
typedef T *iterator;
typedef const T *const_iterator;
typedef T value_type;
2012-02-24 11:15:44 +00:00
typedef uint size_type;
protected:
size_type _capacity;
size_type _size;
T *_storage;
public:
Array() : _capacity(0), _size(0), _storage(nullptr) {}
/**
* Constructs an array with `count` default-inserted instances of T. No
* copies are made.
*/
explicit Array(size_type count) : _size(count) {
allocCapacity(count);
for (size_type i = 0; i < count; ++i)
new ((void *)&_storage[i]) T();
}
/**
* Constructs an array with `count` copies of elements with value `value`.
*/
Array(size_type count, const T &value) : _size(count) {
allocCapacity(count);
uninitialized_fill_n(_storage, count, value);
}
Array(const Array<T> &array) : _capacity(array._size), _size(array._size), _storage(nullptr) {
if (array._storage) {
2011-05-18 21:33:39 +00:00
allocCapacity(_size);
2012-01-06 21:56:21 +00:00
uninitialized_copy(array._storage, array._storage + _size, _storage);
}
}
/**
* Construct an array by copying data from a regular array.
*/
template<class T2>
Array(const T2 *array, size_type n) {
2011-05-18 21:33:39 +00:00
_size = n;
allocCapacity(n);
uninitialized_copy(array, array + _size, _storage);
}
~Array() {
2012-01-06 21:56:21 +00:00
freeStorage(_storage, _size);
_storage = nullptr;
_capacity = _size = 0;
}
/** Appends element to the end of the array. */
void push_back(const T &element) {
if (_size + 1 <= _capacity)
2012-01-06 21:56:21 +00:00
new ((void *)&_storage[_size++]) T(element);
else
insert_aux(end(), &element, &element + 1);
}
void push_back(const Array<T> &array) {
if (_size + array.size() <= _capacity) {
2012-01-06 21:56:21 +00:00
uninitialized_copy(array.begin(), array.end(), end());
_size += array.size();
} else
insert_aux(end(), array.begin(), array.end());
}
/** Removes the last element of the array. */
void pop_back() {
assert(_size > 0);
_size--;
2012-01-06 21:56:21 +00:00
// We also need to destroy the last object properly here.
_storage[_size].~T();
}
/** Returns a pointer to the underlying memory serving as element storage. */
const T *data() const {
return _storage;
}
/** Returns a pointer to the underlying memory serving as element storage. */
T *data() {
return _storage;
}
/** Returns a reference to the first element of the array. */
T &front() {
assert(_size > 0);
return _storage[0];
}
/** Returns a reference to the first element of the array. */
const T &front() const {
assert(_size > 0);
return _storage[0];
}
/** Returns a reference to the last element of the array. */
T &back() {
assert(_size > 0);
return _storage[_size-1];
}
/** Returns a reference to the last element of the array. */
const T &back() const {
assert(_size > 0);
return _storage[_size-1];
}
2012-02-24 11:15:44 +00:00
void insert_at(size_type idx, const T &element) {
assert(idx <= _size);
insert_aux(_storage + idx, &element, &element + 1);
}
2012-02-24 11:15:44 +00:00
void insert_at(size_type idx, const Array<T> &array) {
assert(idx <= _size);
2011-04-11 13:40:01 +00:00
insert_aux(_storage + idx, array.begin(), array.end());
}
/**
* Inserts element before pos.
*/
void insert(iterator pos, const T &element) {
insert_aux(pos, &element, &element + 1);
}
2011-04-11 13:40:01 +00:00
2012-02-24 11:15:44 +00:00
T remove_at(size_type idx) {
assert(idx < _size);
2009-01-12 22:09:56 +00:00
T tmp = _storage[idx];
copy(_storage + idx + 1, _storage + _size, _storage + idx);
_size--;
2012-01-06 21:56:21 +00:00
// We also need to destroy the last object properly here.
_storage[_size].~T();
return tmp;
}
// TODO: insert, remove, ...
