scummvm/sound/flac.cpp

881 lines
30 KiB
C++
Raw Normal View History

/* ScummVM - Scumm Interpreter
2006-01-18 17:39:49 +00:00
* Copyright (C) 2003-2006 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "sound/flac.h"
#ifdef USE_FLAC
#include "common/file.h"
#include "common/util.h"
#include "sound/audiostream.h"
#include "sound/audiocd.h"
#define FLAC__NO_DLL // that MS-magic gave me headaches - just link the library you like
#include <FLAC/export.h>
// check if we have FLAC >= 1.1.3; LEGACY_FLAC code can be removed once FLAC-1.1.3 propagates everywhere
#if !defined(FLAC_API_VERSION_CURRENT) || FLAC_API_VERSION_CURRENT < 8
#define LEGACY_FLAC
#else
#undef LEGACY_FLAC
#endif
#ifdef LEGACY_FLAC
// Before FLAC 1.1.3, we needed to use the stream decoder API.
#include <FLAC/seekable_stream_decoder.h>
typedef uint FLAC_size_t;
#else
// With FLAC 1.1.3, the stream decoder API was merged into the regular
// stream API. In order to stay compatible with older FLAC versions, we
// simply add some typedefs and #ifdefs to map between the old and new API.
// We use the typedefs (instead of only #defines) in order to somewhat
// improve the readability of the code.
#include <FLAC/stream_decoder.h>
typedef size_t FLAC_size_t;
// Add aliases for the old names
typedef FLAC__StreamDecoderState FLAC__SeekableStreamDecoderState;
typedef FLAC__StreamDecoderReadStatus FLAC__SeekableStreamDecoderReadStatus;
typedef FLAC__StreamDecoderSeekStatus FLAC__SeekableStreamDecoderSeekStatus;
typedef FLAC__StreamDecoderTellStatus FLAC__SeekableStreamDecoderTellStatus;
typedef FLAC__StreamDecoderLengthStatus FLAC__SeekableStreamDecoderLengthStatus;
typedef FLAC__StreamDecoder FLAC__SeekableStreamDecoder;
#endif
using Common::File;
namespace Audio {
#pragma mark -
#pragma mark --- Flac stream ---
#pragma mark -
static const uint MAX_OUTPUT_CHANNELS = 2;
class FlacInputStream : public AudioStream {
protected:
Common::SeekableReadStream *_inStream;
bool _disposeAfterUse;
uint _numLoops;
::FLAC__SeekableStreamDecoder *_decoder;
2007-02-22 18:42:03 +00:00
/** Header of the stream */
FLAC__StreamMetadata_StreamInfo _streaminfo;
2007-02-22 18:42:03 +00:00
/** index of the first sample to be played */
FLAC__uint64 _firstSample;
2007-02-22 18:42:03 +00:00
/** index + 1(!) of the last sample to be played - 0 is end of stream */
FLAC__uint64 _lastSample;
2007-02-22 18:42:03 +00:00
/** true if the last sample was decoded from the FLAC-API - there might still be data in the buffer */
bool _lastSampleWritten;
2007-02-22 18:42:03 +00:00
typedef int16 SampleType;
enum { BUFTYPE_BITS = 16 };
struct {
2007-02-22 18:42:03 +00:00
SampleType *bufData;
SampleType *bufReadPos;
uint bufSize;
uint bufFill;
} _preBuffer;
2007-02-22 18:42:03 +00:00
SampleType *_outBuffer;
uint _requestedSamples;
2007-02-22 18:42:03 +00:00
typedef void (*PFCONVERTBUFFERS)(SampleType*, const FLAC__int32*[], uint, const uint, const uint8);
PFCONVERTBUFFERS _methodConvertBuffers;
public:
FlacInputStream(Common::SeekableReadStream *inStream, bool dispose, uint startTime = 0, uint endTime = 0, uint numLoops = 1);
virtual ~FlacInputStream();
int readBuffer(int16 *buffer, const int numSamples);
bool isStereo() const { return _streaminfo.channels >= 2; }
int getRate() const { return _streaminfo.sample_rate; }
bool endOfData() const { return _streaminfo.channels == 0 || (_lastSampleWritten && _preBuffer.bufFill == 0); }
bool isStreamDecoderReady() const { return getStreamDecoderState() == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC ; }
protected:
uint getChannels() const { return MIN(_streaminfo.channels, MAX_OUTPUT_CHANNELS); }
2007-02-22 18:42:03 +00:00
bool allocateBuffer(uint minSamples);
inline void deleteBuffer();
inline FLAC__StreamDecoderState getStreamDecoderState() const;
inline bool processSingleBlock();
inline bool processUntilEndOfMetadata();
bool seekAbsolute(FLAC__uint64 sample);
inline ::FLAC__SeekableStreamDecoderReadStatus callbackRead(FLAC__byte buffer[], FLAC_size_t *bytes);
inline ::FLAC__SeekableStreamDecoderSeekStatus callbackSeek(FLAC__uint64 absoluteByteOffset);
inline ::FLAC__SeekableStreamDecoderTellStatus callbackTell(FLAC__uint64 *absoluteByteOffset);
