From 4e67d24e04cba135b8539e95052113802db85776 Mon Sep 17 00:00:00 2001 From: scemino Date: Mon, 1 Jan 2024 10:19:20 +0100 Subject: [PATCH] TWP: Add path finding --- engines/twp/clipper/CMakeLists.txt | 8 + engines/twp/clipper/clipper.cpp | 4311 ++++++++++++++++++++++++++++ engines/twp/clipper/clipper.hpp | 403 +++ engines/twp/gfx.cpp | 5 + engines/twp/gfx.h | 1 + engines/twp/graph.cpp | 504 ++++ engines/twp/graph.h | 131 + engines/twp/module.mk | 5 + engines/twp/motor.h | 2 + engines/twp/room.cpp | 121 +- engines/twp/room.h | 19 +- engines/twp/roomlib.cpp | 47 +- engines/twp/scenegraph.cpp | 5 +- engines/twp/twp.cpp | 23 +- engines/twp/twp.h | 3 + engines/twp/util.cpp | 16 + engines/twp/util.h | 2 + engines/twp/walkboxnode.cpp | 175 ++ engines/twp/walkboxnode.h | 57 + 19 files changed, 5791 insertions(+), 47 deletions(-) create mode 100644 engines/twp/clipper/CMakeLists.txt create mode 100644 engines/twp/clipper/clipper.cpp create mode 100644 engines/twp/clipper/clipper.hpp create mode 100644 engines/twp/graph.cpp create mode 100644 engines/twp/graph.h create mode 100644 engines/twp/walkboxnode.cpp create mode 100644 engines/twp/walkboxnode.h diff --git a/engines/twp/clipper/CMakeLists.txt b/engines/twp/clipper/CMakeLists.txt new file mode 100644 index 00000000000..3250c9c48e3 --- /dev/null +++ b/engines/twp/clipper/CMakeLists.txt @@ -0,0 +1,8 @@ +cmake_minimum_required(VERSION 3.5) + +project(clipper CXX) + +include_directories(${CMAKE_CURRENT_SOURCE_DIR}) + +set(CLIPPER_SRC clipper.cpp) +add_library(clipper STATIC ${CLIPPER_SRC}) diff --git a/engines/twp/clipper/clipper.cpp b/engines/twp/clipper/clipper.cpp new file mode 100644 index 00000000000..89fbadba9f9 --- /dev/null +++ b/engines/twp/clipper/clipper.cpp @@ -0,0 +1,4311 @@ +/******************************************************************************* +* * +* Author : Angus Johnson * +* Version : 6.4.2 * +* Date : 27 February 2017 * +* Website : http://www.angusj.com * +* Copyright : Angus Johnson 2010-2017 * +* * +* License: * +* Use, modification & distribution is subject to Boost Software License Ver 1. * +* http://www.boost.org/LICENSE_1_0.txt * +* * +* Attributions: * +* The code in this library is an extension of Bala Vatti's clipping algorithm: * +* "A generic solution to polygon clipping" * +* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * +* http://portal.acm.org/citation.cfm?id=129906 * +* * +* Computer graphics and geometric modeling: implementation and algorithms * +* By Max K. Agoston * +* Springer; 1 edition (January 4, 2005) * +* http://books.google.com/books?q=vatti+clipping+agoston * +* * +* See also: * +* "Polygon Offsetting by Computing Winding Numbers" * +* Paper no. DETC2005-85513 pp. 565-575 * +* ASME 2005 International Design Engineering Technical Conferences * +* and Computers and Information in Engineering Conference (IDETC/CIE2005) * +* September 24-28, 2005 , Long Beach, California, USA * +* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * +* * +*******************************************************************************/ + +/******************************************************************************* +* * +* This is a translation of the Delphi Clipper library and the naming style * +* used has retained a Delphi flavour. * +* * +*******************************************************************************/ + +#include "clipper.hpp" +#include +#include +#include +#include +#include +#include +#include +#include + +#include "common/debug.h" + +namespace ClipperLib { + +static double const pi = 3.141592653589793238; +static double const two_pi = pi * 2; +static double const def_arc_tolerance = 0.25; + +enum Direction { dRightToLeft, dLeftToRight }; + +static int const Unassigned = -1; //edge not currently 'owning' a solution +static int const Skip = -2; //edge that would otherwise close a path + +#define HORIZONTAL (-1.0E+40) +#define TOLERANCE (1.0e-20) +#define NEAR_ZERO(val) (((val) > -TOLERANCE) && ((val) < TOLERANCE)) + +struct TEdge { + IntPoint Bot; + IntPoint Curr; //current (updated for every new scanbeam) + IntPoint Top; + double Dx; + PolyType PolyTyp; + EdgeSide Side; //side only refers to current side of solution poly + int WindDelta; //1 or -1 depending on winding direction + int WindCnt; + int WindCnt2; //winding count of the opposite polytype + int OutIdx; + TEdge *Next; + TEdge *Prev; + TEdge *NextInLML; + TEdge *NextInAEL; + TEdge *PrevInAEL; + TEdge *NextInSEL; + TEdge *PrevInSEL; +}; + +struct IntersectNode { + TEdge *Edge1; + TEdge *Edge2; + IntPoint Pt; +}; + +struct LocalMinimum { + cInt Y; + TEdge *LeftBound; + TEdge *RightBound; +}; + +struct OutPt; + +//OutRec: contains a path in the clipping solution. Edges in the AEL will +//carry a pointer to an OutRec when they are part of the clipping solution. +struct OutRec { + int Idx; + bool IsHole; + bool IsOpen; + OutRec *FirstLeft; //see comments in clipper.pas + PolyNode *PolyNd; + OutPt *Pts; + OutPt *BottomPt; +}; + +struct OutPt { + int Idx; + IntPoint Pt; + OutPt *Next; + OutPt *Prev; +}; + +struct Join { + OutPt *OutPt1; + OutPt *OutPt2; + IntPoint OffPt; +}; + +struct LocMinSorter { + inline bool operator()(const LocalMinimum &locMin1, const LocalMinimum &locMin2) { + return locMin2.Y < locMin1.Y; + } +}; + +//------------------------------------------------------------------------------ +//------------------------------------------------------------------------------ + +inline cInt Round(double val) { + if ((val < 0)) + return static_cast(val - 0.5); + else + return static_cast(val + 0.5); +} +//------------------------------------------------------------------------------ + +inline cInt Abs(cInt val) { + return val < 0 ? -val : val; +} + +//------------------------------------------------------------------------------ +// PolyTree methods ... +//------------------------------------------------------------------------------ + +void PolyTree::Clear() { + for (PolyNodes::size_type i = 0; i < AllNodes.size(); ++i) + delete AllNodes[i]; + AllNodes.resize(0); + Childs.resize(0); +} +//------------------------------------------------------------------------------ + +PolyNode *PolyTree::GetFirst() const { + if (!Childs.empty()) + return Childs[0]; + else + return 0; +} +//------------------------------------------------------------------------------ + +int PolyTree::Total() const { + int result = (int) AllNodes.size(); + //with negative offsets, ignore the hidden outer polygon ... + if (result > 0 && Childs[0] != AllNodes[0]) + result--; + return result; +} + +//------------------------------------------------------------------------------ +// PolyNode methods ... +//------------------------------------------------------------------------------ + +PolyNode::PolyNode() : Parent(0), Index(0), m_IsOpen(false) { +} +//------------------------------------------------------------------------------ + +int PolyNode::ChildCount() const { + return (int) Childs.size(); +} +//------------------------------------------------------------------------------ + +void PolyNode::AddChild(PolyNode &child) { + unsigned cnt = (unsigned) Childs.size(); + Childs.push_back(&child); + child.Parent = this; + child.Index = cnt; +} +//------------------------------------------------------------------------------ + +PolyNode *PolyNode::GetNext() const { + if (!Childs.empty()) + return Childs[0]; + else + return GetNextSiblingUp(); +} +//------------------------------------------------------------------------------ + +PolyNode *PolyNode::GetNextSiblingUp() const { + if (!Parent) //protects against PolyTree.GetNextSiblingUp() + return 0; + else if (Index == Parent->Childs.size() - 1) + return Parent->GetNextSiblingUp(); + else + return Parent->Childs[Index + 1]; +} +//------------------------------------------------------------------------------ + +bool PolyNode::IsHole() const { + bool result = true; + PolyNode *node = Parent; + while (node) { + result = !result; + node = node->Parent; + } + return result; +} +//------------------------------------------------------------------------------ + +bool PolyNode::IsOpen() const { + return m_IsOpen; +} +//------------------------------------------------------------------------------ + +#ifndef use_int32 + +//------------------------------------------------------------------------------ +// Int128 class (enables safe math on signed 64bit integers) +// eg Int128 val1((long64)9223372036854775807); //ie 2^63 -1 +// Int128 val2((long64)9223372036854775807); +// Int128 val3 = val1 * val2; +// val3.AsString => "85070591730234615847396907784232501249" (8.5e+37) +//------------------------------------------------------------------------------ + +class Int128 { +public: + ulong64 lo; + long64 hi; + + Int128(long64 _lo = 0) { + lo = (ulong64) _lo; + if (_lo < 0) + hi = -1; + else + hi = 0; + } + + Int128(const Int128 &val) : lo(val.lo), hi(val.hi) {} + + Int128(const long64 &_hi, const ulong64 &_lo) : lo(_lo), hi(_hi) {} + + Int128 &operator=(const long64 &val) { + lo = (ulong64) val; + if (val < 0) + hi = -1; + else + hi = 0; + return *this; + } + + bool operator==(const Int128 &val) const { return (hi == val.hi && lo == val.lo); } + + bool operator!