633 lines
19 KiB
C++
Raw Normal View History

/* Copyright (c) 2003-2005 Various contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <string.h>
#include <math.h>
#include "mt32emu.h"
namespace MT32Emu {
static const Bit8u PartialStruct[13] = {
0, 0, 2, 2, 1, 3,
3, 0, 3, 0, 2, 1, 3 };
static const Bit8u PartialMixStruct[13] = {
0, 1, 0, 1, 1, 0,
1, 3, 3, 2, 2, 2, 2 };
static const float floatKeyfollow[17] = {
-1.0f, -1.0f/2.0f, -1.0f/4.0f, 0.0f,
1.0f/8.0f, 1.0f/4.0f, 3.0f/8.0f, 1.0f/2.0f, 5.0f/8.0f, 3.0f/4.0f, 7.0f/8.0f, 1.0f,
5.0f/4.0f, 3.0f/2.0f, 2.0f,
1.0009765625f, 1.0048828125f
};
//FIXME:KG: Put this dpoly stuff somewhere better
bool dpoly::isActive() const {
return partials[0] != NULL || partials[1] != NULL || partials[2] != NULL || partials[3] != NULL;
}
Bit32u dpoly::getAge() const {
for (int i = 0; i < 4; i++) {
if (partials[i] != NULL) {
return partials[i]->age;
}
}
return 0;
}
RhythmPart::RhythmPart(Synth *useSynth, unsigned int usePartNum): Part(useSynth, usePartNum) {
strcpy(name, "Rhythm");
rhythmTemp = &synth->mt32ram.rhythmSettings[0];
refresh();
}
Part::Part(Synth *useSynth, unsigned int usePartNum) {
this->synth = useSynth;
this->partNum = usePartNum;
patchCache[0].dirty = true;
holdpedal = false;
patchTemp = &synth->mt32ram.patchSettings[partNum];
if (usePartNum == 8) {
// Nasty hack for rhythm
timbreTemp = NULL;
} else {
sprintf(name, "Part %d", partNum + 1);
timbreTemp = &synth->mt32ram.timbreSettings[partNum];
}
currentInstr[0] = 0;
currentInstr[10] = 0;
expression = 127;
volumeMult = 0;
volumesetting.leftvol = 32767;
volumesetting.rightvol = 32767;
bend = 0.0f;
memset(polyTable,0,sizeof(polyTable));
memset(patchCache, 0, sizeof(patchCache));
}
void Part::setHoldPedal(bool pedalval) {
if (holdpedal && !pedalval) {
holdpedal = false;
stopPedalHold();
} else {
holdpedal = pedalval;
}
}
void RhythmPart::setBend(unsigned int midiBend) {
synth->printDebug("%s: Setting bend (%d) not supported on rhythm", name, midiBend);
return;
}
void Part::setBend(unsigned int midiBend) {
// FIXME:KG: Slightly unbalanced increments, but I wanted min -1.0, centre 0.0 and max 1.0
if (midiBend <= 0x2000) {
bend = ((signed int)midiBend - 0x2000) / (float)0x2000;
} else {
bend = ((signed int)midiBend - 0x2000) / (float)0x1FFF;
}
// Loop through all partials to update their bend
for (int i = 0; i < MT32EMU_MAX_POLY; i++) {
for (int j = 0; j < 4; j++) {
if (polyTable[i].partials[j] != NULL) {
polyTable[i].partials[j]->setBend(bend);
}
}
}
}
void RhythmPart::setModulation(unsigned int midiModulation) {
synth->printDebug("%s: Setting modulation (%d) not supported on rhythm", name, midiModulation);
}
void Part::setModulation(unsigned int midiModulation) {
// Just a bloody guess, as always, before I get things figured out
for (int t = 0; t < 4; t++) {
if (patchCache[t].playPartial) {
int newrate = (patchCache[t].modsense * midiModulation) >> 7;
//patchCache[t].lfoperiod = lfotable[newrate];
patchCache[t].lfodepth = newrate;
//FIXME:KG: timbreTemp->partial[t].lfo.depth =
}
}
}
void RhythmPart::refresh() {
updateVolume();
// (Re-)cache all the mapped timbres ahead of time
for (unsigned int drumNum = 0; drumNum < synth->controlROMMap->rhythmSettingsCount; drumNum++) {
int drumTimbreNum = rhythmTemp[drumNum].timbre;
if (drumTimbreNum >= 127) // 94 on MT-32
continue;
Bit16s pan = rhythmTemp[drumNum].panpot; // They use R-L 0-14...