inline ::FLAC__SeekableStreamDecoderLengthStatus callbackLength(FLAC__uint64 *streamLength);
inline bool callbackEOF();
inline ::FLAC__StreamDecoderWriteStatus callbackWrite(const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[]);
inline void callbackMetadata(const ::FLAC__StreamMetadata *metadata);
inline void callbackError(::FLAC__StreamDecoderErrorStatus status);
private:
static ::FLAC__SeekableStreamDecoderReadStatus callWrapRead(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__byte buffer[], FLAC_size_t *bytes, void *clientData);
static ::FLAC__SeekableStreamDecoderSeekStatus callWrapSeek(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 absoluteByteOffset, void *clientData);
static ::FLAC__SeekableStreamDecoderTellStatus callWrapTell(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *absoluteByteOffset, void *clientData);
static ::FLAC__SeekableStreamDecoderLengthStatus callWrapLength(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *streamLength, void *clientData);
static FLAC__bool callWrapEOF(const ::FLAC__SeekableStreamDecoder *decoder, void *clientData);
static ::FLAC__StreamDecoderWriteStatus callWrapWrite(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *clientData);
static void callWrapMetadata(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__StreamMetadata *metadata, void *clientData);
static void callWrapError(const ::FLAC__SeekableStreamDecoder *decoder, ::FLAC__StreamDecoderErrorStatus status, void *clientData);
void setBestConvertBufferMethod();
2007-02-22 18:42:03 +00:00
static void convertBuffersGeneric(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersStereoNS(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersStereo8Bit(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersMonoNS(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersMono8Bit(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
};
FlacInputStream::FlacInputStream(Common::SeekableReadStream *inStream, bool dispose, uint startTime, uint endTime, uint numLoops)
#ifdef LEGACY_FLAC
: _decoder(::FLAC__seekable_stream_decoder_new()),
#else
: _decoder(::FLAC__stream_decoder_new()),
#endif
_inStream(inStream),
_disposeAfterUse(dispose),
_numLoops(numLoops),
_firstSample(0), _lastSample(0),
_outBuffer(NULL), _requestedSamples(0), _lastSampleWritten(true),
_methodConvertBuffers(&FlacInputStream::convertBuffersGeneric)
{
assert(_inStream);
memset(&_streaminfo, 0, sizeof(_streaminfo));
// TODO: Implement looping support
_preBuffer.bufData = NULL;
_preBuffer.bufFill = 0;
_preBuffer.bufSize = 0;
deleteBuffer();
_lastSampleWritten = false;
_methodConvertBuffers = &FlacInputStream::convertBuffersGeneric;
bool success;
#ifdef LEGACY_FLAC
::FLAC__seekable_stream_decoder_set_read_callback(_decoder, &FlacInputStream::callWrapRead);
::FLAC__seekable_stream_decoder_set_seek_callback(_decoder, &FlacInputStream::callWrapSeek);
::FLAC__seekable_stream_decoder_set_tell_callback(_decoder, &FlacInputStream::callWrapTell);
::FLAC__seekable_stream_decoder_set_length_callback(_decoder, &FlacInputStream::callWrapLength);
::FLAC__seekable_stream_decoder_set_eof_callback(_decoder, &FlacInputStream::callWrapEOF);
::FLAC__seekable_stream_decoder_set_write_callback(_decoder, &FlacInputStream::callWrapWrite);
::FLAC__seekable_stream_decoder_set_metadata_callback(_decoder, &FlacInputStream::callWrapMetadata);
::FLAC__seekable_stream_decoder_set_error_callback(_decoder, &FlacInputStream::callWrapError);
::FLAC__seekable_stream_decoder_set_client_data(_decoder, (void*)this);
success = (::FLAC__seekable_stream_decoder_init(_decoder) == FLAC__SEEKABLE_STREAM_DECODER_OK);
#else
success = (::FLAC__stream_decoder_init_stream(
_decoder,
&FlacInputStream::callWrapRead,
&FlacInputStream::callWrapSeek,
&FlacInputStream::callWrapTell,
&FlacInputStream::callWrapLength,
&FlacInputStream::callWrapEOF,
&FlacInputStream::callWrapWrite,
&FlacInputStream::callWrapMetadata,
&FlacInputStream::callWrapError,
(void*)this
) == FLAC__STREAM_DECODER_INIT_STATUS_OK);
#endif
if (success) {
if (processUntilEndOfMetadata() && _streaminfo.channels > 0) {
2007-02-22 18:42:03 +00:00
// Compute the start/end sample (we use floating point arithmetics here to
// avoid overflows).
