scummvm/audio/casio.cpp

424 lines
12 KiB
C++
Raw Normal View History

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "audio/casio.h"
#include "common/config-manager.h"
MidiDriver_Casio::ActiveNote::ActiveNote() {
clear();
}
void MidiDriver_Casio::ActiveNote::clear() {
source = 0x7F;
channel = 0xFF;
note = 0xFF;
sustained = false;
}
const int MidiDriver_Casio::CASIO_CHANNEL_POLYPHONY[] = { 6, 4, 2, 4 };
const uint8 MidiDriver_Casio::INSTRUMENT_REMAPPING_CT460_TO_MT540[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x10, 0x0C, 0x07,
0x0B, 0x1B, 0x11, 0x08, 0x09, 0x14, 0x0A, 0x15, 0x0D, 0x0E,
0x0F, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1C, 0x1D, 0x12, 0x13
};
const uint8 MidiDriver_Casio::INSTRUMENT_REMAPPING_MT540_TO_CT460[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x09, 0x0D, 0x0E,
0x10, 0x0A, 0x08, 0x12, 0x13, 0x14, 0x07, 0x0C, 0x1C, 0x1D,
0x0F, 0x11, 0x15, 0x16, 0x17, 0x18, 0x19, 0x0B, 0x1A, 0x1B
};
const uint8 MidiDriver_Casio::RHYTHM_INSTRUMENT_MT540 = 0x08;
const uint8 MidiDriver_Casio::RHYTHM_INSTRUMENT_CT460 = 0x0D;
const uint8 MidiDriver_Casio::BASS_INSTRUMENT_MT540 = 0x12;
const uint8 MidiDriver_Casio::BASS_INSTRUMENT_CT460 = 0x1C;
MidiDriver_Casio::MidiDriver_Casio(MusicType midiType) : _midiType(midiType), _driver(nullptr),
_deviceType(MT_CT460), _isOpen(false), _rhythmNoteRemapping(nullptr), _sendUntrackedNoteOff(true) {
if (!(_midiType == MT_MT540 || _midiType == MT_CT460)) {
error("MidiDriver_Casio - Unsupported music data type %i", _midiType);
}
Common::fill(_instruments, _instruments + ARRAYSIZE(_instruments), 0);
Common::fill(_rhythmChannel, _rhythmChannel + ARRAYSIZE(_rhythmChannel), false);
Common::fill(_sustain, _sustain + ARRAYSIZE(_sustain), false);
}
MidiDriver_Casio::~MidiDriver_Casio() {
close();
if (_driver) {
_driver->setTimerCallback(nullptr, nullptr);
delete _driver;
_driver = nullptr;
}
}
int MidiDriver_Casio::open() {
assert(!_driver);
// Detect the output device.
MidiDriver::DeviceHandle dev = MidiDriver::detectDevice(MDT_MIDI | MDT_PREFER_GM);
MusicType deviceMusicType = MidiDriver::getMusicType(dev);
// System MIDI ports have type GM. This driver supports no other type.
if (deviceMusicType != MT_GM)
error("MidiDriver_Casio::open - Detected device has unsupported type %i", deviceMusicType);
// Create the driver.
MidiDriver *driver = MidiDriver::createMidi(dev);
// Check the MIDI mode setting to determine if the device connected to the
// system MIDI port is an MT-540 or a CT-460/CSM-1.
int midiMode = ConfMan.getInt("midi_mode");
MusicType deviceType;
if (midiMode == 3) {
deviceType = MT_MT540;
} else if (midiMode == 4) {
deviceType = MT_CT460;
} else {
error("MidiDriver_Casio::open - Unsupported MIDI mode %i", midiMode);
}
return open(driver, deviceType);
}
int MidiDriver_Casio::open(MidiDriver* driver, MusicType deviceType) {
assert(!_driver);
_driver = driver;
_deviceType = deviceType;
if (!(_deviceType == MT_MT540 || _deviceType == MT_CT460)) {
error("MidiDriver_Casio::open - Unsupported device type %i", _deviceType);
}
if (!_driver)
return 255;
int result = _driver->open();
if (result != MidiDriver::MERR_ALREADY_OPEN && result != 0) {
return result;
}
// Initialize the device by setting the instrument to 0 on all channels.
for (int i = 0; i < 4; i++) {
programChange(i, 0, -1);
}
_timerRate = _driver->getBaseTempo();
_driver->setTimerCallback(this, timerCallback);
_isOpen = true;
return 0;
}
void MidiDriver_Casio::close() {
if (_driver && _isOpen) {
stopAllNotes();
_driver->setTimerCallback(nullptr, nullptr);
_driver->close();
_isOpen = false;
}
}
bool MidiDriver_Casio::isOpen() const {
return _isOpen;
}
void MidiDriver_Casio::send(int8 source, uint32 b) {
byte dataChannel = b & 0xf;
int8 outputChannel = source < 0 ? dataChannel : mapSourceChannel(source, dataChannel);
if (outputChannel < 0 || outputChannel >= 4)
// Only process events for channels 0-3.
