scummvm/engines/sci/engine/kmovement.cpp

528 lines
17 KiB
C++
Raw Normal View History

2009-02-17 15:02:16 +00:00
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
2009-02-17 15:02:16 +00:00
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
2009-02-17 15:02:16 +00:00
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "sci/sci.h"
#include "sci/resource.h"
#include "sci/engine/features.h"
#include "sci/engine/state.h"
#include "sci/engine/selector.h"
#include "sci/engine/kernel.h"
2010-01-05 01:37:57 +00:00
#include "sci/graphics/animate.h"
#include "sci/graphics/screen.h"
namespace Sci {
/**
* Compute "velocity" vector (xStep,yStep)=(vx,vy) for a jump from (0,0) to
* (dx,dy), with gravity constant gy. The gravity is assumed to be non-negative.
*
* If this was ordinary continuous physics, we would compute the desired
* (floating point!) velocity vector (vx,vy) as follows, under the assumption
* that vx and vy are linearly correlated by a constant c, i.e., vy = c * vx:
* dx = t * vx
* dy = t * vy + gy * t^2 / 2
* => dy = c * dx + gy * (dx/vx)^2 / 2
* => |vx| = sqrt( gy * dx^2 / (2 * (dy - c * dx)) )
* Here, the sign of vx must be chosen equal to the sign of dx, obviously.
*
* This square root only makes sense in our context if the denominator is
* positive, or equivalently, (dy - c * dx) must be positive. For simplicity
* and by symmetry along the x-axis, we assume dx to be positive for all
* computations, and only adjust for its sign in the end. Switching the sign of
* c appropriately, we set tmp := (dy + c * dx) and compute c so that this term
* becomes positive.
*
* Remark #1: If the jump is straight up, i.e. dx == 0, then we should not
* assume the above linear correlation vy = c * vx of the velocities (as vx
* will be 0, but vy shouldn't be, unless we drop down).
*
* Remark #2: We are actually in a discrete setup. The motion is computed
* iteratively: each iteration, we add vx and vy to the position, then add gy
* to vy. So the real formula is the following (where t ideally is close to an int):
*
* dx = t * vx
* dy = t * vy + gy * t*(t-1) / 2
*
* But the solution resulting from that is a lot more complicated, so we use
* the above approximation instead.
*
* Still, what we compute in the end is of course not a real velocity anymore,
* but an integer approximation, used in an iterative stepping algorithm.
*/
reg_t kSetJump(EngineState *s, int argc, reg_t *argv) {
SegManager *segMan = s->_segMan;
// Input data
reg_t object = argv[0];
int dx = argv[1].toSint16();
int dy = argv[2].toSint16();
int gy = argv[3].toSint16();
// Derived data
int c;
int tmp;
int vx = 0; // x velocity
int vy = 0; // y velocity
int dxWasNegative = (dx < 0);
dx = ABS(dx);
assert(gy >= 0);
if (dx == 0) {
// Upward jump. Value of c doesn't really matter
c = 1;
} else {
// Compute a suitable value for c respectively tmp.
// The important thing to consider here is that we want the resulting
// *discrete* x/y velocities to be not-too-big integers, for a smooth
// curve (i.e. we could just set vx=dx, vy=dy, and be done, but that
// is hardly what you would call a parabolic jump, would ya? ;-).
//
// So, we make sure that 2.0*tmp will be bigger than dx (that way,
// we ensure vx will be less than sqrt(gy * dx)).
if (dx + dy < 0) {
// dy is negative and |dy| > |dx|
c = (2 * ABS(dy)) / dx;
//tmp = ABS(dy); // ALMOST the resulting value, except for obvious rounding issues
} else {
// dy is either positive, or |dy| <= |dx|
c = (dx * 3 / 2 - dy) / dx;
// We force c to be strictly positive
if (c < 1)
c = 1;
2009-02-20 16:30:22 +00:00
//tmp = dx * 3 / 2; // ALMOST the resulting value, except for obvious rounding issues
// FIXME: Where is the 3 coming from? Maybe they hard/coded, by "accident", that usually gy=3 ?