_firstSample = (FLAC__uint64)(startTime * (_streaminfo.sample_rate / 1000.0));
_lastSample = (FLAC__uint64)(endTime * (_streaminfo.sample_rate / 1000.0));
if (_firstSample == 0 || seekAbsolute(_firstSample)) {
return; // no error occured
}
}
}
warning("FlacInputStream: could not create audio stream");
}
FlacInputStream::~FlacInputStream() {
if (_decoder != NULL) {
#ifdef LEGACY_FLAC
(void) ::FLAC__seekable_stream_decoder_finish(_decoder);
::FLAC__seekable_stream_decoder_delete(_decoder);
#else
(void) ::FLAC__stream_decoder_finish(_decoder);
::FLAC__stream_decoder_delete(_decoder);
#endif
}
delete[] _preBuffer.bufData;
if (_disposeAfterUse)
delete _inStream;
}
inline FLAC__StreamDecoderState FlacInputStream::getStreamDecoderState() const {
2007-02-22 18:42:03 +00:00
assert(_decoder != NULL);
#ifdef LEGACY_FLAC
return ::FLAC__seekable_stream_decoder_get_stream_decoder_state(_decoder);
#else
return ::FLAC__stream_decoder_get_state(_decoder);
#endif
}
inline bool FlacInputStream::processSingleBlock() {
2007-02-22 18:42:03 +00:00
assert(_decoder != NULL);
#ifdef LEGACY_FLAC
return 0 != ::FLAC__seekable_stream_decoder_process_single(_decoder);
#else
return 0 != ::FLAC__stream_decoder_process_single(_decoder);
#endif
}
inline bool FlacInputStream::processUntilEndOfMetadata() {
2007-02-22 18:42:03 +00:00
assert(_decoder != NULL);
#ifdef LEGACY_FLAC
return 0 != ::FLAC__seekable_stream_decoder_process_until_end_of_metadata(_decoder);
#else
return 0 != ::FLAC__stream_decoder_process_until_end_of_metadata(_decoder);
#endif
}
bool FlacInputStream::seekAbsolute(FLAC__uint64 sample) {
2007-02-22 18:42:03 +00:00
assert(_decoder != NULL);
#ifdef LEGACY_FLAC
const bool result = (0 != ::FLAC__seekable_stream_decoder_seek_absolute(_decoder, sample));
#else
const bool result = (0 != ::FLAC__stream_decoder_seek_absolute(_decoder, sample));
#endif
if (result) {
2007-02-22 18:42:03 +00:00
_preBuffer.bufFill = 0;
_lastSampleWritten = (_lastSample != 0 && sample >= _lastSample); // only set if we are SURE
}
return result;
}
int FlacInputStream::readBuffer(int16 *buffer, const int numSamples) {
2007-02-22 18:42:03 +00:00
const uint numChannels = getChannels();
2007-02-22 18:42:03 +00:00
if (numChannels == 0) {
warning("FlacInputStream: Stream not sucessfully initialised, cant playback");
return -1; // streaminfo wasnt read!