=(const Int128 &val) const { return !(*this == val); } + + bool operator>(const Int128 &val) const { + if (hi != val.hi) + return hi > val.hi; + else + return lo > val.lo; + } + + bool operator<(const Int128 &val) const { + if (hi != val.hi) + return hi < val.hi; + else + return lo < val.lo; + } + + bool operator>=(const Int128 &val) const { return !(*this < val); } + + bool operator<=(const Int128 &val) const { return !(*this > val); } + + Int128 &operator+=(const Int128 &rhs) { + hi += rhs.hi; + lo += rhs.lo; + if (lo < rhs.lo) + hi++; + return *this; + } + + Int128 operator+(const Int128 &rhs) const { + Int128 result(*this); + result += rhs; + return result; + } + + Int128 &operator-=(const Int128 &rhs) { + *this += -rhs; + return *this; + } + + Int128 operator-(const Int128 &rhs) const { + Int128 result(*this); + result -= rhs; + return result; + } + + Int128 operator-() const //unary negation + { + if (lo == 0) + return Int128(-hi, 0); + else + return Int128(~hi, ~lo + 1); + } + + operator double() const { + const double shift64 = 18446744073709551616.0; //2^64 + if (hi < 0) { + if (lo == 0) + return (double) hi * shift64; + else + return -(double) (~lo + ~hi * shift64); + } else + return (double) (lo + hi * shift64); + } + +}; +//------------------------------------------------------------------------------ + +Int128 Int128Mul(long64 lhs, long64 rhs) { + bool negate = (lhs < 0) != (rhs < 0); + + if (lhs < 0) + lhs = -lhs; + ulong64 int1Hi = ulong64(lhs) >> 32; + ulong64 int1Lo = ulong64(lhs & 0xFFFFFFFF); + + if (rhs < 0) + rhs = -rhs; + ulong64 int2Hi = ulong64(rhs) >> 32; + ulong64 int2Lo = ulong64(rhs & 0xFFFFFFFF); + + //nb: see comments in clipper.pas + ulong64 a = int1Hi * int2Hi; + ulong64 b = int1Lo * int2Lo; + ulong64 c = int1Hi * int2Lo + int1Lo * int2Hi; + + Int128 tmp; + tmp.hi = long64(a + (c >> 32)); + tmp.lo = long64(c << 32); + tmp.lo += long64(b); + if (tmp.lo < b) + tmp.hi++; + if (negate) + tmp = -tmp; + return tmp; +} +#endif + +//------------------------------------------------------------------------------ +// Miscellaneous global functions +//------------------------------------------------------------------------------ + +bool Orientation(const Path &poly) { + return Area(poly) >= 0; +} +//------------------------------------------------------------------------------ + +double Area(const Path &poly) { + int size = (int) poly.size(); + if (size < 3) + return 0; + + double a = 0; + for (int i = 0, j = size - 1; i < size; ++i) { + a += ((double) poly[j].X + poly[i].X) * ((double) poly[j].Y - poly[i].Y); + j = i; + } + return -a * 0.5; +} +//------------------------------------------------------------------------------ + +double Area(const OutPt *op) { + const OutPt *startOp = op; + if (!op) + return 0; + double a = 0; + do { + a += (double) (op->Prev->Pt.X + op->Pt.X) * (double) (op->Prev->Pt.Y - op->Pt.Y); + op = op->Next; + } while (op != startOp); + return a * 0.5; +} +//------------------------------------------------------------------------------ + +double Area(const OutRec &outRec) { + return Area(outRec.Pts); +} +//------------------------------------------------------------------------------ + +bool PointIsVertex(const IntPoint &Pt, OutPt *pp) { + OutPt *pp2 = pp; + do { + if (pp2->Pt == Pt) + return true; + pp2 = pp2->Next; + } while (pp2 != pp); + return false; +} +//------------------------------------------------------------------------------ + +//See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann & Agathos +//http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf +int PointInPolygon(const IntPoint &pt, const Path &path) { + //returns 0 if false, +1 if true, -1 if pt ON polygon boundary + int result = 0; + size_t cnt = path.size(); + if (cnt < 3) + return 0; + IntPoint ip = path[0]; + for (size_t i = 1; i <= cnt; ++i) { + IntPoint ipNext = (i == cnt ? path[0] : path[i]); + if (ipNext.Y == pt.Y) { + if ((ipNext.X == pt.X) || (ip.Y == pt.Y && + ((ipNext.X > pt.X) == (ip.X < pt.X)))) + return -1; + } + if ((ip.Y < pt.Y) != (ipNext.Y < pt.Y)) { + if (ip.X >= pt.X) { + if (ipNext.X > pt.X) + result = 1 - result; + else { + double d = (double) (ip.X - pt.X) * (ipNext.Y - pt.Y) - + (double) (ipNext.X - pt.X) * (ip.Y - pt.Y); + if (!d) + return -1; + if ((d > 0) == (ipNext.Y > ip.Y)) + result = 1 - result; + } + } else { + if (ipNext.X > pt.X) { + double d = (double) (ip.X - pt.X) * (ipNext.Y - pt.Y) - + (double) (ipNext.X - pt.X) * (ip.Y - pt.Y); + if (!d) + return -1; + if ((d > 0) == (ipNext.Y > ip.Y)) + result = 1 - result; + } + } + } + ip = ipNext; + } + return result; +} +//------------------------------------------------------------------------------ + +int PointInPolygon(const IntPoint &pt, OutPt *op) { + //returns 0 if false, +1 if true, -1 if pt ON polygon boundary + int result = 0; + OutPt *startOp = op; + for (;;) { + if (op->Next->Pt.Y == pt.Y) { + if ((op->Next->Pt.X == pt.X) || (op->Pt.Y == pt.Y && + ((op->Next->Pt.X > pt.X) == (op->Pt.X < pt.X)))) + return -1; + } + if ((op->Pt.Y < pt.Y) != (op->Next->Pt.Y < pt.Y)) { + if (op->Pt.X >= pt.X) { + if (op->Next->Pt.X > pt.X) + result = 1 - result; + else { + double d = (double) (op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - + (double) (op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y); + if (!d) + return -1; + if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y)) + result = 1 - result; + } + } else { + if (op->Next->Pt.X > pt.X) { + double d = (double) (op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - + (double) (op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y); + if (!d) + return -1; + if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y)) + result = 1 - result; + } + } + } + op = op->Next; + if (startOp == op) + break; + } + return result; +} +//------------------------------------------------------------------------------ + +bool Poly2ContainsPoly1(OutPt *OutPt1, OutPt *OutPt2) { + OutPt *op = OutPt1; + do { + //nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon + int res = PointInPolygon(op->Pt, OutPt2); + if (res >= 0) + return res > 0; + op = op->Next; + } while (op != OutPt1); + return true; +} +//---------------------------------------------------------------------- + +bool SlopesEqual(const TEdge &e1, const TEdge &e2, bool UseFullInt64Range) { +#ifndef use_int32 + if (UseFullInt64Range) + return Int128Mul(e1.Top.Y - e1.Bot.Y, e2.Top.X - e2.Bot.X) == + Int128Mul(e1.Top.X - e1.Bot.X, e2.Top.Y - e2.Bot.Y); + else +#endif + return (e1.Top.Y - e1.Bot.Y) * (e2.Top.X - e2.Bot.X) == + (e1.Top.X - e1.Bot.X) * (e2.Top.Y - e2.Bot.Y); +} +//------------------------------------------------------------------------------ + +bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, + const IntPoint pt3, bool UseFullInt64Range) { +#ifndef use_int32 + if (UseFullInt64Range) + return Int128Mul(pt1.Y - pt2.Y, pt2.X - pt3.X) == Int128Mul(pt1.X - pt2.X, pt2.Y - pt3.Y); + else +#endif + return (pt1.Y - pt2.Y) * (pt2.X - pt3.X) == (pt1.X - pt2.X) * (pt2.Y - pt3.Y); +} +//------------------------------------------------------------------------------ + +bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, + const IntPoint pt3, const IntPoint pt4, bool UseFullInt64Range) { +#ifndef use_int32 + if (UseFullInt64Range) + return Int128Mul(pt1.Y - pt2.Y, pt3.X - pt4.X) == Int128Mul(pt1.X - pt2.X, pt3.Y - pt4.Y); + else +#endif + return (pt1.Y - pt2.Y) * (pt3.X - pt4.X) == (pt1.X - pt2.X) * (pt3.Y - pt4.Y); +} +//------------------------------------------------------------------------------ + +inline bool IsHorizontal(TEdge &e) { + return e.Dx == HORIZONTAL; +} +//------------------------------------------------------------------------------ + +inline double GetDx(const IntPoint pt1, const IntPoint pt2) { + return (pt1.Y == pt2.Y) ? + HORIZONTAL : (double) (pt2.X - pt1.X) / (pt2.Y - pt1.Y); +} +//--------------------------------------------------------------------------- + +inline void SetDx(TEdge &e) { + cInt dy = (e.Top.Y - e.Bot.Y); + if (dy == 0) + e.Dx = HORIZONTAL; + else + e.Dx = (double) (e.Top.X - e.Bot.X) / dy; +} +//--------------------------------------------------------------------------- + +inline void SwapSides(TEdge &Edge1, TEdge &Edge2) { + EdgeSide Side = Edge1.Side; + Edge1.Side = Edge2.Side; + Edge2.Side = Side; +} +//------------------------------------------------------------------------------ + +inline void SwapPolyIndexes(TEdge &Edge1, TEdge &Edge2) { + int OutIdx = Edge1.OutIdx; + Edge1.OutIdx = Edge2.OutIdx; + Edge2.OutIdx = OutIdx; +} +//------------------------------------------------------------------------------ + +inline cInt TopX(TEdge &edge, const cInt currentY) { + return (currentY == edge.Top.Y) ? + edge.Top.X : edge.Bot.X + Round(edge.Dx * (currentY - edge.Bot.Y)); +} +//------------------------------------------------------------------------------ + +void IntersectPoint(TEdge &Edge1, TEdge &Edge2, IntPoint &ip) { +#ifdef use_xyz + ip.Z = 0; +#endif + + double b1, b2; + if (Edge1.Dx == Edge2.Dx) { + ip.Y = Edge1.Curr.Y; + ip.X = TopX(Edge1, ip.Y); + return; + } else if (Edge1.Dx == 0) { + ip.X = Edge1.Bot.X; + if (IsHorizontal(Edge2)) + ip.Y = Edge2.Bot.Y; + else { + b2 = Edge2.Bot.Y - (Edge2.Bot.X / Edge2.Dx); + ip.Y = Round(ip.X / Edge2.Dx + b2); + } + } else if (Edge2.Dx == 0) { + ip.X = Edge2.Bot.X; + if (IsHorizontal(Edge1)) + ip.Y = Edge1.Bot.Y; + else { + b1 = Edge1.Bot.Y - (Edge1.Bot.X / Edge1.Dx); + ip.Y = Round(ip.X / Edge1.Dx + b1); + } + } else { + b1 = Edge1.Bot.X - Edge1.Bot.Y * Edge1.Dx; + b2 = Edge2.Bot.X - Edge2.Bot.Y * Edge2.Dx; + double q = (b2 - b1) / (Edge1.Dx - Edge2.Dx); + ip.Y = Round(q); + if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx)) + ip.X = Round(Edge1.Dx * q + b1); + else + ip.X = Round(Edge2.Dx * q + b2); + } + + if (ip.Y < Edge1.Top.Y || ip.Y < Edge2.Top.Y) { + if (Edge1.Top.Y > Edge2.Top.Y) + ip.Y = Edge1.Top.Y; + else + ip.Y = Edge2.Top.Y; + if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx)) + ip.X = TopX(Edge1, ip.Y); + else + ip.X = TopX(Edge2, ip.Y); + } + //finally, don't allow 'ip' to be BELOW curr.Y (ie bottom of scanbeam) ... + if (ip.Y > Edge1.Curr.Y) { + ip.Y = Edge1.Curr.Y; + //use the more vertical edge to derive X ... + if (std::fabs(Edge1.Dx) > std::fabs(Edge2.Dx)) + ip.X = TopX(Edge2, ip.Y); + else + ip.X = TopX(Edge1, ip.Y); + } +} +//------------------------------------------------------------------------------ + +void ReversePolyPtLinks(OutPt *pp) { + if (!pp) + return; + OutPt *pp1, *pp2; + pp1 = pp; + do { + pp2 = pp1->Next; + pp1->Next = pp1->Prev; + pp1->Prev = pp2; + pp1 = pp2; + } while (pp1 != pp); +} +//------------------------------------------------------------------------------ + +void DisposeOutPts(OutPt *&pp) { + if (pp == 0) + return; + pp->Prev->Next = 0; + while (pp) { + OutPt *tmpPp = pp; + pp = pp->Next; + delete tmpPp; + } +} +//------------------------------------------------------------------------------ + +inline void InitEdge(TEdge *e, TEdge *eNext, TEdge *ePrev, const IntPoint &Pt) { + std::memset(e, 0, sizeof(TEdge)); + e->Next = eNext; + e->Prev = ePrev; + e->Curr = Pt; + e->OutIdx = Unassigned; +} +//------------------------------------------------------------------------------ + +void InitEdge2(TEdge &e, PolyType Pt) { + if (e.Curr.Y >= e.Next->Curr.Y) { + e.Bot = e.Curr; + e.Top = e.Next->Curr; + } else { + e.Top = e.Curr; + e.Bot = e.Next->Curr; + } + SetDx(e); + e.PolyTyp = Pt; +} +//------------------------------------------------------------------------------ + +TEdge *RemoveEdge(TEdge *e) { + //removes e from double_linked_list (but without removing from memory) + e->Prev->Next = e->Next; + e->Next->Prev = e->Prev; + TEdge *result = e->Next; + e->Prev = 0; //flag as removed (see ClipperBase.Clear) + return result; +} +//------------------------------------------------------------------------------ + +inline void ReverseHorizontal(TEdge &e) { + //swap horizontal edges' Top and Bottom x's so they follow the natural + //progression of the bounds - ie so their xbots will align with the + //adjoining lower edge. [Helpful in the ProcessHorizontal() method.] + std::swap(e.Top.X, e.Bot.X); +#ifdef use_xyz + std::swap(e.Top.Z, e.Bot.Z); +#endif +} +//------------------------------------------------------------------------------ + +void SwapPoints(IntPoint &pt1, IntPoint &pt2) { + IntPoint tmp = pt1; + pt1 = pt2; + pt2 = tmp; +} +//------------------------------------------------------------------------------ + +bool GetOverlapSegment(IntPoint pt1a, IntPoint pt1b, IntPoint pt2a, + IntPoint pt2b, IntPoint &pt1, IntPoint &pt2) { + //precondition: segments are Collinear. + if (Abs(pt1a.X - pt1b.X) > Abs(pt1a.Y - pt1b.Y)) { + if (pt1a.X > pt1b.X) + SwapPoints(pt1a, pt1b); + if (pt2a.X > pt2b.X) + SwapPoints(pt2a, pt2b); + if (pt1a.X > pt2a.X) + pt1 = pt1a; + else + pt1 = pt2a; + if (pt1b.X < pt2b.X) + pt2 = pt1b; + else + pt2 = pt2b; + return pt1.X < pt2.X; + } else { + if (pt1a.Y < pt1b.Y) + SwapPoints(pt1a, pt1b); + if (pt2a.Y < pt2b.Y) + SwapPoints(pt2a, pt2b); + if (pt1a.Y < pt2a.Y) + pt1 = pt1a; + else + pt1 = pt2a; + if (pt1b.Y > pt2b.Y) + pt2 = pt1b; + else + pt2 = pt2b; + return pt1.Y > pt2.Y; + } +} +//------------------------------------------------------------------------------ + +bool FirstIsBottomPt(const OutPt *btmPt1, const OutPt *btmPt2) { + OutPt *p = btmPt1->Prev; + while ((p->Pt == btmPt1->Pt) && (p != btmPt1)) + p = p->Prev; + double dx1p = std::fabs(GetDx(btmPt1->Pt, p->Pt)); + p = btmPt1->Next; + while ((p->Pt == btmPt1->Pt) && (p != btmPt1)) + p = p->Next; + double dx1n = std::fabs(GetDx(btmPt1->Pt, p->Pt)); + + p = btmPt2->Prev; + while ((p->Pt == btmPt2->Pt) && (p != btmPt2)) + p = p->Prev; + double dx2p = std::fabs(GetDx(btmPt2->Pt, p->Pt)); + p = btmPt2->Next; + while ((p->Pt == btmPt2->Pt) && (p != btmPt2)) + p = p->Next; + double dx2n = std::fabs(GetDx(btmPt2->Pt, p->Pt)); + + if (std::max(dx1p, dx1n) == std::max(dx2p, dx2n) && + std::min(dx1p, dx1n) == std::min(dx2p, dx2n)) + return Area(btmPt1) > 0; //if otherwise identical use orientation + else + return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n); +} +//------------------------------------------------------------------------------ + +OutPt *GetBottomPt(OutPt *pp) { + OutPt *dups = 0; + OutPt *p = pp->Next; + while (p != pp) { + if (p->Pt.Y > pp->Pt.Y) { + pp = p; + dups = 0; + } else if (p->Pt.Y == pp->Pt.Y && p->Pt.X <= pp->Pt.X) { + if (p->Pt.X < pp->Pt.X) { + dups = 0; + pp = p; + } else { + if (p->Next != pp && p->Prev != pp) + dups = p; + } + } + p = p->Next; + } + if (dups) { + //there appears to be at least 2 vertices at BottomPt so ... + while (dups != p) { + if (!FirstIsBottomPt(p, dups)) + pp = dups; + dups = dups->Next; + while (dups->Pt != pp->Pt) + dups = dups->Next; + } + } + return pp; +} +//------------------------------------------------------------------------------ + +bool Pt2IsBetweenPt1AndPt3(const IntPoint pt1, + const IntPoint pt2, const IntPoint pt3) { + if ((pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2)) + return false; + else if (pt1.X != pt3.X) + return (pt2.X > pt1.X) == (pt2.X < pt3.X); + else + return (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y); +} +//------------------------------------------------------------------------------ + +bool HorzSegmentsOverlap(cInt seg1a, cInt seg1b, cInt seg2a, cInt seg2b) { + if (seg1a > seg1b) + std::swap(seg1a, seg1b); + if (seg2a > seg2b) + std::swap(seg2a, seg2b); + return (seg1a < seg2b) && (seg2a < seg1b); +} + +//------------------------------------------------------------------------------ +// ClipperBase class methods ... +//------------------------------------------------------------------------------ + +ClipperBase::ClipperBase() //constructor +{ + m_CurrentLM = m_MinimaList.begin(); //begin() == end() here + m_UseFullRange = false; +} +//------------------------------------------------------------------------------ + +ClipperBase::~ClipperBase() //destructor +{ + Clear(); +} +//------------------------------------------------------------------------------ + +void RangeTest(const IntPoint &Pt, bool &useFullRange) { + if (useFullRange) { + if (Pt.X > hiRange || Pt.Y > hiRange || -Pt.X > hiRange || -Pt.Y > hiRange) + error("Coordinate outside allowed range"); + } else if (Pt.X > loRange || Pt.Y > loRange || -Pt.X > loRange || -Pt.Y > loRange) { + useFullRange = true; + RangeTest(Pt, useFullRange); + } +} +//------------------------------------------------------------------------------ + +TEdge *FindNextLocMin(TEdge *E) { + for (;;) { + while (E->Bot != E->Prev->Bot || E->Curr == E->Top) + E = E->Next; + if (!IsHorizontal(*E) && !IsHorizontal(*E->Prev)) + break; + while (IsHorizontal(*E->Prev)) + E = E->Prev; + TEdge *E2 = E; + while (IsHorizontal(*E)) + E = E->Next; + if (E->Top.Y == E->Prev->Bot.Y) + continue; //ie just an intermediate horz. + if (E2->Prev->Bot.X < E->Bot.X) + E = E2; + break; + } + return E; +} +//------------------------------------------------------------------------------ + +TEdge *ClipperBase::ProcessBound(TEdge *E, bool NextIsForward) { + TEdge *Result = E; + TEdge *Horz = 0; + + if (E->OutIdx == Skip) { + //if edges still remain in the current bound beyond the skip edge then + //create another LocMin and call ProcessBound once more + if (NextIsForward) { + while (E->Top.Y == E->Next->Bot.Y) + E = E->Next; + //don't include top horizontals when parsing a bound a second time, + //they will be contained in the opposite bound ... + while (E != Result && IsHorizontal(*E)) + E = E->Prev; + } else { + while (E->Top.Y == E->Prev->Bot.Y) + E = E->Prev; + while (E != Result && IsHorizontal(*E)) + E = E->Next; + } + + if (E == Result) { + if (NextIsForward) + Result = E->Next; + else + Result = E->Prev; + } else { + //there are more edges in the bound beyond result starting with E + if (NextIsForward) + E = Result->Next; + else + E = Result->Prev; + MinimaList::value_type locMin; + locMin.Y = E->Bot.Y; + locMin.LeftBound = 0; + locMin.RightBound = E; + E->WindDelta = 0; + Result = ProcessBound(E, NextIsForward); + m_MinimaList.push_back(locMin); + } + return Result; + } + + TEdge *EStart; + + if (IsHorizontal(*E)) { + //We need to be careful with open paths because this may not be a + //true local minima (ie E may be following a skip edge). + //Also, consecutive horz. edges may start heading left before going right. + if (NextIsForward) + EStart = E->Prev; + else + EStart = E->Next; + if (IsHorizontal(*EStart)) //ie an adjoining horizontal skip edge + { + if (EStart->Bot.X != E->Bot.X && EStart->Top.X != E->Bot.X) + ReverseHorizontal(*E); + } else if (EStart->Bot.X != E->Bot.X) + ReverseHorizontal(*E); + } + + EStart = E; + if (NextIsForward) { + while (Result->Top.Y == Result->Next->Bot.Y && Result->Next->OutIdx != Skip) + Result = Result->Next; + if (IsHorizontal(*Result) && Result->Next->OutIdx != Skip) { + //nb: at the top of a bound, horizontals are added to the bound + //only when the preceding edge attaches to the horizontal's left vertex + //unless a Skip edge is encountered when that becomes the top divide + Horz = Result; + while (IsHorizontal(*Horz->Prev)) + Horz = Horz->Prev; + if (Horz->Prev->Top.X > Result->Next->Top.X) + Result = Horz->Prev; + } + while (E != Result) { + E->NextInLML = E->Next; + if (IsHorizontal(*E) && E != EStart && + E->Bot.X != E->Prev->Top.X) + ReverseHorizontal(*E); + E = E->Next; + } + if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Prev->Top.X) + ReverseHorizontal(*E); + Result = Result->Next; //move to the edge just beyond current bound + } else { + while (Result->Top.Y == Result->Prev->Bot.Y && Result->Prev->OutIdx != Skip) + Result = Result->Prev; + if (IsHorizontal(*Result) && Result->Prev->OutIdx != Skip) { + Horz = Result; + while (IsHorizontal(*Horz->Next)) + Horz = Horz->Next; + if (Horz->Next->Top.X == Result->Prev->Top.X || + Horz->Next->Top.X > Result->Prev->Top.X) + Result = Horz->Next; + } + + while (E != Result) { + E->NextInLML = E->Prev; + if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X) + ReverseHorizontal(*E); + E = E->Prev; + } + if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X) + ReverseHorizontal(*E); + Result = Result->Prev; //move to the edge just beyond current bound + } + + return Result; +} +//------------------------------------------------------------------------------ + +bool ClipperBase::AddPath(const Path &pg, PolyType PolyTyp, bool Closed) { +#ifdef use_lines + if (!Closed && PolyTyp == ptClip) + error("AddPath: Open paths must be subject."); +#else + if (!Closed) + error("AddPath: Open paths have been disabled."); +#endif + + int highI = (int) pg.size() - 1; + if (Closed) + while (highI > 0 && (pg[highI] == pg[0])) + --highI; + while (highI > 0 && (pg[highI] == pg[highI - 1])) + --highI; + if ((Closed && highI < 2) || (!Closed && highI < 1)) + return false; + + //create a new edge array ... + TEdge *edges = new TEdge[highI + 1]; + + bool IsFlat = true; + //1. Basic (first) edge initialization ... + edges[1].Curr = pg[1]; + RangeTest(pg[0], m_UseFullRange); + RangeTest(pg[highI], m_UseFullRange); + InitEdge(&edges[0], &edges[1], &edges[highI], pg[0]); + InitEdge(&edges[highI], &edges[0], &edges[highI - 1], pg[highI]); + for (int i = highI - 1; i >= 1; --i) { + RangeTest(pg[i], m_UseFullRange); + InitEdge(&edges[i], &edges[i + 1], &edges[i - 1], pg[i]); + } + + TEdge *eStart = &edges[0]; + + //2. Remove duplicate vertices, and (when closed) collinear edges ... + TEdge *E = eStart, *eLoopStop = eStart; + for (;;) { + //nb: allows matching start and end points when not Closed ... + if (E->Curr == E->Next->Curr && (Closed || E->Next != eStart)) { + if (E == E->Next) + break; + if (E == eStart) + eStart = E->Next; + E = RemoveEdge(E); + eLoopStop = E; + continue; + } + if (E->Prev == E->Next) + break; //only two vertices + else if (Closed && + SlopesEqual(E->Prev->Curr, E->Curr, E->Next->Curr, m_UseFullRange) && + (!m_PreserveCollinear || + !Pt2IsBetweenPt1AndPt3(E->Prev->Curr, E->Curr, E->Next->Curr))) { + //Collinear edges are allowed for open paths but in closed paths + //the default is to merge adjacent collinear edges into a single edge. + //However, if the PreserveCollinear property is enabled, only overlapping + //collinear edges (ie spikes) will be removed from closed paths. + if (E == eStart) + eStart = E->Next; + E = RemoveEdge(E); + E = E->Prev; + eLoopStop = E; + continue; + } + E = E->Next; + if ((E == eLoopStop) || (!Closed && E->Next == eStart)) + break; + } + + if ((!Closed && (E == E->Next)) || (Closed && (E->Prev == E->Next))) { + delete[] edges; + return false; + } + + if (!Closed) { + m_HasOpenPaths = true; + eStart->Prev->OutIdx = Skip; + } + + //3. Do second stage of edge initialization ... + E = eStart; + do { + InitEdge2(*E, PolyTyp); + E = E->Next; + if (IsFlat && E->Curr.Y != eStart->Curr.Y) + IsFlat = false; + } while (E != eStart); + + //4. Finally, add edge bounds to LocalMinima list ... + + //Totally flat paths must be handled differently when adding them + //to LocalMinima list to avoid endless loops etc ... + if (IsFlat) { + if (Closed) { + delete[] edges; + return false; + } + E->Prev->OutIdx = Skip; + MinimaList::value_type locMin; + locMin.Y = E->Bot.Y; + locMin.LeftBound = 0; + locMin.RightBound = E; + locMin.RightBound->Side = esRight; + locMin.RightBound->WindDelta = 0; + for (;;) { + if (E->Bot.X != E->Prev->Top.X) + ReverseHorizontal(*E); + if (E->Next->OutIdx == Skip) + break; + E->NextInLML = E->Next; + E = E->Next; + } + m_MinimaList.push_back(locMin); + m_edges.push_back(edges); + return true; + } + + m_edges.push_back(edges); + bool leftBoundIsForward; + TEdge *EMin = 0; + + //workaround to avoid an endless loop in the while loop below when + //open paths have matching start and end points ... + if (E->Prev->Bot == E->Prev->Top) + E = E->Next; + + for (;;) { + E = FindNextLocMin(E); + if (E == EMin) + break; + else if (!EMin) + EMin = E; + + //E and E.Prev now share a local minima (left aligned if horizontal). + //Compare their slopes to find which starts which bound ... + MinimaList::value_type locMin; + locMin.Y = E->Bot.Y; + if (E->Dx < E->Prev->Dx) { + locMin.LeftBound = E->Prev; + locMin.RightBound = E; + leftBoundIsForward = false; //Q.nextInLML = Q.prev + } else { + locMin.LeftBound = E; + locMin.RightBound = E->Prev; + leftBoundIsForward = true; //Q.nextInLML = Q.next + } + + if (!Closed) + locMin.LeftBound->WindDelta = 0; + else if (locMin.LeftBound->Next == locMin.RightBound) + locMin.LeftBound->WindDelta = -1; + else + locMin.LeftBound->WindDelta = 1; + locMin.RightBound->WindDelta = -locMin.LeftBound->WindDelta; + + E = ProcessBound(locMin.LeftBound, leftBoundIsForward); + if (E->OutIdx == Skip) + E = ProcessBound(E, leftBoundIsForward); + + TEdge *E2 = ProcessBound(locMin.RightBound, !leftBoundIsForward); + if (E2->OutIdx == Skip) + E2 = ProcessBound(E2, !leftBoundIsForward); + + if (locMin.LeftBound->OutIdx == Skip) + locMin.LeftBound = 0; + else if (locMin.RightBound->OutIdx == Skip) + locMin.RightBound = 0; + m_MinimaList.push_back(locMin); + if (!leftBoundIsForward) + E = E2; + } + return true; +} +//------------------------------------------------------------------------------ + +bool ClipperBase::AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed) { + bool result = false; + for (Paths::size_type i = 0; i < ppg.size(); ++i) + if (AddPath(ppg[i], PolyTyp, Closed)) + result = true; + return result; +} +//------------------------------------------------------------------------------ + +void ClipperBase::Clear() { + DisposeLocalMinimaList(); + for (EdgeList::size_type i = 0; i < m_edges.size(); ++i) { + TEdge *edges = m_edges[i]; + delete[] edges; + } + m_edges.clear(); + m_UseFullRange = false; + m_HasOpenPaths = false; +} +//------------------------------------------------------------------------------ + +void ClipperBase::Reset() { + m_CurrentLM = m_MinimaList.begin(); + if (m_CurrentLM == m_MinimaList.end()) + return; //ie nothing to process + std::sort(m_MinimaList.begin(), m_MinimaList.end(), LocMinSorter()); + + m_Scanbeam = ScanbeamList(); //clears/resets priority_queue + //reset all edges ... + for (MinimaList::iterator lm = m_MinimaList.begin(); lm != m_MinimaList.end(); ++lm) { + InsertScanbeam(lm->Y); + TEdge *e = lm->LeftBound; + if (e) { + e->Curr = e->Bot; + e->Side = esLeft; + e->OutIdx = Unassigned; + } + + e = lm->RightBound; + if (e) { + e->Curr = e->Bot; + e->Side = esRight; + e->OutIdx = Unassigned; + } + } + m_ActiveEdges = 0; + m_CurrentLM = m_MinimaList.begin(); +} +//------------------------------------------------------------------------------ + +void ClipperBase::DisposeLocalMinimaList() { + m_MinimaList.clear(); + m_CurrentLM = m_MinimaList.begin(); +} +//------------------------------------------------------------------------------ + +bool ClipperBase::PopLocalMinima(cInt Y, const LocalMinimum *&locMin) { + if (m_CurrentLM == m_MinimaList.end() || (*m_CurrentLM).Y != Y) + return false; + locMin = &(*m_CurrentLM); + ++m_CurrentLM; + return true; +} +//------------------------------------------------------------------------------ + +IntRect ClipperBase::GetBounds() { + IntRect result; + MinimaList::iterator lm = m_MinimaList.begin(); + if (lm == m_MinimaList.end()) { + result.left = result.top = result.right = result.bottom = 0; + return result; + } + result.left = lm->LeftBound->Bot.X; + result.top = lm->LeftBound->Bot.Y; + result.right = lm->LeftBound->Bot.X; + result.bottom = lm->LeftBound->Bot.Y; + while (lm != m_MinimaList.end()) { + //todo - needs fixing for open paths + result.bottom = std::max(result.bottom, lm->LeftBound->Bot.Y); + TEdge *e = lm->LeftBound; + for (;;) { + TEdge *bottomE = e; + while (e->NextInLML) { + if (e->Bot.X < result.left) + result.left = e->Bot.X; + if (e->Bot.X > result.right) + result.right = e->Bot.X; + e = e->NextInLML; + } + result.left = std::min(result.left, e->Bot.X); + result.right = std::max(result.right, e->Bot.X); + result.left = std::min(result.left, e->Top.X); + result.right = std::max(result.right, e->Top.X); + result.top = std::min(result.top, e->Top.Y); + if (bottomE == lm->LeftBound) + e = lm->RightBound; + else + break; + } + ++lm; + } + return result; +} +//------------------------------------------------------------------------------ + +void ClipperBase::InsertScanbeam(const cInt Y) { + m_Scanbeam.push(Y); +} +//------------------------------------------------------------------------------ + +bool ClipperBase::PopScanbeam(cInt &Y) { + if (m_Scanbeam.empty()) + return false; + Y = m_Scanbeam.top(); + m_Scanbeam.pop(); + while (!m_Scanbeam.empty() && Y == m_Scanbeam.top()) { + m_Scanbeam.pop(); + } // Pop duplicates. + return true; +} +//------------------------------------------------------------------------------ + +void ClipperBase::DisposeAllOutRecs() { + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) + DisposeOutRec(i); + m_PolyOuts.clear(); +} +//------------------------------------------------------------------------------ + +void ClipperBase::DisposeOutRec(PolyOutList::size_type index) { + OutRec *outRec = m_PolyOuts[index]; + if (outRec->Pts) + DisposeOutPts(outRec->Pts); + delete outRec; + m_PolyOuts[index] = 0; +} +//------------------------------------------------------------------------------ + +void ClipperBase::DeleteFromAEL(TEdge *e) { + TEdge *AelPrev = e->PrevInAEL; + TEdge *AelNext = e->NextInAEL; + if (!AelPrev && !AelNext && (e != m_ActiveEdges)) + return; //already deleted + if (AelPrev) + AelPrev->NextInAEL = AelNext; + else + m_ActiveEdges = AelNext; + if (AelNext) + AelNext->PrevInAEL = AelPrev; + e->NextInAEL = 0; + e->PrevInAEL = 0; +} +//------------------------------------------------------------------------------ + +OutRec *ClipperBase::CreateOutRec() { + OutRec *result = new OutRec; + result->IsHole = false; + result->IsOpen = false; + result->FirstLeft = 0; + result->Pts = 0; + result->BottomPt = 0; + result->PolyNd = 0; + m_PolyOuts.push_back(result); + result->Idx = (int) m_PolyOuts.size() - 1; + return result; +} +//------------------------------------------------------------------------------ + +void ClipperBase::SwapPositionsInAEL(TEdge *Edge1, TEdge *Edge2) { + //check that one or other edge hasn't already been removed from AEL ... + if (Edge1->NextInAEL == Edge1->PrevInAEL || + Edge2->NextInAEL == Edge2->PrevInAEL) + return; + + if (Edge1->NextInAEL == Edge2) { + TEdge *Next = Edge2->NextInAEL; + if (Next) + Next->PrevInAEL = Edge1; + TEdge *Prev = Edge1->PrevInAEL; + if (Prev) + Prev->NextInAEL = Edge2; + Edge2->PrevInAEL = Prev; + Edge2->NextInAEL = Edge1; + Edge1->PrevInAEL = Edge2; + Edge1->NextInAEL = Next; + } else if (Edge2->NextInAEL == Edge1) { + TEdge *Next = Edge1->NextInAEL; + if (Next) + Next->PrevInAEL = Edge2; + TEdge *Prev = Edge2->PrevInAEL; + if (Prev) + Prev->NextInAEL = Edge1; + Edge1->PrevInAEL = Prev; + Edge1->NextInAEL = Edge2; + Edge2->PrevInAEL = Edge1; + Edge2->NextInAEL = Next; + } else { + TEdge *Next = Edge1->NextInAEL; + TEdge *Prev = Edge1->PrevInAEL; + Edge1->NextInAEL = Edge2->NextInAEL; + if (Edge1->NextInAEL) + Edge1->NextInAEL->PrevInAEL = Edge1; + Edge1->PrevInAEL = Edge2->PrevInAEL; + if (Edge1->PrevInAEL) + Edge1->PrevInAEL->NextInAEL = Edge1; + Edge2->NextInAEL = Next; + if (Edge2->NextInAEL) + Edge2->NextInAEL->PrevInAEL = Edge2; + Edge2->PrevInAEL = Prev; + if (Edge2->PrevInAEL) + Edge2->PrevInAEL->NextInAEL = Edge2; + } + + if (!Edge1->PrevInAEL) + m_ActiveEdges = Edge1; + else if (!Edge2->PrevInAEL) + m_ActiveEdges = Edge2; +} +//------------------------------------------------------------------------------ + +void ClipperBase::UpdateEdgeIntoAEL(TEdge *&e) { + if (!e->NextInLML) + error("UpdateEdgeIntoAEL: invalid call"); + + e->NextInLML->OutIdx = e->OutIdx; + TEdge *AelPrev = e->PrevInAEL; + TEdge *AelNext = e->NextInAEL; + if (AelPrev) + AelPrev->NextInAEL = e->NextInLML; + else + m_ActiveEdges = e->NextInLML; + if (AelNext) + AelNext->PrevInAEL = e->NextInLML; + e->NextInLML->Side = e->Side; + e->NextInLML->WindDelta = e->WindDelta; + e->NextInLML->WindCnt = e->WindCnt; + e->NextInLML->WindCnt2 = e->WindCnt2; + e = e->NextInLML; + e->Curr = e->Bot; + e->PrevInAEL = AelPrev; + e->NextInAEL = AelNext; + if (!IsHorizontal(*e)) + InsertScanbeam(e->Top.Y); +} +//------------------------------------------------------------------------------ + +bool ClipperBase::LocalMinimaPending() { + return (m_CurrentLM != m_MinimaList.end()); +} + +//------------------------------------------------------------------------------ +// TClipper methods ... +//------------------------------------------------------------------------------ + +Clipper::Clipper(int initOptions) : ClipperBase() //constructor +{ + m_ExecuteLocked = false; + m_UseFullRange = false; + m_ReverseOutput = ((initOptions & ioReverseSolution) != 0); + m_StrictSimple = ((initOptions & ioStrictlySimple) != 0); + m_PreserveCollinear = ((initOptions & ioPreserveCollinear) != 0); + m_HasOpenPaths = false; +#ifdef use_xyz + m_ZFill = 0; +#endif +} +//------------------------------------------------------------------------------ + +#ifdef use_xyz +void Clipper::ZFillFunction(ZFillCallback zFillFunc) +{ + m_ZFill = zFillFunc; +} +//------------------------------------------------------------------------------ +#endif + +bool Clipper::Execute(ClipType clipType, Paths &solution, PolyFillType fillType) { + return Execute(clipType, solution, fillType, fillType); +} +//------------------------------------------------------------------------------ + +bool Clipper::Execute(ClipType clipType, PolyTree &polytree, PolyFillType fillType) { + return Execute(clipType, polytree, fillType, fillType); +} +//------------------------------------------------------------------------------ + +bool Clipper::Execute(ClipType clipType, Paths &solution, + PolyFillType subjFillType, PolyFillType clipFillType) { + if (m_ExecuteLocked) + return false; + if (m_HasOpenPaths) + error("Error: PolyTree struct is needed for open path clipping."); + m_ExecuteLocked = true; + solution.resize(0); + m_SubjFillType = subjFillType; + m_ClipFillType = clipFillType; + m_ClipType = clipType; + m_UsingPolyTree = false; + bool succeeded = ExecuteInternal(); + if (succeeded) + BuildResult(solution); + DisposeAllOutRecs(); + m_ExecuteLocked = false; + return succeeded; +} +//------------------------------------------------------------------------------ + +bool Clipper::Execute(ClipType clipType, PolyTree &polytree, + PolyFillType subjFillType, PolyFillType clipFillType) { + if (m_ExecuteLocked) + return false; + m_ExecuteLocked = true; + m_SubjFillType = subjFillType; + m_ClipFillType = clipFillType; + m_ClipType = clipType; + m_UsingPolyTree = true; + bool succeeded = ExecuteInternal(); + if (succeeded) + BuildResult2(polytree); + DisposeAllOutRecs(); + m_ExecuteLocked = false; + return succeeded; +} +//------------------------------------------------------------------------------ + +void Clipper::FixHoleLinkage(OutRec &outrec) { + //skip OutRecs that (a) contain outermost polygons or + //(b) already have the correct owner/child linkage ... + if (!outrec.FirstLeft || + (outrec.IsHole != outrec.FirstLeft->IsHole && + outrec.FirstLeft->Pts)) + return; + + OutRec *orfl = outrec.FirstLeft; + while (orfl && ((orfl->IsHole == outrec.IsHole) || !orfl->Pts)) + orfl = orfl->FirstLeft; + outrec.FirstLeft = orfl; +} +//------------------------------------------------------------------------------ + +bool Clipper::ExecuteInternal() { + bool succeeded = true; + { + Reset(); + m_Maxima = MaximaList(); + m_SortedEdges = 0; + + succeeded = true; + cInt botY, topY; + if (!PopScanbeam(botY)) + return false; + InsertLocalMinimaIntoAEL(botY); + while (PopScanbeam(topY) || LocalMinimaPending()) { + ProcessHorizontals(); + ClearGhostJoins(); + if (!ProcessIntersections(topY)) { + succeeded = false; + break; + } + ProcessEdgesAtTopOfScanbeam(topY); + botY = topY; + InsertLocalMinimaIntoAEL(botY); + } + } + + if (succeeded) { + //fix orientations ... + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { + OutRec *outRec = m_PolyOuts[i]; + if (!outRec->Pts || outRec->IsOpen) + continue; + if ((outRec->IsHole ^ m_ReverseOutput) == (Area(*outRec) > 0)) + ReversePolyPtLinks(outRec->Pts); + } + + if (!m_Joins.empty()) + JoinCommonEdges(); + + //unfortunately FixupOutPolygon() must be done after JoinCommonEdges() + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { + OutRec *outRec = m_PolyOuts[i]; + if (!outRec->Pts) + continue; + if (outRec->IsOpen) + FixupOutPolyline(*outRec); + else + FixupOutPolygon(*outRec); + } + + if (m_StrictSimple) + DoSimplePolygons(); + } + + ClearJoins(); + ClearGhostJoins(); + return succeeded; +} +//------------------------------------------------------------------------------ + +void Clipper::SetWindingCount(TEdge &edge) { + TEdge *e = edge.PrevInAEL; + //find the edge of the same polytype that immediately preceeds 'edge' in AEL + while (e && ((e->PolyTyp != edge.PolyTyp) || (e->WindDelta == 0))) + e = e->PrevInAEL; + if (!e) { + if (edge.WindDelta == 0) { + PolyFillType pft = (edge.PolyTyp == ptSubject ? m_SubjFillType : m_ClipFillType); + edge.WindCnt = (pft == pftNegative ? -1 : 1); + } else + edge.WindCnt = edge.WindDelta; + edge.WindCnt2 = 0; + e = m_ActiveEdges; //ie get ready to calc WindCnt2 + } else if (edge.WindDelta == 0 && m_ClipType != ctUnion) { + edge.WindCnt = 1; + edge.WindCnt2 = e->WindCnt2; + e = e->NextInAEL; //ie get ready to calc WindCnt2 + } else if (IsEvenOddFillType(edge)) { + //EvenOdd filling ... + if (edge.WindDelta == 0) { + //are we inside a subj polygon ... + bool Inside = true; + TEdge *e2 = e->PrevInAEL; + while (e2) { + if (e2->PolyTyp == e->PolyTyp && e2->WindDelta != 0) + Inside = !Inside; + e2 = e2->PrevInAEL; + } + edge.WindCnt = (Inside ? 0 : 1); + } else { + edge.WindCnt = edge.WindDelta; + } + edge.WindCnt2 = e->WindCnt2; + e = e->NextInAEL; //ie get ready to calc WindCnt2 + } else { + //nonZero, Positive or Negative filling ... + if (e->WindCnt * e->WindDelta < 0) { + //prev edge is 'decreasing' WindCount (WC) toward zero + //so we're outside the previous polygon ... + if (Abs(e->WindCnt) > 1) { + //outside prev poly but still inside another. + //when reversing direction of prev poly use the same WC + if (e->WindDelta * edge.WindDelta < 0) + edge.WindCnt = e->WindCnt; + //otherwise continue to 'decrease' WC ... + else + edge.WindCnt = e->WindCnt + edge.WindDelta; + } else + //now outside all polys of same polytype so set own WC ... + edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta); + } else { + //prev edge is 'increasing' WindCount (WC) away from zero + //so we're inside the previous polygon ... + if (edge.WindDelta == 0) + edge.WindCnt = (e->WindCnt < 0 ? e->WindCnt - 1 : e->WindCnt + 1); + //if wind direction is reversing prev then use same WC + else if (e->WindDelta * edge.WindDelta < 0) + edge.WindCnt = e->WindCnt; + //otherwise add to WC ... + else + edge.WindCnt = e->WindCnt + edge.WindDelta; + } + edge.WindCnt2 = e->WindCnt2; + e = e->NextInAEL; //ie get ready to calc WindCnt2 + } + + //update WindCnt2 ... + if (IsEvenOddAltFillType(edge)) { + //EvenOdd filling ... + while (e != &edge) { + if (e->WindDelta != 0) + edge.WindCnt2 = (edge.WindCnt2 == 0 ? 1 : 0); + e = e->NextInAEL; + } + } else { + //nonZero, Positive or Negative filling ... + while (e != &edge) { + edge.WindCnt2 += e->WindDelta; + e = e->NextInAEL; + } + } +} +//------------------------------------------------------------------------------ + +bool Clipper::IsEvenOddFillType(const TEdge &edge) const { + if (edge.PolyTyp == ptSubject) + return m_SubjFillType == pftEvenOdd; + else + return m_ClipFillType == pftEvenOdd; +} +//------------------------------------------------------------------------------ + +bool Clipper::IsEvenOddAltFillType(const TEdge &edge) const { + if (edge.PolyTyp == ptSubject) + return m_ClipFillType == pftEvenOdd; + else + return m_SubjFillType == pftEvenOdd; +} +//------------------------------------------------------------------------------ + +bool Clipper::IsContributing(const TEdge &edge) const { + PolyFillType pft, pft2; + if (edge.PolyTyp == ptSubject) { + pft = m_SubjFillType; + pft2 = m_ClipFillType; + } else { + pft = m_ClipFillType; + pft2 = m_SubjFillType; + } + + switch (pft) { + case pftEvenOdd: + //return false if a subj line has been flagged as inside a subj polygon + if (edge.WindDelta == 0 && edge.WindCnt != 1) + return false; + break; + case pftNonZero: + if (Abs(edge.WindCnt) != 1) + return false; + break; + case pftPositive: + if (edge.WindCnt != 1) + return false; + break; + default: //pftNegative + if (edge.WindCnt != -1) + return false; + } + + switch (m_ClipType) { + case ctIntersection: + switch (pft2) { + case pftEvenOdd: + case pftNonZero:return (edge.WindCnt2 != 0); + case pftPositive:return (edge.WindCnt2 > 0); + default:return (edge.WindCnt2 < 0); + } + break; + case ctUnion: + switch (pft2) { + case pftEvenOdd: + case pftNonZero:return (edge.WindCnt2 == 0); + case pftPositive:return (edge.WindCnt2 <= 0); + default:return (edge.WindCnt2 >= 0); + } + break; + case ctDifference: + if (edge.PolyTyp == ptSubject) + switch (pft2) { + case pftEvenOdd: + case pftNonZero:return (edge.WindCnt2 == 0); + case pftPositive:return (edge.WindCnt2 <= 0); + default:return (edge.WindCnt2 >= 0); + } + else + switch (pft2) { + case pftEvenOdd: + case pftNonZero:return (edge.WindCnt2 != 0); + case pftPositive:return (edge.WindCnt2 > 0); + default:return (edge.WindCnt2 < 0); + } + break; + case ctXor: + if (edge.WindDelta == 0) //XOr always contributing unless open + switch (pft2) { + case pftEvenOdd: + case pftNonZero:return (edge.WindCnt2 == 0); + case pftPositive:return (edge.WindCnt2 <= 0); + default:return (edge.WindCnt2 >= 0); + } + else + return true; + break; + default:return