// FIXME:KG: Panning cache should be backed up to partials using it, too
if (pan < 7) {
drumPan[drumNum].leftvol = pan * 4681;
drumPan[drumNum].rightvol = 32767;
} else {
drumPan[drumNum].rightvol = (14 - pan) * 4681;
drumPan[drumNum].leftvol = 32767;
}
PatchCache *cache = drumCache[drumNum];
backupCacheToPartials(cache);
for (int t = 0; t < 4; t++) {
// Common parameters, stored redundantly
cache[t].dirty = true;
cache[t].pitchShift = 0.0f;
cache[t].benderRange = 0.0f;
cache[t].pansetptr = &drumPan[drumNum];
cache[t].reverb = rhythmTemp[drumNum].reverbSwitch > 0;
}
}
}
void Part::refresh() {
updateVolume();
backupCacheToPartials(patchCache);
for (int t = 0; t < 4; t++) {
// Common parameters, stored redundantly
patchCache[t].dirty = true;
patchCache[t].pitchShift = (patchTemp->patch.keyShift - 24) + (patchTemp->patch.fineTune - 50) / 100.0f;
patchCache[t].benderRange = patchTemp->patch.benderRange;
patchCache[t].pansetptr = &volumesetting;
patchCache[t].reverb = patchTemp->patch.reverbSwitch > 0;
}
memcpy(currentInstr, timbreTemp->common.name, 10);
}
const char *Part::getCurrentInstr() const {
return &currentInstr[0];
}
void RhythmPart::refreshTimbre(unsigned int absTimbreNum) {
for (int m = 0; m < 85; m++) {
if (rhythmTemp[m].timbre == absTimbreNum - 128)
drumCache[m][0].dirty = true;
}
}
void Part::refreshTimbre(unsigned int absTimbreNum) {
if (getAbsTimbreNum() == absTimbreNum) {
memcpy(currentInstr, timbreTemp->common.name, 10);
patchCache[0].dirty = true;
}
}
int Part::fixBiaslevel(int srcpnt, int *dir) {
int noteat = srcpnt & 0x3F;
int outnote;
if (srcpnt < 64)
*dir = 0;
else
*dir = 1;
outnote = 33 + noteat;
//synth->printDebug("Bias note %d, dir %d", outnote, *dir);
return outnote;
}
int Part::fixKeyfollow(int srckey) {
if (srckey>=0 && srckey<=16) {
int keyfix[17] = { -256*16, -128*16, -64*16, 0, 32*16, 64*16, 96*16, 128*16, (128+32)*16, 192*16, (192+32)*16, 256*16, (256+64)*16, (256+128)*16, (512)*16, 4100, 4116};
return keyfix[srckey];
} else {
//LOG(LOG_ERROR|LOG_MISC,"Missed key: %d", srckey);
return 256;
}
}
void Part::abortPoly(dpoly *poly) {
if (!poly->isPlaying) {
return;
}
for (int i = 0; i < 4; i++) {
Partial *partial = poly->partials[i];
if (partial != NULL) {
partial->deactivate();
}
}
poly->isPlaying = false;
}
void Part::setPatch(const PatchParam *patch) {
patchTemp->patch = *patch;
}
2005-04-16 17:05:14 +00:00
void RhythmPart::setTimbre(TimbreParam * /*timbre*/) {
synth->printDebug("%s: Attempted to call setTimbre() - doesn't make sense for rhythm", name);
}
void Part::setTimbre(TimbreParam *timbre) {
*timbreTemp = *timbre;
}
unsigned int RhythmPart::getAbsTimbreNum() const {
synth->printDebug("%s: Attempted to call getAbsTimbreNum() - doesn't make sense for rhythm", name);
return 0;
}
unsigned int Part::getAbsTimbreNum() const {
return (patchTemp->patch.timbreGroup * 64) + patchTemp->patch.timbreNum;
}
void RhythmPart::setProgram(unsigned int patchNum) {
synth->printDebug("%s: Attempt to set program (%d) on rhythm is invalid", name, patchNum);
}
void Part::setProgram(unsigned int patchNum) {
setPatch(&synth->mt32ram.patches[patchNum]);
setTimbre(&synth->mt32ram.timbres[getAbsTimbreNum()].timbre);
refresh();
allSoundOff(); //FIXME:KG: Is this correct?