2012-02-24 11:15:44 +00:00
T &operator[](size_type idx) {
assert(idx < _size);
2009-01-12 22:09:56 +00:00
return _storage[idx];
}
2012-02-24 11:15:44 +00:00
const T &operator[](size_type idx) const {
assert(idx < _size);
2009-01-12 22:09:56 +00:00
return _storage[idx];
}
2012-02-24 11:15:44 +00:00
Array<T> &operator=(const Array<T> &array) {
if (this == &array)
return *this;
2012-01-06 21:56:21 +00:00
freeStorage(_storage, _size);
_size = array._size;
2011-05-18 21:33:39 +00:00
allocCapacity(_size);
2012-01-06 21:56:21 +00:00
uninitialized_copy(array._storage, array._storage + _size, _storage);
return *this;
}
2012-02-24 11:15:44 +00:00
size_type size() const {
return _size;
}
void clear() {
2012-01-06 21:56:21 +00:00
freeStorage(_storage, _size);
_storage = nullptr;
_size = 0;
_capacity = 0;
}
iterator erase(iterator pos) {
copy(pos + 1, _storage + _size, pos);
_size--;
// We also need to destroy the last object properly here.
_storage[_size].~T();
return pos;
}
bool empty() const {
return (_size == 0);
}
2010-01-21 19:25:03 +00:00
bool operator==(const Array<T> &other) const {
if (this == &other)
return true;
if (_size != other._size)
return false;
2012-02-24 11:15:44 +00:00
for (size_type i = 0; i < _size; ++i) {
2010-01-21 19:25:03 +00:00
if (_storage[i] != other._storage[i])
return false;
}
return true;
}
2012-02-24 11:15:44 +00:00
2010-01-21 19:25:03 +00:00
bool operator!=(const Array<T> &other) const {
return !(*this == other);
}
2012-02-24 11:15:44 +00:00
iterator begin() {
2009-01-12 22:09:56 +00:00
return _storage;
}
2012-02-24 11:15:44 +00:00
iterator end() {
2009-01-12 22:09:56 +00:00
return _storage + _size;
}
2012-02-24 11:15:44 +00:00
const_iterator begin() const {
2009-01-12 22:09:56 +00:00
return _storage;
}
2012-02-24 11:15:44 +00:00
const_iterator end() const {
2009-01-12 22:09:56 +00:00
return _storage + _size;
}
2012-02-24 11:15:44 +00:00
void reserve(size_type newCapacity) {
if (newCapacity <= _capacity)
return;
2011-05-18 21:33:39 +00:00
T *oldStorage = _storage;
allocCapacity(newCapacity);
2011-05-18 21:33:39 +00:00
if (oldStorage) {
// Copy old data
2012-01-06 21:56:21 +00:00
uninitialized_copy(oldStorage, oldStorage + _size, _storage);
freeStorage(oldStorage, _size);
}
}
2012-02-24 11:15:44 +00:00
void resize(size_type newSize) {
reserve(newSize);
2012-02-24 11:15:44 +00:00
for (size_type i = _size; i < newSize; ++i)
2012-01-06 21:56:21 +00:00
new ((void *)&_storage[i]) T();
_size = newSize;
}
2011-07-20 04:58:19 +00:00
void assign(const_iterator first, const_iterator last) {
resize(distance(first, last)); // FIXME: ineffective?
T *dst = _storage;
while (first != last)
*dst++ = *first++;
}
protected:
2012-02-24 11:15:44 +00:00
static size_type roundUpCapacity(size_type capacity) {
// Round up capacity to the next power of 2;
// we use a minimal capacity of 8.
2012-02-24 11:15:44 +00:00
size_type capa = 8;
while (capa < capacity)
capa <<= 1;
return capa;
}
2012-02-24 11:15:44 +00:00
void allocCapacity(size_type capacity) {
2011-05-18 21:33:39 +00:00
_capacity = capacity;
if (capacity) {
2012-01-06 21:56:21 +00:00
_storage = (T *)malloc(sizeof(T) * capacity);
2011-05-18 21:33:39 +00:00
if (!_storage)
2012-02-24 11:15:44 +00:00
::error("Common::Array: failure to allocate %u bytes", capacity * (size_type)sizeof(T));
2011-05-18 21:33:39 +00:00
} else {
_storage = nullptr;
2011-05-18 21:33:39 +00:00
}
}
2012-02-24 11:15:44 +00:00
void freeStorage(T *storage, const size_type elements) {
for (size_type i = 0; i < elements; ++i)
2012-01-06 21:56:21 +00:00
storage[i].~T();
free(storage);
}
/**
* Insert a range of elements coming from this or another array.