true; + } +} +//------------------------------------------------------------------------------ + +OutPt *Clipper::AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt) { + OutPt *result; + TEdge *e, *prevE; + if (IsHorizontal(*e2) || (e1->Dx > e2->Dx)) { + result = AddOutPt(e1, Pt); + e2->OutIdx = e1->OutIdx; + e1->Side = esLeft; + e2->Side = esRight; + e = e1; + if (e->PrevInAEL == e2) + prevE = e2->PrevInAEL; + else + prevE = e->PrevInAEL; + } else { + result = AddOutPt(e2, Pt); + e1->OutIdx = e2->OutIdx; + e1->Side = esRight; + e2->Side = esLeft; + e = e2; + if (e->PrevInAEL == e1) + prevE = e1->PrevInAEL; + else + prevE = e->PrevInAEL; + } + + if (prevE && prevE->OutIdx >= 0 && prevE->Top.Y < Pt.Y && e->Top.Y < Pt.Y) { + cInt xPrev = TopX(*prevE, Pt.Y); + cInt xE = TopX(*e, Pt.Y); + if (xPrev == xE && (e->WindDelta != 0) && (prevE->WindDelta != 0) && + SlopesEqual(IntPoint(xPrev, Pt.Y), prevE->Top, IntPoint(xE, Pt.Y), e->Top, m_UseFullRange)) { + OutPt *outPt = AddOutPt(prevE, Pt); + AddJoin(result, outPt, e->Top); + } + } + return result; +} +//------------------------------------------------------------------------------ + +void Clipper::AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt) { + AddOutPt(e1, Pt); + if (e2->WindDelta == 0) + AddOutPt(e2, Pt); + if (e1->OutIdx == e2->OutIdx) { + e1->OutIdx = Unassigned; + e2->OutIdx = Unassigned; + } else if (e1->OutIdx < e2->OutIdx) + AppendPolygon(e1, e2); + else + AppendPolygon(e2, e1); +} +//------------------------------------------------------------------------------ + +void Clipper::AddEdgeToSEL(TEdge *edge) { + //SEL pointers in PEdge are reused to build a list of horizontal edges. + //However, we don't need to worry about order with horizontal edge processing. + if (!m_SortedEdges) { + m_SortedEdges = edge; + edge->PrevInSEL = 0; + edge->NextInSEL = 0; + } else { + edge->NextInSEL = m_SortedEdges; + edge->PrevInSEL = 0; + m_SortedEdges->PrevInSEL = edge; + m_SortedEdges = edge; + } +} +//------------------------------------------------------------------------------ + +bool Clipper::PopEdgeFromSEL(TEdge *&edge) { + if (!m_SortedEdges) + return false; + edge = m_SortedEdges; + DeleteFromSEL(m_SortedEdges); + return true; +} +//------------------------------------------------------------------------------ + +void Clipper::CopyAELToSEL() { + TEdge *e = m_ActiveEdges; + m_SortedEdges = e; + while (e) { + e->PrevInSEL = e->PrevInAEL; + e->NextInSEL = e->NextInAEL; + e = e->NextInAEL; + } +} +//------------------------------------------------------------------------------ + +void Clipper::AddJoin(OutPt *op1, OutPt *op2, const IntPoint OffPt) { + Join *j = new Join; + j->OutPt1 = op1; + j->OutPt2 = op2; + j->OffPt = OffPt; + m_Joins.push_back(j); +} +//------------------------------------------------------------------------------ + +void Clipper::ClearJoins() { + for (JoinList::size_type i = 0; i < m_Joins.size(); i++) + delete m_Joins[i]; + m_Joins.resize(0); +} +//------------------------------------------------------------------------------ + +void Clipper::ClearGhostJoins() { + for (JoinList::size_type i = 0; i < m_GhostJoins.size(); i++) + delete m_GhostJoins[i]; + m_GhostJoins.resize(0); +} +//------------------------------------------------------------------------------ + +void Clipper::AddGhostJoin(OutPt *op, const IntPoint OffPt) { + Join *j = new Join; + j->OutPt1 = op; + j->OutPt2 = 0; + j->OffPt = OffPt; + m_GhostJoins.push_back(j); +} +//------------------------------------------------------------------------------ + +void Clipper::InsertLocalMinimaIntoAEL(const cInt botY) { + const LocalMinimum *lm; + while (PopLocalMinima(botY, lm)) { + TEdge *lb = lm->LeftBound; + TEdge *rb = lm->RightBound; + + OutPt *Op1 = 0; + if (!lb) { + //nb: don't insert LB into either AEL or SEL + InsertEdgeIntoAEL(rb, 0); + SetWindingCount(*rb); + if (IsContributing(*rb)) + Op1 = AddOutPt(rb, rb->Bot); + } else if (!rb) { + InsertEdgeIntoAEL(lb, 0); + SetWindingCount(*lb); + if (IsContributing(*lb)) + Op1 = AddOutPt(lb, lb->Bot); + InsertScanbeam(lb->Top.Y); + } else { + InsertEdgeIntoAEL(lb, 0); + InsertEdgeIntoAEL(rb, lb); + SetWindingCount(*lb); + rb->WindCnt = lb->WindCnt; + rb->WindCnt2 = lb->WindCnt2; + if (IsContributing(*lb)) + Op1 = AddLocalMinPoly(lb, rb, lb->Bot); + InsertScanbeam(lb->Top.Y); + } + + if (rb) { + if (IsHorizontal(*rb)) { + AddEdgeToSEL(rb); + if (rb->NextInLML) + InsertScanbeam(rb->NextInLML->Top.Y); + } else + InsertScanbeam(rb->Top.Y); + } + + if (!lb || !rb) + continue; + + //if any output polygons share an edge, they'll need joining later ... + if (Op1 && IsHorizontal(*rb) && + m_GhostJoins.size() > 0 && (rb->WindDelta != 0)) { + for (JoinList::size_type i = 0; i < m_GhostJoins.size(); ++i) { + Join *jr = m_GhostJoins[i]; + //if the horizontal Rb and a 'ghost' horizontal overlap, then convert + //the 'ghost' join to a real join ready for later ... + if (HorzSegmentsOverlap(jr->OutPt1->Pt.X, jr->OffPt.X, rb->Bot.X, rb->Top.X)) + AddJoin(jr->OutPt1, Op1, jr->OffPt); + } + } + + if (lb->OutIdx >= 0 && lb->PrevInAEL && + lb->PrevInAEL->Curr.X == lb->Bot.X && + lb->PrevInAEL->OutIdx >= 0 && + SlopesEqual(lb->PrevInAEL->Bot, lb->PrevInAEL->Top, lb->Curr, lb->Top, m_UseFullRange) && + (lb->WindDelta != 0) && (lb->PrevInAEL->WindDelta != 0)) { + OutPt *Op2 = AddOutPt(lb->PrevInAEL, lb->Bot); + AddJoin(Op1, Op2, lb->Top); + } + + if (lb->NextInAEL != rb) { + + if (rb->OutIdx >= 0 && rb->PrevInAEL->OutIdx >= 0 && + SlopesEqual(rb->PrevInAEL->Curr, rb->PrevInAEL->Top, rb->Curr, rb->Top, m_UseFullRange) && + (rb->WindDelta != 0) && (rb->PrevInAEL->WindDelta != 0)) { + OutPt *Op2 = AddOutPt(rb->PrevInAEL, rb->Bot); + AddJoin(Op1, Op2, rb->Top); + } + + TEdge *e = lb->NextInAEL; + if (e) { + while (e != rb) { + //nb: For calculating winding counts etc, IntersectEdges() assumes + //that param1 will be to the Right of param2 ABOVE the intersection ... + IntersectEdges(rb, e, lb->Curr); //order important here + e = e->NextInAEL; + } + } + } + + } +} +//------------------------------------------------------------------------------ + +void Clipper::DeleteFromSEL(TEdge *e) { + TEdge *SelPrev = e->PrevInSEL; + TEdge *SelNext = e->NextInSEL; + if (!SelPrev && !SelNext && (e != m_SortedEdges)) + return; //already deleted + if (SelPrev) + SelPrev->NextInSEL = SelNext; + else + m_SortedEdges = SelNext; + if (SelNext) + SelNext->PrevInSEL = SelPrev; + e->NextInSEL = 0; + e->PrevInSEL = 0; +} +//------------------------------------------------------------------------------ + +#ifdef use_xyz +void Clipper::SetZ(IntPoint& pt, TEdge& e1, TEdge& e2) +{ + if (pt.Z != 0 || !m_ZFill) return; + else if (pt == e1.Bot) pt.Z = e1.Bot.Z; + else if (pt == e1.Top) pt.Z = e1.Top.Z; + else if (pt == e2.Bot) pt.Z = e2.Bot.Z; + else if (pt == e2.Top) pt.Z = e2.Top.Z; + else (*m_ZFill)(e1.Bot, e1.Top, e2.Bot, e2.Top, pt); +} +//------------------------------------------------------------------------------ +#endif + +void Clipper::IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &Pt) { + bool e1Contributing = (e1->OutIdx >= 0); + bool e2Contributing = (e2->OutIdx >= 0); + +#ifdef use_xyz + SetZ(Pt, *e1, *e2); +#endif + +#ifdef use_lines + //if either edge is on an OPEN path ... + if (e1->WindDelta == 0 || e2->WindDelta == 0) { + //ignore subject-subject open path intersections UNLESS they + //are both open paths, AND they are both 'contributing maximas' ... + if (e1->WindDelta == 0 && e2->WindDelta == 0) + return; + + //if intersecting a subj line with a subj poly ... + else if (e1->PolyTyp == e2->PolyTyp && + e1->WindDelta != e2->WindDelta && m_ClipType == ctUnion) { + if (e1->WindDelta == 0) { + if (e2Contributing) { + AddOutPt(e1, Pt); + if (e1Contributing) + e1->OutIdx = Unassigned; + } + } else { + if (e1Contributing) { + AddOutPt(e2, Pt); + if (e2Contributing) + e2->OutIdx = Unassigned; + } + } + } else if (e1->PolyTyp != e2->PolyTyp) { + //toggle subj open path OutIdx on/off when Abs(clip.WndCnt) == 1 ... + if ((e1->WindDelta == 0) && abs(e2->WindCnt) == 1 && + (m_ClipType != ctUnion || e2->WindCnt2 == 0)) { + AddOutPt(e1, Pt); + if (e1Contributing) + e1->OutIdx = Unassigned; + } else if ((e2->WindDelta == 0) && (abs(e1->WindCnt) == 1) && + (m_ClipType != ctUnion || e1->WindCnt2 == 0)) { + AddOutPt(e2, Pt); + if (e2Contributing) + e2->OutIdx = Unassigned; + } + } + return; + } +#endif + + //update winding counts... + //assumes that e1 will be to the Right of e2 ABOVE the intersection + if (e1->PolyTyp == e2->PolyTyp) { + if (IsEvenOddFillType(*e1)) { + int oldE1WindCnt = e1->WindCnt; + e1->WindCnt = e2->WindCnt; + e2->WindCnt = oldE1WindCnt; + } else { + if (e1->WindCnt + e2->WindDelta == 0) + e1->WindCnt = -e1->WindCnt; + else + e1->WindCnt += e2->WindDelta; + if (e2->WindCnt - e1->WindDelta == 0) + e2->WindCnt = -e2->WindCnt; + else + e2->WindCnt -= e1->WindDelta; + } + } else { + if (!IsEvenOddFillType(*e2)) + e1->WindCnt2 += e2->WindDelta; + else + e1->WindCnt2 = (e1->WindCnt2 == 0) ? 