// Then this choice of scalar will make t equal to roughly sqrt(dx)
}
}
// POST: c >= 1
tmp = c * dx + dy;
// POST: (dx != 0) ==> ABS(tmp) > ABS(dx)
// POST: (dx != 0) ==> ABS(tmp) ~>=~ ABS(dy)
debugC(kDebugLevelBresen, "c: %d, tmp: %d", c, tmp);
// Compute x step
if (tmp != 0 && dx != 0)
vx = (int16)((float)(dx * sqrt(gy / (2.0 * tmp))));
else
vx = 0;
// Restore the left/right direction: dx and vx should have the same sign.
if (dxWasNegative)
vx = -vx;
if ((dy < 0) && (vx == 0)) {
// Special case: If this was a jump (almost) straight upward, i.e. dy < 0 (upward),
// and vx == 0 (i.e. no horizontal movement, at least not after rounding), then we
// compute vy directly.
// For this, we drop the assumption on the linear correlation of vx and vy (obviously).
// FIXME: This choice of vy makes t roughly (2+sqrt(2))/gy * sqrt(dy);
// so if gy==3, then t is roughly sqrt(dy)...
vy = (int)sqrt((float)gy * ABS(2 * dy)) + 1;
} else {
// As stated above, the vertical direction is correlated to the horizontal by the
// (non-zero) factor c.
// Strictly speaking, we should probably be using the value of vx *before* rounding
// it to an integer... Ah well
vy = c * vx;
}
// Always force vy to be upwards
vy = -ABS(vy);
debugC(kDebugLevelBresen, "SetJump for object at %04x:%04x", PRINT_REG(object));
debugC(kDebugLevelBresen, "xStep: %d, yStep: %d", vx, vy);
writeSelectorValue(segMan, object, SELECTOR(xStep), vx);
writeSelectorValue(segMan, object, SELECTOR(yStep), vy);
return s->r_acc;
}
reg_t kInitBresen(EngineState *s, int argc, reg_t *argv) {
SegManager *segMan = s->_segMan;
reg_t mover = argv[0];
reg_t client = readSelector(segMan, mover, SELECTOR(client));
int16 stepFactor = (argc >= 2) ? argv[1].toUint16() : 1;
int16 mover_x = readSelectorValue(segMan, mover, SELECTOR(x));
int16 mover_y = readSelectorValue(segMan, mover, SELECTOR(y));
int16 client_xStep = readSelectorValue(segMan, client, SELECTOR(xStep)) * stepFactor;
int16 client_yStep = readSelectorValue(segMan, client, SELECTOR(yStep)) * stepFactor;
int16 client_step;
if (client_xStep < client_yStep)
client_step = client_yStep * 2;
else
client_step = client_xStep * 2;
int16 deltaX = mover_x - readSelectorValue(segMan, client, SELECTOR(x));
int16 deltaY = mover_y - readSelectorValue(segMan, client, SELECTOR(y));
int16 mover_dx = 0;
int16 mover_dy = 0;
int16 mover_i1 = 0;
int16 mover_i2 = 0;
int16 mover_di = 0;
int16 mover_incr = 0;
int16 mover_xAxis = 0;
while (1) {
mover_dx = client_xStep;
mover_dy = client_yStep;
mover_incr = 1;
if (ABS(deltaX) >= ABS(deltaY)) {
mover_xAxis = 1;
if (deltaX < 0)
mover_dx = -mover_dx;
mover_dy = deltaX ? mover_dx * deltaY / deltaX : 0;
mover_i1 = ((mover_dx * deltaY) - (mover_dy * deltaX)) * 2;
if (deltaY < 0) {
mover_incr = -1;
mover_i1 = -mover_i1;
}
mover_i2 = mover_i1 - (deltaX * 2);
mover_di = mover_i1 - deltaX;
if (deltaX < 0) {
mover_i1 = -mover_i1;
mover_i2 = -mover_i2;
mover_di = -mover_di;
}
} else {
mover_xAxis = 0;