}
2007-02-22 18:42:03 +00:00
assert(numSamples % numChannels == 0); // must be multiple of channels!
assert(buffer != NULL);
assert(_outBuffer == NULL);
assert(_requestedSamples == 0);
_outBuffer = buffer;
_requestedSamples = numSamples;
if (_preBuffer.bufFill > 0) {
assert(_preBuffer.bufData != NULL && _preBuffer.bufReadPos != NULL && _preBuffer.bufSize > 0);
assert(_preBuffer.bufReadPos >= _preBuffer.bufData);
2007-02-22 18:42:03 +00:00
assert(_preBuffer.bufFill % numChannels == 0);
const uint copySamples = MIN((uint)numSamples, _preBuffer.bufFill);
memcpy(buffer, _preBuffer.bufReadPos, copySamples*sizeof(buffer[0]));
_outBuffer = buffer + copySamples;
_requestedSamples = numSamples - copySamples;
_preBuffer.bufReadPos += copySamples;
_preBuffer.bufFill -= copySamples;
}
bool decoderOk = true;
if (!_lastSampleWritten) {
FLAC__StreamDecoderState state = getStreamDecoderState();
for (; _requestedSamples > 0 && state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; state = getStreamDecoderState()) {
assert(_preBuffer.bufFill == 0);
2007-02-22 18:42:03 +00:00
assert(_requestedSamples % numChannels == 0);
processSingleBlock();
}
if (state != FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC) {
switch (state) {
case FLAC__STREAM_DECODER_END_OF_STREAM :
_lastSampleWritten = true;
decoderOk = true; // no REAL error
break;
default:
decoderOk = false;
warning("FlacInputStream: An error occured while decoding. DecoderState is: %s",
FLAC__StreamDecoderStateString[getStreamDecoderState()]);
}
}
}
const int samples = (int)(_outBuffer - buffer);
2007-02-22 18:42:03 +00:00
assert(samples % numChannels == 0);
_outBuffer = NULL; // basically unnessecary, only for the purpose of the asserts
_requestedSamples = 0; // basically unnessecary, only for the purpose of the asserts
return decoderOk ? samples : -1;
}
inline ::FLAC__SeekableStreamDecoderReadStatus FlacInputStream::callbackRead(FLAC__byte buffer[], FLAC_size_t *bytes) {
if (*bytes == 0)
#ifdef LEGACY_FLAC
return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_ERROR; /* abort to avoid a deadlock */
#else
return FLAC__STREAM_DECODER_READ_STATUS_ABORT; /* abort to avoid a deadlock */
#endif
const uint32 bytesRead = _inStream->read(buffer, *bytes);
if (bytesRead == 0 && _inStream->ioFailed())
#ifdef LEGACY_FLAC
return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_ERROR;
#else
return FLAC__STREAM_DECODER_READ_STATUS_ABORT;
#endif
*bytes = static_cast<uint>(bytesRead);
#ifdef LEGACY_FLAC
return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_OK;
#else
return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE;
#endif
}
2007-02-22 18:42:03 +00:00
inline void FlacInputStream::deleteBuffer() {
_lastSampleWritten = _lastSampleWritten && _preBuffer.bufFill == 0;
_preBuffer.bufFill = 0;
_preBuffer.bufSize = 0;
if (_preBuffer.bufData != NULL) {
delete[] _preBuffer.bufData;
_preBuffer.bufData = NULL;
}
}
bool FlacInputStream::allocateBuffer(uint minSamples) {
uint allocateSize = minSamples / getChannels();
/** insert funky algorythm for optimum buffersize here */
allocateSize = MIN(_streaminfo.max_blocksize, MAX(_streaminfo.min_blocksize, allocateSize));
allocateSize += 8 - (allocateSize % 8); // make sure its an nice even amount
allocateSize *= getChannels();
deleteBuffer();
2007-02-22 18:42:03 +00:00
_preBuffer.bufData = new SampleType[allocateSize];
if (_preBuffer.bufData != NULL) {
_preBuffer.bufSize = allocateSize;
return true;
}
return false;
}
void FlacInputStream::setBestConvertBufferMethod()
{
PFCONVERTBUFFERS tempMethod = &FlacInputStream::convertBuffersGeneric;
2007-02-22 18:42:03 +00:00
const uint numChannels = getChannels();