return;
processEvent(source, b, outputChannel);
}
void MidiDriver_Casio::metaEvent(int8 source, byte type, byte *data, uint16 length) {
assert(source < MAXIMUM_SOURCES);
if (type == 0x2F && source >= 0) // End of Track
deinitSource(source);
_driver->metaEvent(type, data, length);
}
int8 MidiDriver_Casio::mapSourceChannel(uint8 source, uint8 dataChannel) {
// TODO Multisource functionality has not been fully implemented. Current
// implementation assumes 1 source with access to all channels.
return dataChannel;
}
void MidiDriver_Casio::processEvent(int8 source, uint32 b, uint8 outputChannel) {
assert(source < MAXIMUM_SOURCES);
byte command = b & 0xF0;
byte op1 = (b >> 8) & 0xFF;
byte op2 = (b >> 16) & 0xFF;
// The only commands supported by the Casio devices are note on, note off
// and program change.
switch (command) {
case MIDI_COMMAND_NOTE_OFF:
noteOff(outputChannel, command, op1, op2, source);
break;
case MIDI_COMMAND_NOTE_ON:
noteOn(outputChannel, op1, op2, source);
break;
case MIDI_COMMAND_PROGRAM_CHANGE:
programChange(outputChannel, op1, source);
break;
case MIDI_COMMAND_CONTROL_CHANGE:
controlChange(outputChannel, op1, op2, source);
break;
default:
warning("MidiDriver_Casio::processEvent - Received unsupported event %02x", command);
break;
}
}
void MidiDriver_Casio::noteOff(byte outputChannel, byte command, byte note, byte velocity, int8 source) {
// Apply rhythm note mapping.
int8 mappedNote = mapNote(outputChannel, note);
if (mappedNote < 0)
// Rhythm note with no Casio equivalent.
return;
_mutex.lock();
// Remove this note from the active note registry.
bool foundActiveNote = false;
for (int i = 0; i < ARRAYSIZE(_activeNotes); i++) {
if (_activeNotes[i].channel == outputChannel && _activeNotes[i].note == mappedNote &&
_activeNotes[i].source == source && !_activeNotes[i].sustained) {
foundActiveNote = true;
if (outputChannel < 4 && _sustain[outputChannel]) {
_activeNotes[i].sustained = true;
} else {
_activeNotes[i].clear();
}
break;
}
}
_mutex.unlock();
if (!foundActiveNote && !_sendUntrackedNoteOff)
return;
_driver->send(command | outputChannel, mappedNote, velocity);
}
void MidiDriver_Casio::noteOn(byte outputChannel, byte note, byte velocity, int8 source) {
if (velocity == 0) {
// Note on with velocity 0 is a note off.
noteOff(outputChannel, MIDI_COMMAND_NOTE_ON, note, velocity, source);
return;
}
// Apply rhythm note mapping.
int8 mappedNote = mapNote(outputChannel, note);
if (mappedNote < 0)
// Rhythm note with no Casio equivalent.
return;
_mutex.lock();
// Add this note to the active note registry.
for (int i = 0; i < ARRAYSIZE(_activeNotes); i++) {
if (_activeNotes[i].note == 0xFF) {
_activeNotes[i].channel = outputChannel;
_activeNotes[i].note = mappedNote;
_activeNotes[i].source = source;
break;
}
}
_mutex.unlock();
byte calculatedVelocity = calculateVelocity(source, velocity);
_driver->send(MIDI_COMMAND_NOTE_ON | outputChannel, mappedNote, calculatedVelocity);
}
int8 MidiDriver_Casio::mapNote(byte outputChannel, byte note) {
int8 mappedNote = note;
if (_rhythmNoteRemapping && isRhythmChannel(outputChannel)) {
mappedNote = _rhythmNoteRemapping[note];
if (mappedNote == 0)
mappedNote = -1;
}
return mappedNote;
}
byte MidiDriver_Casio::calculateVelocity(int8 source, byte velocity) {
byte calculatedVelocity = velocity;
// Apply volume settings to velocity.