if (deltaY < 0)
mover_dy = -mover_dy;
mover_dx = deltaY ? mover_dy * deltaX / deltaY : 0;
mover_i1 = ((mover_dy * deltaX) - (mover_dx * deltaY)) * 2;
if (deltaX < 0) {
mover_incr = -1;
mover_i1 = -mover_i1;
}
mover_i2 = mover_i1 - (deltaY * 2);
mover_di = mover_i1 - deltaY;
if (deltaY < 0) {
mover_i1 = -mover_i1;
mover_i2 = -mover_i2;
mover_di = -mover_di;
}
break;
}
if (client_xStep <= client_yStep)
break;
if (!client_xStep)
break;
if (client_yStep >= ABS(mover_dy + mover_incr))
break;
client_step--;
if (!client_step)
error("kInitBresen failed");
client_xStep--;
}
// set mover
writeSelectorValue(segMan, mover, SELECTOR(dx), mover_dx);
writeSelectorValue(segMan, mover, SELECTOR(dy), mover_dy);
writeSelectorValue(segMan, mover, SELECTOR(b_i1), mover_i1);
writeSelectorValue(segMan, mover, SELECTOR(b_i2), mover_i2);
writeSelectorValue(segMan, mover, SELECTOR(b_di), mover_di);
writeSelectorValue(segMan, mover, SELECTOR(b_incr), mover_incr);
writeSelectorValue(segMan, mover, SELECTOR(b_xAxis), mover_xAxis);
return s->r_acc;
}
reg_t kDoBresen(EngineState *s, int argc, reg_t *argv) {
SegManager *segMan = s->_segMan;
reg_t mover = argv[0];
reg_t client = readSelector(segMan, mover, SELECTOR(client));
bool completed = false;
bool handleMoveCount = g_sci->_features->handleMoveCount();
if (getSciVersion() >= SCI_VERSION_1_EGA_ONLY) {
uint client_signal = readSelectorValue(segMan, client, SELECTOR(signal));
writeSelectorValue(segMan, client, SELECTOR(signal), client_signal & ~kSignalHitObstacle);
}
int16 mover_moveCnt = 1;
int16 client_moveSpeed = 0;
if (handleMoveCount) {
mover_moveCnt = readSelectorValue(segMan, mover, SELECTOR(b_movCnt));
client_moveSpeed = readSelectorValue(segMan, client, SELECTOR(moveSpeed));
mover_moveCnt++;
}
if (client_moveSpeed < mover_moveCnt) {
mover_moveCnt = 0;
int16 client_x = readSelectorValue(segMan, client, SELECTOR(x));
int16 client_y = readSelectorValue(segMan, client, SELECTOR(y));
int16 mover_x = readSelectorValue(segMan, mover, SELECTOR(x));
int16 mover_y = readSelectorValue(segMan, mover, SELECTOR(y));
int16 mover_xAxis = readSelectorValue(segMan, mover, SELECTOR(b_xAxis));
int16 mover_dx = readSelectorValue(segMan, mover, SELECTOR(dx));
int16 mover_dy = readSelectorValue(segMan, mover, SELECTOR(dy));
int16 mover_incr = readSelectorValue(segMan, mover, SELECTOR(b_incr));
int16 mover_i1 = readSelectorValue(segMan, mover, SELECTOR(b_i1));
int16 mover_i2 = readSelectorValue(segMan, mover, SELECTOR(b_i2));
int16 mover_di = readSelectorValue(segMan, mover, SELECTOR(b_di));
int16 mover_org_i1 = mover_i1;
int16 mover_org_i2 = mover_i2;
int16 mover_org_di = mover_di;
if ((getSciVersion() >= SCI_VERSION_1_EGA_ONLY)) {
// save current position into mover
writeSelectorValue(segMan, mover, SELECTOR(xLast), client_x);
writeSelectorValue(segMan, mover, SELECTOR(yLast), client_y);
}
// Store backups of all client selector variables. We will restore them
// in case of a collision.