const uint8 numBits = (uint8)_streaminfo.bits_per_sample;
2007-02-22 18:42:03 +00:00
assert(numChannels >= 1);
assert(numBits >= 4 && numBits <=32);
2007-02-22 18:42:03 +00:00
if (numChannels == 1) {
if (numBits == 8)
tempMethod = &FlacInputStream::convertBuffersMono8Bit;
2007-02-22 18:42:03 +00:00
if (numBits == BUFTYPE_BITS)
tempMethod = &FlacInputStream::convertBuffersMonoNS;
2007-02-22 18:42:03 +00:00
} else if (numChannels == 2) {
if (numBits == 8)
tempMethod = &FlacInputStream::convertBuffersStereo8Bit;
2007-02-22 18:42:03 +00:00
if (numBits == BUFTYPE_BITS)
tempMethod = &FlacInputStream::convertBuffersStereoNS;
} /* else ... */
_methodConvertBuffers = tempMethod;
}
// 1 channel, no scaling
2007-02-22 18:42:03 +00:00
void FlacInputStream::convertBuffersMonoNS(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits)
{
assert(numChannels == 1);
assert(numBits == BUFTYPE_BITS);
FLAC__int32 const* inChannel1 = inChannels[0];
while (numSamples >= 4) {
2007-02-22 18:42:03 +00:00
bufDestination[0] = static_cast<SampleType>(inChannel1[0]);
bufDestination[1] = static_cast<SampleType>(inChannel1[1]);
bufDestination[2] = static_cast<SampleType>(inChannel1[2]);
bufDestination[3] = static_cast<SampleType>(inChannel1[3]);
bufDestination += 4;
inChannel1 += 4;
numSamples -= 4;
}
for (; numSamples > 0; --numSamples) {
2007-02-22 18:42:03 +00:00
*bufDestination++ = static_cast<SampleType>(*inChannel1++);
}
inChannels[0] = inChannel1;
assert(numSamples == 0); // dint copy too many samples
}
// 1 channel, scaling from 8Bit
2007-02-22 18:42:03 +00:00
void FlacInputStream::convertBuffersMono8Bit(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits)
{
assert(numChannels == 1);
assert(numBits == 8);
assert(8 < BUFTYPE_BITS);
FLAC__int32 const* inChannel1 = inChannels[0];
while (numSamples >= 4) {
2007-02-22 18:42:03 +00:00
bufDestination[0] = static_cast<SampleType>(inChannel1[0]) << (BUFTYPE_BITS - 8);
bufDestination[1] = static_cast<SampleType>(inChannel1[1]) << (BUFTYPE_BITS - 8);
bufDestination[2] = static_cast<SampleType>(inChannel1[2]) << (BUFTYPE_BITS - 8);
bufDestination[3] = static_cast<SampleType>(inChannel1[3]) << (BUFTYPE_BITS - 8);
bufDestination += 4;
inChannel1 += 4;
numSamples -= 4;
}
for (; numSamples > 0; --numSamples) {
2007-02-22 18:42:03 +00:00
*bufDestination++ = static_cast<SampleType>(*inChannel1++) << (BUFTYPE_BITS - 8);
}
inChannels[0] = inChannel1;
assert(numSamples == 0); // dint copy too many samples
}
// 2 channels, no scaling
2007-02-22 18:42:03 +00:00
void FlacInputStream::convertBuffersStereoNS(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits)
{
assert(numChannels == 2);
assert(numBits == BUFTYPE_BITS);
assert(numSamples % 2 == 0); // must be integral multiply of channels
FLAC__int32 const* inChannel1 = inChannels[0]; // Left Channel
FLAC__int32 const* inChannel2 = inChannels[1]; // Right Channel
while (numSamples >= 2*2) {
2007-02-22 18:42:03 +00:00
bufDestination[0] = static_cast<SampleType>(inChannel1[0]);
bufDestination[1] = static_cast<SampleType>(inChannel2[0]);
bufDestination[2] = static_cast<SampleType>(inChannel1[1]);
bufDestination[3] = static_cast<SampleType>(inChannel2[1]);
bufDestination += 2 * 2;
inChannel1 += 2;
inChannel2 += 2;
numSamples -= 2 * 2;
}
while (numSamples > 0) {
2007-02-22 18:42:03 +00:00
bufDestination[0] = static_cast<SampleType>(*inChannel1++);
bufDestination[1] = static_cast<SampleType>(*inChannel2++);
bufDestination += 2;
numSamples -= 2;
}
inChannels[0] = inChannel1;
inChannels[1] = inChannel2;
assert(numSamples == 0); // dint copy too many samples
}
// 2 channels, scaling from 8Bit
2007-02-22 18:42:03 +00:00
void FlacInputStream::convertBuffersStereo8Bit(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits)