}
void Part::backupCacheToPartials(PatchCache cache[4]) {
// check if any partials are still playing with the old patch cache
// if so then duplicate the cached data from the part to the partial so that
// we can change the part's cache without affecting the partial.
// We delay this until now to avoid a copy operation with every note played
for (int m = 0; m < MT32EMU_MAX_POLY; m++) {
for (int i = 0; i < 4; i++) {
Partial *partial = polyTable[m].partials[i];
if (partial != NULL && partial->patchCache == &cache[i]) {
partial->cachebackup = cache[i];
partial->patchCache = &partial->cachebackup;
}
}
}
}
void Part::cacheTimbre(PatchCache cache[4], const TimbreParam *timbre) {
backupCacheToPartials(cache);
int partialCount = 0;
for (int t = 0; t < 4; t++) {
if (((timbre->common.pmute >> t) & 0x1) == 1) {
cache[t].playPartial = true;
partialCount++;
} else {
cache[t].playPartial = false;
continue;
}
// Calculate and cache common parameters
cache[t].pcm = timbre->partial[t].wg.pcmwave;
cache[t].useBender = (timbre->partial[t].wg.bender == 1);
switch (t) {
case 0:
cache[t].PCMPartial = (PartialStruct[(int)timbre->common.pstruct12] & 0x2) ? true : false;
cache[t].structureMix = PartialMixStruct[(int)timbre->common.pstruct12];
cache[t].structurePosition = 0;
cache[t].structurePair = 1;
break;
case 1:
cache[t].PCMPartial = (PartialStruct[(int)timbre->common.pstruct12] & 0x1) ? true : false;
cache[t].structureMix = PartialMixStruct[(int)timbre->common.pstruct12];
cache[t].structurePosition = 1;
cache[t].structurePair = 0;
break;
case 2:
cache[t].PCMPartial = (PartialStruct[(int)timbre->common.pstruct34] & 0x2) ? true : false;
cache[t].structureMix = PartialMixStruct[(int)timbre->common.pstruct34];
cache[t].structurePosition = 0;
cache[t].structurePair = 3;
break;
case 3:
cache[t].PCMPartial = (PartialStruct[(int)timbre->common.pstruct34] & 0x1) ? true : false;
cache[t].structureMix = PartialMixStruct[(int)timbre->common.pstruct34];
cache[t].structurePosition = 1;
cache[t].structurePair = 2;
break;
default:
break;
}
cache[t].waveform = timbre->partial[t].wg.waveform;
cache[t].pulsewidth = timbre->partial[t].wg.pulsewid;
cache[t].pwsens = timbre->partial[t].wg.pwvelo;
if (timbre->partial[t].wg.keyfollow > 16) {
synth->printDebug("Bad keyfollow value in timbre!");
cache[t].pitchKeyfollow = 1.0f;
} else {
cache[t].pitchKeyfollow = floatKeyfollow[timbre->partial[t].wg.keyfollow];
}
cache[t].pitch = timbre->partial[t].wg.coarse + (timbre->partial[t].wg.fine - 50) / 100.0f + 24.0f;
cache[t].pitchEnv = timbre->partial[t].env;
cache[t].pitchEnv.sensitivity = (char)((float)cache[t].pitchEnv.sensitivity * 1.27f);