Object* clientObject = segMan->getObject(client);
uint clientVarNum = clientObject->getVarCount();
reg_t* clientBackup = new reg_t[clientVarNum];
for (uint i = 0; i < clientVarNum; ++i)
clientBackup[i] = clientObject->getVariable(i);
if ((getSciVersion() <= SCI_VERSION_1_EGA_ONLY)) {
if (mover_xAxis) {
if (ABS(mover_x - client_x) < ABS(mover_dx))
completed = true;
} else {
if (ABS(mover_y - client_y) < ABS(mover_dy))
completed = true;
}
} else {
// SCI1EARLY+ code
if (mover_xAxis) {
if (ABS(mover_x - client_x) <= ABS(mover_dx))
completed = true;
} else {
if (ABS(mover_y - client_y) <= ABS(mover_dy))
completed = true;
}
}
if (completed) {
client_x = mover_x;
client_y = mover_y;
} else {
client_x += mover_dx;
client_y += mover_dy;
if (mover_di < 0) {
mover_di += mover_i1;
} else {
mover_di += mover_i2;
if (mover_xAxis == 0) {
client_x += mover_incr;
} else {
client_y += mover_incr;
}
}
}
writeSelectorValue(segMan, client, SELECTOR(x), client_x);
writeSelectorValue(segMan, client, SELECTOR(y), client_y);
// Now call client::canBeHere/client::cantBehere to check for collisions
bool collision = false;
reg_t cantBeHere = NULL_REG;
// adding this here for hoyle 3 to get happy. CantBeHere is a dummy in hoyle 3 and acc is != 0 so we would
// get a collision otherwise. Resetting the result was always done in SSCI
s->r_acc = NULL_REG;
if (SELECTOR(cantBeHere) != -1) {
invokeSelector(s, client, SELECTOR(cantBeHere), argc, argv);
if (!s->r_acc.isNull())
collision = true;
cantBeHere = s->r_acc;
} else {
invokeSelector(s, client, SELECTOR(canBeHere), argc, argv);
if (s->r_acc.isNull())
collision = true;
}
if (collision) {
// We restore the backup of the client variables
for (uint i = 0; i < clientVarNum; ++i)
clientObject->getVariableRef(i) = clientBackup[i];
mover_i1 = mover_org_i1;
mover_i2 = mover_org_i2;
mover_di = mover_org_di;
uint16 client_signal = readSelectorValue(segMan, client, SELECTOR(signal));
writeSelectorValue(segMan, client, SELECTOR(signal), client_signal | kSignalHitObstacle);
}
delete[] clientBackup;
writeSelectorValue(segMan, mover, SELECTOR(b_i1), mover_i1);
writeSelectorValue(segMan, mover, SELECTOR(b_i2), mover_i2);
writeSelectorValue(segMan, mover, SELECTOR(b_di), mover_di);
if (getSciVersion() >= SCI_VERSION_1_EGA_ONLY) {
// In sci1egaonly this block of code was outside of the main if,
// but client_x/client_y aren't set there, so it was an
// uninitialized read in SSCI. (This issue was fixed in sci1early.)