{
assert(numChannels == 2);
assert(numBits == 8);
assert(numSamples % 2 == 0); // must be integral multiply of channels
assert(8 < BUFTYPE_BITS);
FLAC__int32 const* inChannel1 = inChannels[0]; // Left Channel
FLAC__int32 const* inChannel2 = inChannels[1]; // Right Channel
while (numSamples >= 2*2) {
2007-02-22 18:42:03 +00:00
bufDestination[0] = static_cast<SampleType>(inChannel1[0]) << (BUFTYPE_BITS - 8);
bufDestination[1] = static_cast<SampleType>(inChannel2[0]) << (BUFTYPE_BITS - 8);
bufDestination[2] = static_cast<SampleType>(inChannel1[1]) << (BUFTYPE_BITS - 8);
bufDestination[3] = static_cast<SampleType>(inChannel2[1]) << (BUFTYPE_BITS - 8);
bufDestination += 2 * 2;
inChannel1 += 2;
inChannel2 += 2;
numSamples -= 2 * 2;
}
while (numSamples > 0) {
2007-02-22 18:42:03 +00:00
bufDestination[0] = static_cast<SampleType>(*inChannel1++) << (BUFTYPE_BITS - 8);
bufDestination[1] = static_cast<SampleType>(*inChannel2++) << (BUFTYPE_BITS - 8);
bufDestination += 2;
numSamples -= 2;
}
inChannels[0] = inChannel1;
inChannels[1] = inChannel2;
assert(numSamples == 0); // dint copy too many samples
}
// all Purpose-conversion - slowest of em all
2007-02-22 18:42:03 +00:00
void FlacInputStream::convertBuffersGeneric(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits)
{
assert(numSamples % numChannels == 0); // must be integral multiply of channels
if (numBits < BUFTYPE_BITS) {
const uint8 kPower = (uint8)(BUFTYPE_BITS - numBits);
for (; numSamples > 0; numSamples -= numChannels) {
for (uint i = 0; i < numChannels; ++i)
2007-02-22 18:42:03 +00:00
*bufDestination++ = static_cast<SampleType>(*(inChannels[i]++)) << kPower;
}
} else if (numBits > BUFTYPE_BITS) {
const uint8 kPower = (uint8)(numBits - BUFTYPE_BITS);
for (; numSamples > 0; numSamples -= numChannels) {
for (uint i = 0; i < numChannels; ++i)
2007-02-22 18:42:03 +00:00
*bufDestination++ = static_cast<SampleType>(*(inChannels[i]++) >> kPower) ;
}
} else {
for (; numSamples > 0; numSamples -= numChannels) {
for (uint i = 0; i < numChannels; ++i)
2007-02-22 18:42:03 +00:00
*bufDestination++ = static_cast<SampleType>(*(inChannels[i]++));
}
}
assert(numSamples == 0); // dint copy too many samples
}
inline ::FLAC__StreamDecoderWriteStatus FlacInputStream::callbackWrite(const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[]) {
assert(frame->header.channels == _streaminfo.channels);
assert(frame->header.sample_rate == _streaminfo.sample_rate);
assert(frame->header.bits_per_sample == _streaminfo.bits_per_sample);
assert(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER || _streaminfo.min_blocksize == _streaminfo.max_blocksize);
assert(_preBuffer.bufFill == 0); // we dont append data
2007-02-22 18:42:03 +00:00
uint numSamples = frame->header.blocksize;
const uint numChannels = getChannels();
const uint8 numBits = (uint8)_streaminfo.bits_per_sample;
2007-02-22 18:42:03 +00:00
assert(_requestedSamples % numChannels == 0); // must be integral multiply of channels
const FLAC__uint64 firstSampleNumber = (frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER) ?
frame->header.number.sample_number : (static_cast<FLAC__uint64>(frame->header.number.frame_number)) * _streaminfo.max_blocksize;
2007-02-22 18:42:03 +00:00
if (_lastSample != 0 && firstSampleNumber + numSamples >= _lastSample) {
numSamples = (uint)(firstSampleNumber >= _lastSample ? 0 : _lastSample - firstSampleNumber);
_requestedSamples = MIN(_requestedSamples, numSamples * numChannels);
_lastSampleWritten = true;
}
2007-02-22 18:42:03 +00:00
numSamples *= numChannels;
const FLAC__int32 *inChannels[MAX_OUTPUT_CHANNELS] = { buffer[0] }; // one channel is a given...