cache[t].pitchsustain = cache[t].pitchEnv.level[3];
// Calculate and cache TVA envelope stuff
cache[t].ampEnv = timbre->partial[t].tva;
cache[t].ampEnv.level = (char)((float)cache[t].ampEnv.level * 1.27f);
cache[t].ampbias[0] = fixBiaslevel(cache[t].ampEnv.biaspoint1, &cache[t].ampdir[0]);
cache[t].ampblevel[0] = 12 - cache[t].ampEnv.biaslevel1;
cache[t].ampbias[1] = fixBiaslevel(cache[t].ampEnv.biaspoint2, &cache[t].ampdir[1]);
cache[t].ampblevel[1] = 12 - cache[t].ampEnv.biaslevel2;
cache[t].ampdepth = cache[t].ampEnv.envvkf * cache[t].ampEnv.envvkf;
// Calculate and cache filter stuff
cache[t].filtEnv = timbre->partial[t].tvf;
cache[t].filtkeyfollow = fixKeyfollow(cache[t].filtEnv.keyfollow);
cache[t].filtEnv.envdepth = (char)((float)cache[t].filtEnv.envdepth * 1.27);
cache[t].tvfbias = fixBiaslevel(cache[t].filtEnv.biaspoint, &cache[t].tvfdir);
cache[t].tvfblevel = cache[t].filtEnv.biaslevel;
cache[t].filtsustain = cache[t].filtEnv.envlevel[3];
// Calculate and cache LFO stuff
cache[t].lfodepth = timbre->partial[t].lfo.depth;
cache[t].lfoperiod = synth->tables.lfoPeriod[(int)timbre->partial[t].lfo.rate];
cache[t].lforate = timbre->partial[t].lfo.rate;
cache[t].modsense = timbre->partial[t].lfo.modsense;
}
for (int t = 0; t < 4; t++) {
// Common parameters, stored redundantly
cache[t].dirty = false;
cache[t].partialCount = partialCount;
cache[t].sustain = (timbre->common.nosustain == 0);
}
//synth->printDebug("Res 1: %d 2: %d 3: %d 4: %d", cache[0].waveform, cache[1].waveform, cache[2].waveform, cache[3].waveform);
#if MT32EMU_MONITOR_INSTRUMENTS == 1
synth->printDebug("%s (%s): Recached timbre", name, currentInstr);
for (int i = 0; i < 4; i++) {
synth->printDebug(" %d: play=%s, pcm=%s (%d), wave=%d", i, cache[i].playPartial ? "YES" : "NO", cache[i].PCMPartial ? "YES" : "NO", timbre->partial[i].wg.pcmwave, timbre->partial[i].wg.waveform);
}
#endif
}
const char *Part::getName() const {
return name;
}
void Part::updateVolume() {
volumeMult = synth->tables.volumeMult[patchTemp->outlevel * expression / 127];
}
int Part::getVolume() const {
// FIXME: Use the mappings for this in the control ROM
return patchTemp->outlevel * 127 / 100;
}
void Part::setVolume(int midiVolume) {
// FIXME: Use the mappings for this in the control ROM
patchTemp->outlevel = (Bit8u)(midiVolume * 100 / 127);
updateVolume();
synth->printDebug("%s (%s): Set volume to %d", name, currentInstr, midiVolume);
}
void Part::setExpression(int midiExpression) {
expression = midiExpression;
updateVolume();
}
void RhythmPart::setPan(unsigned int midiPan)
{
// FIXME:KG: This is unchangeable for drums (they always use drumPan), is that correct?