if (handleMoveCount)
writeSelectorValue(segMan, mover, SELECTOR(b_movCnt), mover_moveCnt);
// We need to compare directly in here, complete may have happened during
// the current move
if ((client_x == mover_x) && (client_y == mover_y))
invokeSelector(s, mover, SELECTOR(moveDone), argc, argv);
return s->r_acc;
}
}
if (handleMoveCount)
writeSelectorValue(segMan, mover, SELECTOR(b_movCnt), mover_moveCnt);
return s->r_acc;
}
extern void kDirLoopWorker(reg_t obj, uint16 angle, EngineState *s, int argc, reg_t *argv);
extern uint16 kGetAngleWorker(int16 x1, int16 y1, int16 x2, int16 y2);
reg_t kDoAvoider(EngineState *s, int argc, reg_t *argv) {
SegManager *segMan = s->_segMan;
reg_t avoider = argv[0];
int16 timesStep = argc > 1 ? argv[1].toUint16() : 1;
if (!s->_segMan->isHeapObject(avoider)) {
error("DoAvoider() where avoider %04x:%04x is not an object", PRINT_REG(avoider));
return SIGNAL_REG;
}
reg_t client = readSelector(segMan, avoider, SELECTOR(client));
reg_t mover = readSelector(segMan, client, SELECTOR(mover));
if (mover.isNull())
return SIGNAL_REG;
// call mover::doit
invokeSelector(s, mover, SELECTOR(doit), argc, argv);
// Read mover again
mover = readSelector(segMan, client, SELECTOR(mover));
if (mover.isNull())
return SIGNAL_REG;
int16 clientX = readSelectorValue(segMan, client, SELECTOR(x));
int16 clientY = readSelectorValue(segMan, client, SELECTOR(y));
int16 moverX = readSelectorValue(segMan, mover, SELECTOR(x));
int16 moverY = readSelectorValue(segMan, mover, SELECTOR(y));
int16 avoiderHeading = readSelectorValue(segMan, avoider, SELECTOR(heading));
// call client::isBlocked
invokeSelector(s, client, SELECTOR(isBlocked), argc, argv);
if (s->r_acc.isNull()) {
// not blocked
if (avoiderHeading == -1)
return SIGNAL_REG;
avoiderHeading = -1;
uint16 angle = kGetAngleWorker(clientX, clientY, moverX, moverY);
reg_t clientLooper = readSelector(segMan, client, SELECTOR(looper));
if (clientLooper.isNull()) {
kDirLoopWorker(client, angle, s, argc, argv);
} else {
// call looper::doit
reg_t params[2] = { make_reg(0, angle), client };
invokeSelector(s, clientLooper, SELECTOR(doit), argc, argv, 2, params);
}
s->r_acc = SIGNAL_REG;
} else {
// is blocked
if (avoiderHeading == -1)
avoiderHeading = g_sci->getRNG().getRandomBit() ? 45 : -45;
int16 clientHeading = readSelectorValue(segMan, client, SELECTOR(heading));
clientHeading = (clientHeading / 45) * 45;
int16 clientXstep = readSelectorValue(segMan, client, SELECTOR(xStep)) * timesStep;
int16 clientYstep = readSelectorValue(segMan, client, SELECTOR(yStep)) * timesStep;
int16 newHeading = clientHeading;
while (1) {
int16 newX = clientX;
int16 newY = clientY;
switch (newHeading) {
case 45:
case 90:
case 135:
newX += clientXstep;
break;
case 225:
case 270:
case 315:
newX -= clientXstep;
break;
default:
break;
}
switch (newHeading) {
case 0:
case 45:
case 315:
newY -= clientYstep;
break;
case 135:
case 180:
case 225:
newY += clientYstep;
break;
default:
break;
}
writeSelectorValue(segMan, client, SELECTOR(x), newX);
writeSelectorValue(segMan, client, SELECTOR(y), newY);
// call client::canBeHere
invokeSelector(s, client, SELECTOR(canBeHere), argc, argv);
if (!s->r_acc.isNull()) {
s->r_acc = make_reg(0, newHeading);
break; // break out
}
newHeading += avoiderHeading;
if (newHeading >= 360)
newHeading -= 360;
if (newHeading < 0)
newHeading += 360;
if (newHeading == clientHeading) {
// tried everything
writeSelectorValue(segMan, client, SELECTOR(x), clientX);
writeSelectorValue(segMan, client, SELECTOR(y), clientY);
s->r_acc = SIGNAL_REG;
break; // break out
}
}
}
writeSelectorValue(segMan, avoider, SELECTOR(heading), avoiderHeading);
return s->r_acc;
}
} // End of namespace Sci