2007-02-22 18:42:03 +00:00
for (uint i = 1; i < numChannels; ++i)
inChannels[i] = buffer[i];
// writing DIRECTLY to the Buffer ScummVM provided
if (_requestedSamples > 0) {
2007-02-22 18:42:03 +00:00
assert(_requestedSamples % numChannels == 0); // must be integral multiply of channels
assert(_outBuffer != NULL);
2007-02-22 18:42:03 +00:00
const uint copySamples = MIN(_requestedSamples,numSamples);
(*_methodConvertBuffers)(_outBuffer, inChannels, copySamples, numChannels, numBits);
_requestedSamples -= copySamples;
2007-02-22 18:42:03 +00:00
numSamples -= copySamples;
_outBuffer += copySamples;
}
// checking if Buffer fits
2007-02-22 18:42:03 +00:00
if (_preBuffer.bufSize < numSamples) {
if (!allocateBuffer(numSamples))
return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT;
} // optional check if buffer is wasting too much memory ?
2007-02-22 18:42:03 +00:00
(*_methodConvertBuffers)(_preBuffer.bufData, inChannels, numSamples, numChannels, numBits);
2007-02-22 18:42:03 +00:00
_preBuffer.bufFill = numSamples;
_preBuffer.bufReadPos = _preBuffer.bufData;
return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE;
}
inline ::FLAC__SeekableStreamDecoderSeekStatus FlacInputStream::callbackSeek(FLAC__uint64 absoluteByteOffset) {
_inStream->seek(absoluteByteOffset, SEEK_SET);
const bool result = (absoluteByteOffset == _inStream->pos());
#ifdef LEGACY_FLAC
return result ? FLAC__SEEKABLE_STREAM_DECODER_SEEK_STATUS_OK : FLAC__SEEKABLE_STREAM_DECODER_SEEK_STATUS_ERROR;
#else
return result ? FLAC__STREAM_DECODER_SEEK_STATUS_OK : FLAC__STREAM_DECODER_SEEK_STATUS_ERROR;
#endif
}
inline ::FLAC__SeekableStreamDecoderTellStatus FlacInputStream::callbackTell(FLAC__uint64 *absoluteByteOffset) {
*absoluteByteOffset = static_cast<FLAC__uint64>(_inStream->pos());
#ifdef LEGACY_FLAC
return FLAC__SEEKABLE_STREAM_DECODER_TELL_STATUS_OK;
#else
return FLAC__STREAM_DECODER_TELL_STATUS_OK;
#endif
}
inline ::FLAC__SeekableStreamDecoderLengthStatus FlacInputStream::callbackLength(FLAC__uint64 *streamLength) {
*streamLength = static_cast<FLAC__uint64>(_inStream->size());
#ifdef LEGACY_FLAC
return FLAC__SEEKABLE_STREAM_DECODER_LENGTH_STATUS_OK;
#else
return FLAC__STREAM_DECODER_LENGTH_STATUS_OK;
#endif
}
inline bool FlacInputStream::callbackEOF() {
return _inStream->eos();
}
inline void FlacInputStream::callbackMetadata(const ::FLAC__StreamMetadata *metadata) {
2007-02-22 18:42:03 +00:00
assert(_decoder != NULL);
assert(metadata->type == FLAC__METADATA_TYPE_STREAMINFO); // others arent really interesting
_streaminfo = metadata->data.stream_info;
setBestConvertBufferMethod(); // should be set after getting stream-information. FLAC always parses the info first
}
inline void FlacInputStream::callbackError(::FLAC__StreamDecoderErrorStatus status) {
// some of these are non-critical-Errors
debug(1, "FlacInputStream: An error occured while decoding. DecoderState is: %s",
FLAC__StreamDecoderErrorStatusString[status]);
}
/* Static Callback Wrappers */
::FLAC__SeekableStreamDecoderReadStatus FlacInputStream::callWrapRead(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__byte buffer[], FLAC_size_t *bytes, void *clientData) {
2007-02-22 18:42:03 +00:00
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackRead(buffer, bytes);
}
::FLAC__SeekableStreamDecoderSeekStatus FlacInputStream::callWrapSeek(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 absoluteByteOffset, void *clientData) {
2007-02-22 18:42:03 +00:00
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackSeek(absoluteByteOffset);
}
::FLAC__SeekableStreamDecoderTellStatus FlacInputStream::callWrapTell(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *absoluteByteOffset, void *clientData) {
2007-02-22 18:42:03 +00:00
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackTell(absoluteByteOffset);
}
::FLAC__SeekableStreamDecoderLengthStatus FlacInputStream::callWrapLength(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *streamLength, void *clientData) {
2007-02-22 18:42:03 +00:00
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackLength(streamLength);
}
FLAC__bool FlacInputStream::callWrapEOF(const ::FLAC__SeekableStreamDecoder *decoder, void *clientData) {
2007-02-22 18:42:03 +00:00
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackEOF();
}
::FLAC__StreamDecoderWriteStatus FlacInputStream::callWrapWrite(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *clientData) {
2007-02-22 18:42:03 +00:00
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackWrite(frame, buffer);
}
void FlacInputStream::callWrapMetadata(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__StreamMetadata *metadata, void *clientData) {
2007-02-22 18:42:03 +00:00
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
instance->callbackMetadata(metadata);
}
void FlacInputStream::callWrapError(const ::FLAC__SeekableStreamDecoder *decoder, ::FLAC__StreamDecoderErrorStatus status, void *clientData) {
2007-02-22 18:42:03 +00:00
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
instance->callbackError(status);
}
2007-02-22 18:42:03 +00:00
#pragma mark -
#pragma mark --- Flac factory functions ---
#pragma mark -
AudioStream *makeFlacStream(File *file, uint32 size) {
assert(file);
// FIXME: For now, just read the whole data into memory, and be done
// with it. Of course this is in general *not* a nice thing to do...