* Unlike std::vector::insert, this method does not accept
* arbitrary iterators, mainly because our iterator system is
* seriously limited and does not distinguish between input iterators,
* output iterators, forward iterators or random access iterators.
*
* So, we simply restrict to Array iterators. Extending this to arbitrary
* random access iterators would be trivial.
*
* Moreover, this method does not handle all cases of inserting a subrange
* of an array into itself; this is why it is private for now.
*/
iterator insert_aux(iterator pos, const_iterator first, const_iterator last) {
assert(_storage <= pos && pos <= _storage + _size);
assert(first <= last);
2012-02-24 11:15:44 +00:00
const size_type n = last - first;
if (n) {
2012-02-24 11:15:44 +00:00
const size_type idx = pos - _storage;
2012-01-06 21:56:21 +00:00
if (_size + n > _capacity || (_storage <= first && first <= _storage + _size)) {
T *const oldStorage = _storage;
// If there is not enough space, allocate more.
2011-05-18 21:33:39 +00:00
// Likewise, if this is a self-insert, we allocate new
2012-01-06 21:56:21 +00:00
// storage to avoid conflicts.
2011-05-18 21:33:39 +00:00
allocCapacity(roundUpCapacity(_size + n));
2012-01-06 21:56:21 +00:00
// Copy the data from the old storage till the position where
// we insert new data
uninitialized_copy(oldStorage, oldStorage + idx, _storage);
// Copy the data we insert
uninitialized_copy(first, last, _storage + idx);
// Afterwards copy the old data from the position where we
// insert.
uninitialized_copy(oldStorage + idx, oldStorage + _size, _storage + idx + n);
freeStorage(oldStorage, _size);
} else if (idx + n <= _size) {
// Make room for the new elements by shifting back
// existing ones.
// 1. Move a part of the data to the uninitialized area
uninitialized_copy(_storage + _size - n, _storage + _size, _storage + _size);
// 2. Move a part of the data to the initialized area
copy_backward(pos, _storage + _size - n, _storage + _size);
// Insert the new elements.
copy(first, last, pos);
} else {
// Copy the old data from the position till the end to the new
// place.
uninitialized_copy(pos, _storage + _size, _storage + idx + n);
// Copy a part of the new data to the position inside the
// initialized space.
copy(first, first + (_size - idx), pos);
2012-11-18 18:07:46 +00:00
2012-01-06 21:56:21 +00:00
// Copy a part of the new data to the position inside the
// uninitialized space.
uninitialized_copy(first + (_size - idx), last, _storage + _size);
}
// Finally, update the internal state
_size += n;
}
return pos;
}
};
/**
* Double linked list with sorted nodes.
*/
template<class T>
class SortedArray : public Array<T> {
public:
typedef T *iterator;
typedef uint size_type;
SortedArray(int (*comparator)(const void *, const void *)) {
_comparator = comparator;
}
/**
* Inserts element at the sorted position.
*/
void insert(const T &element) {
if (!this->_size) {
this->insert_aux(this->_storage, &element, &element + 1);
return;
}
T *where = bsearchMin(element);
if (where > this->_storage + this->_size)
Array<T>::push_back(element);
else
Array<T>::insert(where, element);
}
private:
T &operator[](size_type idx);
void insert_at(size_type idx, const T &element);
void insert_at(size_type idx, const Array<T> &array);
void insert(iterator pos, const T &element);
void push_back(const T &element);
void push_back(const Array<T> &array);
// Based on code Copyright (C) 2008-2009 Ksplice, Inc.
// Author: Tim Abbott <tabbott@ksplice.com>
// Licensed under GPLv2+
T *bsearchMin(void *key) {
uint start_ = 0, end_ = this->_size;
int result;
while (start_ < end_) {
uint mid = start_ + (end_ - start_) / 2;
result = this->_comparator(key, this->_storage[mid]);
if (result < 0)
end_ = mid;
else if (result > 0)
start_ = mid + 1;
else
return &this->_storage[mid];
}
return &this->_storage[start_];
}
int (*_comparator)(const void *, const void *);
};
} // End of namespace Common
#endif