// The Casio devices do not apply note velocity, so the only volume control
// possible is setting the velocity to 0 if one of the volume settings is 0.
if (source >= 0) {
// Scale to source volume.
if (_sources[source].volume == 0)
calculatedVelocity = 0;
}
if (_userVolumeScaling) {
if (_userMute) {
calculatedVelocity = 0;
} else {
// Scale to user volume.
uint16 userVolume = _sources[source].type == SOURCE_TYPE_SFX ? _userSfxVolume : _userMusicVolume;
if (userVolume == 0)
calculatedVelocity = 0;
}
}
return calculatedVelocity;
}
void MidiDriver_Casio::programChange(byte outputChannel, byte patchId, int8 source, bool applyRemapping) {
if (outputChannel < 4)
// Register the new instrument.
_instruments[outputChannel] = patchId;
// Apply instrument mapping.
byte mappedInstrument = mapInstrument(patchId, applyRemapping);
if (outputChannel < 4) {
_rhythmChannel[outputChannel] =
mappedInstrument == (_deviceType == MT_MT540 ? RHYTHM_INSTRUMENT_MT540 : RHYTHM_INSTRUMENT_CT460);
}
_driver->send(MIDI_COMMAND_PROGRAM_CHANGE | outputChannel | (mappedInstrument << 8));
}
byte MidiDriver_Casio::mapInstrument(byte program, bool applyRemapping) {
byte mappedInstrument = program;
if (applyRemapping && _instrumentRemapping)
// Apply custom instrument mapping.
mappedInstrument = _instrumentRemapping[program];
// Apply MT-540 <> CT-460 instrument mapping if necessary.
if (mappedInstrument < ARRAYSIZE(INSTRUMENT_REMAPPING_MT540_TO_CT460)) {
if (_midiType == MT_MT540 && _deviceType == MT_CT460) {
mappedInstrument = INSTRUMENT_REMAPPING_MT540_TO_CT460[mappedInstrument];
} else if (_midiType == MT_CT460 && _deviceType == MT_MT540) {
mappedInstrument = INSTRUMENT_REMAPPING_CT460_TO_MT540[mappedInstrument];
}
}
return mappedInstrument;
}
void MidiDriver_Casio::controlChange(byte outputChannel, byte controllerNumber, byte controllerValue, int8 source) {
if (outputChannel >= 4)
return;
if (controllerNumber == MIDI_CONTROLLER_SUSTAIN) {
_sustain[outputChannel] = controllerValue >= 0x40;
if (!_sustain[outputChannel]) {
// Remove sustained notes if sustain is turned off.
_mutex.lock();
for (int i = 0; i < ARRAYSIZE(_activeNotes); i++) {
if (_activeNotes[i].channel == outputChannel && _activeNotes[i].sustained) {
_activeNotes[i].clear();
}
}
_mutex.unlock();
}
_driver->send(MIDI_COMMAND_CONTROL_CHANGE | outputChannel | (controllerNumber << 8) | (controllerValue << 16));
} else {
// No other controllers are supported.
//warning("MidiDriver_Casio::controlChange - Received event for unsupported controller %02x", controllerNumber);
}
}
bool MidiDriver_Casio::isRhythmChannel(uint8 outputChannel) {
if (outputChannel >= 4)
return false;
return _rhythmChannel[outputChannel];
}
void MidiDriver_Casio::stopAllNotes(bool stopSustainedNotes) {
stopAllNotes(0xFF, 0xFF);
}
void MidiDriver_Casio::stopAllNotes(uint8 source, uint8 channel) {
_mutex.lock();
// Turn off sustain.
for (int i = 0; i < 4; i++) {
if (channel == 0xFF || i == channel) {
controlChange(i, MIDI_CONTROLLER_SUSTAIN, 0, source > 127 ? -1 : source);
}
}
// Send note off events for all notes in the active note registry for this
// source and channel.
for (int i = 0; i < ARRAYSIZE(_activeNotes); i++) {
if (_activeNotes[i].note != 0xFF && (source == 0xFF || _activeNotes[i].source == source) &&
(channel == 0xFF || _activeNotes[i].channel == channel)) {
_driver->send(MIDI_COMMAND_NOTE_OFF | _activeNotes[i].channel, _activeNotes[i].note, 0);
_activeNotes[i].clear();
}
}
_mutex.unlock();
}
void MidiDriver_Casio::applySourceVolume(uint8 source) {
// Because the Casio devices do not support the volume controller, source
// volume is applied to note velocity and it cannot be applied directly.
}
MidiChannel *MidiDriver_Casio::allocateChannel() {
// MidiChannel objects are not supported by this driver.
return nullptr;
}
MidiChannel *MidiDriver_Casio::getPercussionChannel() {
// MidiChannel objects are not supported by this driver.
return nullptr;
}
uint32 MidiDriver_Casio::getBaseTempo() {
if (_driver) {
return _driver->getBaseTempo();
}
return 0;
}
void MidiDriver_Casio::timerCallback(void *data) {
MidiDriver_Casio *driver = static_cast<MidiDriver_Casio *>(data);
driver->onTimer();
}