synth->printDebug("%s: Setting pan (%d) not supported on rhythm", name, midiPan);
}
void Part::setPan(unsigned int midiPan) {
// FIXME:KG: Tweaked this a bit so that we have a left 100%, centre and right 100%
// (But this makes the range somewhat skewed)
// Check against the real thing
// NOTE: Panning is inverted compared to GM.
if (midiPan < 64) {
volumesetting.leftvol = (Bit16s)(midiPan * 512);
volumesetting.rightvol = 32767;
} else if (midiPan == 64) {
volumesetting.leftvol = 32767;
volumesetting.rightvol = 32767;
} else {
volumesetting.rightvol = (Bit16s)((127 - midiPan) * 520);
volumesetting.leftvol = 32767;
}
patchTemp->panpot = (Bit8u)(midiPan * 14 / 127);
//synth->printDebug("%s (%s): Set pan to %d", name, currentInstr, panpot);
}
void RhythmPart::playNote(unsigned int key, int vel) {
if (key < 24 || key > 108)/*> 87 on MT-32)*/ {
synth->printDebug("%s: Attempted to play invalid key %d", name, key);
return;
}
int drumNum = key - 24;
int drumTimbreNum = rhythmTemp[drumNum].timbre;
if (drumTimbreNum >= 127) { // 94 on MT-32
synth->printDebug("%s: Attempted to play unmapped key %d", name, key);
return;
}
int absTimbreNum = drumTimbreNum + 128;
TimbreParam *timbre = &synth->mt32ram.timbres[absTimbreNum].timbre;
memcpy(currentInstr, timbre->common.name, 10);
#if MT32EMU_MONITOR_INSTRUMENTS == 1
synth->printDebug("%s (%s): starting poly (drum %d, timbre %d) - Vel %d Key %d", name, currentInstr, drumNum, absTimbreNum, vel, key);
#endif
if (drumCache[drumNum][0].dirty) {
cacheTimbre(drumCache[drumNum], timbre);
}
playPoly(drumCache[drumNum], key, MIDDLEC, vel);
}
void Part::playNote(unsigned int key, int vel) {
int freqNum = key;
if (freqNum < 12) {
synth->printDebug("%s (%s): Attempted to play invalid key %d < 12; moving up by octave", name, currentInstr, key);
freqNum += 12;
} else if (freqNum > 108) {
synth->printDebug("%s (%s): Attempted to play invalid key %d > 108; moving down by octave", name, currentInstr, key);
while (freqNum > 108) {
freqNum -= 12;
}
}
// POLY1 mode, Single Assign
// Haven't found any software that uses any of the other poly modes
// FIXME:KG: Should this also apply to rhythm?
for (unsigned int i = 0; i < MT32EMU_MAX_POLY; i++) {
if (polyTable[i].isActive() && (polyTable[i].key == key)) {
//AbortPoly(&polyTable[i]);
stopNote(key);
break;
}
}
#if MT32EMU_MONITOR_INSTRUMENTS == 1
synth->printDebug("%s (%s): starting poly - Vel %d Key %d", name, currentInstr, vel, key);
#endif
if (patchCache[0].dirty) {
cacheTimbre(patchCache, timbreTemp);
}
playPoly(patchCache, key, freqNum, vel);
}
void Part::playPoly(const PatchCache cache[4], unsigned int key, int freqNum, int vel) {
unsigned int needPartials = cache[0].partialCount;
unsigned int freePartials = synth->partialManager->getFreePartialCount();
if (freePartials < needPartials) {
if (!synth->partialManager->freePartials(needPartials - freePartials, partNum)) {
synth->printDebug("%s (%s): Insufficient free partials to play key %d (vel=%d); needed=%d, free=%d", name, currentInstr, key, vel, needPartials, synth->partialManager->getFreePartialCount());