// If no size was specified, read the whole remainder of the file
if (!size)
size = file->size() - file->pos();
// Read 'size' bytes of data into a MemoryReadStream
Common::MemoryReadStream *stream = file->readStream(size);
// .. and create an MP3InputStream from all this
FlacInputStream *input = new FlacInputStream(stream, true);
if (!input->isStreamDecoderReady()) {
delete input;
return 0;
}
return input;
}
AudioStream *makeFlacStream(
Common::SeekableReadStream *stream,
bool disposeAfterUse,
uint32 startTime,
uint32 duration,
uint numLoops) {
uint32 endTime = duration ? (startTime + duration) : 0;
FlacInputStream *input = new FlacInputStream(stream, disposeAfterUse, startTime, endTime, numLoops);
if (!input->isStreamDecoderReady()) {
delete input;
return 0;
}
return input;
}
#pragma mark -
#pragma mark --- Flac Audio CD emulation ---
#pragma mark -
class FlacTrackInfo : public DigitalTrackInfo {
private:
Common::String _filename;
bool _errorFlag;
public:
FlacTrackInfo(const char *filename);
bool error() { return _errorFlag; }
void play(Audio::Mixer *mixer, Audio::SoundHandle *handle, int startFrame, int duration);
};
FlacTrackInfo::FlacTrackInfo(const char *filename) :
_filename(filename),
_errorFlag(false) {
// Try to open the file
Common::File file;
if (!file.open(_filename)) {
_errorFlag = true;
return;
}
// Next, try to create a FlacInputStream from it
FlacInputStream *tempStream = new FlacInputStream(&file, false);
// If initialising the stream fails, we set the error flag
if (!tempStream || !tempStream->isStreamDecoderReady())
_errorFlag = true;
delete tempStream;
}
void FlacTrackInfo::play(Audio::Mixer *mixer, Audio::SoundHandle *handle, int startFrame, int duration) {
assert(!_errorFlag);
if (error()) {
debug(1, "FlacTrackInfo::play: invalid state, method should not been called");
}
// Open the file
Common::File *file = new Common::File();
if (!file || !file->open(_filename)) {
warning("FlacTrackInfo::play: failed to open '%s'", _filename.c_str());
delete file;
return;
}
// Convert startFrame & duration from frames (1/75 s) to milliseconds (1/1000s)
uint start = startFrame * 1000 / 75;
uint end = duration ? ((startFrame + duration) * 1000 / 75) : 0;
// ... create an AudioStream ...
FlacInputStream *input = new FlacInputStream(file, true, start, end);
if (!input->isStreamDecoderReady()) {
delete input;
return;
}
// ... and play it
mixer->playInputStream(Audio::Mixer::kMusicSoundType, handle, input);
}
DigitalTrackInfo* getFlacTrack(int track) {
assert(track >= 1);
char trackName[4][32];
sprintf(trackName[0], "track%d.flac", track);
sprintf(trackName[1], "track%02d.flac", track);
sprintf(trackName[2], "track%d.fla", track);
sprintf(trackName[3], "track%02d.fla", track);
for (int i = 0; i < 4; ++i) {
if (Common::File::exists(trackName[i])) {
FlacTrackInfo *trackInfo = new FlacTrackInfo(trackName[i]);
if (!trackInfo->error())
return trackInfo;
delete trackInfo;
}
}
return NULL;
}
} // End of namespace Audio
#endif // #ifdef USE_FLAC