return;
}
}
// Find free poly
int m;
for (m = 0; m < MT32EMU_MAX_POLY; m++) {
if (!polyTable[m].isActive()) {
break;
}
}
if (m == MT32EMU_MAX_POLY) {
synth->printDebug("%s (%s): No free poly to play key %d (vel %d)", name, currentInstr, key, vel);
return;
}
dpoly *tpoly = &polyTable[m];
tpoly->isPlaying = true;
tpoly->key = key;
tpoly->isDecay = false;
tpoly->freqnum = freqNum;
tpoly->vel = vel;
tpoly->pedalhold = false;
bool allnull = true;
for (int x = 0; x < 4; x++) {
if (cache[x].playPartial) {
tpoly->partials[x] = synth->partialManager->allocPartial(partNum);
allnull = false;
} else {
tpoly->partials[x] = NULL;
}
}
if (allnull)
synth->printDebug("%s (%s): No partials to play for this instrument", name, this->currentInstr);
tpoly->sustain = cache[0].sustain;
tpoly->volumeptr = &volumeMult;
for (int x = 0; x < 4; x++) {
if (tpoly->partials[x] != NULL) {
tpoly->partials[x]->startPartial(tpoly, &cache[x], tpoly->partials[cache[x].structurePair]);
tpoly->partials[x]->setBend(bend);
}
}
}
static void startDecayPoly(dpoly *tpoly) {
if (tpoly->isDecay) {
return;
}
tpoly->isDecay = true;
for (int t = 0; t < 4; t++) {
Partial *partial = tpoly->partials[t];
if (partial == NULL)
continue;
partial->startDecayAll();
}
tpoly->isPlaying = false;
}
void Part::allNotesOff() {
// Note: Unchecked on real MT-32, but the MIDI specification states that all notes off (0x7B)
// should treat the hold pedal as usual.
// All *sound* off (0x78) should stop notes immediately regardless of the hold pedal.
// The latter controller is not implemented on the MT-32 (according to the docs).
for (int q = 0; q < MT32EMU_MAX_POLY; q++) {
dpoly *tpoly = &polyTable[q];
if (tpoly->isPlaying) {
if (holdpedal)
tpoly->pedalhold = true;
else if (tpoly->sustain)
startDecayPoly(tpoly);
}
}
}
void Part::allSoundOff() {
for (int q = 0; q < MT32EMU_MAX_POLY; q++) {
dpoly *tpoly = &polyTable[q];
if (tpoly->isPlaying) {
startDecayPoly(tpoly);
}
}
}
void Part::stopPedalHold() {
for (int q = 0; q < MT32EMU_MAX_POLY; q++) {
dpoly *tpoly;
tpoly = &polyTable[q];
if (tpoly->isActive() && tpoly->pedalhold)
stopNote(tpoly->key);
}
}
void Part::stopNote(unsigned int key) {
// Non-sustaining instruments ignore stop commands.
// They die away eventually anyway
#if MT32EMU_MONITOR_INSTRUMENTS == 1
synth->printDebug("%s (%s): stopping key %d", name, currentInstr, key);
#endif
if (key != 255) {
for (int q = 0; q < MT32EMU_MAX_POLY; q++) {
dpoly *tpoly = &polyTable[q];
if (tpoly->isPlaying && tpoly->key == key) {
if (holdpedal)
tpoly->pedalhold = true;
else if (tpoly->sustain)
startDecayPoly(tpoly);
}
}
return;
}
// Find oldest poly... yes, the MT-32 can be reconfigured to kill different poly first
// This is simplest
int oldest = -1;
Bit32u oldage = 0;
for (int q = 0; q < MT32EMU_MAX_POLY; q++) {
dpoly *tpoly = &polyTable[q];
if (tpoly->isPlaying && !tpoly->isDecay) {
if (tpoly->getAge() >= oldage) {
oldage = tpoly->getAge();
oldest = q;
}
}
}
if (oldest != -1) {
startDecayPoly(&polyTable[oldest]);
}
}
}