1 : 0; + if (!IsEvenOddFillType(*e1)) + e2->WindCnt2 -= e1->WindDelta; + else + e2->WindCnt2 = (e2->WindCnt2 == 0) ? 1 : 0; + } + + PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2; + if (e1->PolyTyp == ptSubject) { + e1FillType = m_SubjFillType; + e1FillType2 = m_ClipFillType; + } else { + e1FillType = m_ClipFillType; + e1FillType2 = m_SubjFillType; + } + if (e2->PolyTyp == ptSubject) { + e2FillType = m_SubjFillType; + e2FillType2 = m_ClipFillType; + } else { + e2FillType = m_ClipFillType; + e2FillType2 = m_SubjFillType; + } + + cInt e1Wc, e2Wc; + switch (e1FillType) { + case pftPositive: e1Wc = e1->WindCnt; + break; + case pftNegative: e1Wc = -e1->WindCnt; + break; + default: e1Wc = Abs(e1->WindCnt); + } + switch (e2FillType) { + case pftPositive: e2Wc = e2->WindCnt; + break; + case pftNegative: e2Wc = -e2->WindCnt; + break; + default: e2Wc = Abs(e2->WindCnt); + } + + if (e1Contributing && e2Contributing) { + if ((e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) || + (e1->PolyTyp != e2->PolyTyp && m_ClipType != ctXor)) { + AddLocalMaxPoly(e1, e2, Pt); + } else { + AddOutPt(e1, Pt); + AddOutPt(e2, Pt); + SwapSides(*e1, *e2); + SwapPolyIndexes(*e1, *e2); + } + } else if (e1Contributing) { + if (e2Wc == 0 || e2Wc == 1) { + AddOutPt(e1, Pt); + SwapSides(*e1, *e2); + SwapPolyIndexes(*e1, *e2); + } + } else if (e2Contributing) { + if (e1Wc == 0 || e1Wc == 1) { + AddOutPt(e2, Pt); + SwapSides(*e1, *e2); + SwapPolyIndexes(*e1, *e2); + } + } else if ((e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1)) { + //neither edge is currently contributing ... + + cInt e1Wc2, e2Wc2; + switch (e1FillType2) { + case pftPositive: e1Wc2 = e1->WindCnt2; + break; + case pftNegative : e1Wc2 = -e1->WindCnt2; + break; + default: e1Wc2 = Abs(e1->WindCnt2); + } + switch (e2FillType2) { + case pftPositive: e2Wc2 = e2->WindCnt2; + break; + case pftNegative: e2Wc2 = -e2->WindCnt2; + break; + default: e2Wc2 = Abs(e2->WindCnt2); + } + + if (e1->PolyTyp != e2->PolyTyp) { + AddLocalMinPoly(e1, e2, Pt); + } else if (e1Wc == 1 && e2Wc == 1) + switch (m_ClipType) { + case ctIntersection: + if (e1Wc2 > 0 && e2Wc2 > 0) + AddLocalMinPoly(e1, e2, Pt); + break; + case ctUnion: + if (e1Wc2 <= 0 && e2Wc2 <= 0) + AddLocalMinPoly(e1, e2, Pt); + break; + case ctDifference: + if (((e1->PolyTyp == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0)) || + ((e1->PolyTyp == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0))) + AddLocalMinPoly(e1, e2, Pt); + break; + case ctXor:AddLocalMinPoly(e1, e2, Pt); + } + else + SwapSides(*e1, *e2); + } +} +//------------------------------------------------------------------------------ + +void Clipper::SetHoleState(TEdge *e, OutRec *outrec) { + TEdge *e2 = e->PrevInAEL; + TEdge *eTmp = 0; + while (e2) { + if (e2->OutIdx >= 0 && e2->WindDelta != 0) { + if (!eTmp) + eTmp = e2; + else if (eTmp->OutIdx == e2->OutIdx) + eTmp = 0; + } + e2 = e2->PrevInAEL; + } + if (!eTmp) { + outrec->FirstLeft = 0; + outrec->IsHole = false; + } else { + outrec->FirstLeft = m_PolyOuts[eTmp->OutIdx]; + outrec->IsHole = !outrec->FirstLeft->IsHole; + } +} +//------------------------------------------------------------------------------ + +OutRec *GetLowermostRec(OutRec *outRec1, OutRec *outRec2) { + //work out which polygon fragment has the correct hole state ... + if (!outRec1->BottomPt) + outRec1->BottomPt = GetBottomPt(outRec1->Pts); + if (!outRec2->BottomPt) + outRec2->BottomPt = GetBottomPt(outRec2->Pts); + OutPt *OutPt1 = outRec1->BottomPt; + OutPt *OutPt2 = outRec2->BottomPt; + if (OutPt1->Pt.Y > OutPt2->Pt.Y) + return outRec1; + else if (OutPt1->Pt.Y < OutPt2->Pt.Y) + return outRec2; + else if (OutPt1->Pt.X < OutPt2->Pt.X) + return outRec1; + else if (OutPt1->Pt.X > OutPt2->Pt.X) + return outRec2; + else if (OutPt1->Next == OutPt1) + return outRec2; + else if (OutPt2->Next == OutPt2) + return outRec1; + else if (FirstIsBottomPt(OutPt1, OutPt2)) + return outRec1; + else + return outRec2; +} +//------------------------------------------------------------------------------ + +bool OutRec1RightOfOutRec2(OutRec *outRec1, OutRec *outRec2) { + do { + outRec1 = outRec1->FirstLeft; + if (outRec1 == outRec2) + return true; + } while (outRec1); + return false; +} +//------------------------------------------------------------------------------ + +OutRec *Clipper::GetOutRec(int Idx) { + OutRec *outrec = m_PolyOuts[Idx]; + while (outrec != m_PolyOuts[outrec->Idx]) + outrec = m_PolyOuts[outrec->Idx]; + return outrec; +} +//------------------------------------------------------------------------------ + +void Clipper::AppendPolygon(TEdge *e1, TEdge *e2) { + //get the start and ends of both output polygons ... + OutRec *outRec1 = m_PolyOuts[e1->OutIdx]; + OutRec *outRec2 = m_PolyOuts[e2->OutIdx]; + + OutRec *holeStateRec; + if (OutRec1RightOfOutRec2(outRec1, outRec2)) + holeStateRec = outRec2; + else if (OutRec1RightOfOutRec2(outRec2, outRec1)) + holeStateRec = outRec1; + else + holeStateRec = GetLowermostRec(outRec1, outRec2); + + //get the start and ends of both output polygons and + //join e2 poly onto e1 poly and delete pointers to e2 ... + + OutPt *p1_lft = outRec1->Pts; + OutPt *p1_rt = p1_lft->Prev; + OutPt *p2_lft = outRec2->Pts; + OutPt *p2_rt = p2_lft->Prev; + + //join e2 poly onto e1 poly and delete pointers to e2 ... + if (e1->Side == esLeft) { + if (e2->Side == esLeft) { + //z y x a b c + ReversePolyPtLinks(p2_lft); + p2_lft->Next = p1_lft; + p1_lft->Prev = p2_lft; + p1_rt->Next = p2_rt; + p2_rt->Prev = p1_rt; + outRec1->Pts = p2_rt; + } else { + //x y z a b c + p2_rt->Next = p1_lft; + p1_lft->Prev = p2_rt; + p2_lft->Prev = p1_rt; + p1_rt->Next = p2_lft; + outRec1->Pts = p2_lft; + } + } else { + if (e2->Side == esRight) { + //a b c z y x + ReversePolyPtLinks(p2_lft); + p1_rt->Next = p2_rt; + p2_rt->Prev = p1_rt; + p2_lft->Next = p1_lft; + p1_lft->Prev = p2_lft; + } else { + //a b c x y z + p1_rt->Next = p2_lft; + p2_lft->Prev = p1_rt; + p1_lft->Prev = p2_rt; + p2_rt->Next = p1_lft; + } + } + + outRec1->BottomPt = 0; + if (holeStateRec == outRec2) { + if (outRec2->FirstLeft != outRec1) + outRec1->FirstLeft = outRec2->FirstLeft; + outRec1->IsHole = outRec2->IsHole; + } + outRec2->Pts = 0; + outRec2->BottomPt = 0; + outRec2->FirstLeft = outRec1; + + int OKIdx = e1->OutIdx; + int ObsoleteIdx = e2->OutIdx; + + e1->OutIdx = Unassigned; //nb: safe because we only get here via AddLocalMaxPoly + e2->OutIdx = Unassigned; + + TEdge *e = m_ActiveEdges; + while (e) { + if (e->OutIdx == ObsoleteIdx) { + e->OutIdx = OKIdx; + e->Side = e1->Side; + break; + } + e = e->NextInAEL; + } + + outRec2->Idx = outRec1->Idx; +} +//------------------------------------------------------------------------------ + +OutPt *Clipper::AddOutPt(TEdge *e, const IntPoint &pt) { + if (e->OutIdx < 0) { + OutRec *outRec = CreateOutRec(); + outRec->IsOpen = (e->WindDelta == 0); + OutPt *newOp = new OutPt; + outRec->Pts = newOp; + newOp->Idx = outRec->Idx; + newOp->Pt = pt; + newOp->Next = newOp; + newOp->Prev = newOp; + if (!outRec->IsOpen) + SetHoleState(e, outRec); + e->OutIdx = outRec->Idx; + return newOp; + } else { + OutRec *outRec = m_PolyOuts[e->OutIdx]; + //OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most' + OutPt *op = outRec->Pts; + + bool ToFront = (e->Side == esLeft); + if (ToFront && (pt == op->Pt)) + return op; + else if (!ToFront && (pt == op->Prev->Pt)) + return op->Prev; + + OutPt *newOp = new OutPt; + newOp->Idx = outRec->Idx; + newOp->Pt = pt; + newOp->Next = op; + newOp->Prev = op->Prev; + newOp->Prev->Next = newOp; + op->Prev = newOp; + if (ToFront) + outRec->Pts = newOp; + return newOp; + } +} +//------------------------------------------------------------------------------ + +OutPt *Clipper::GetLastOutPt(TEdge *e) { + OutRec *outRec = m_PolyOuts[e->OutIdx]; + if (e->Side == esLeft) + return outRec->Pts; + else + return outRec->Pts->Prev; +} +//------------------------------------------------------------------------------ + +void Clipper::ProcessHorizontals() { + TEdge *horzEdge; + while (PopEdgeFromSEL(horzEdge)) + ProcessHorizontal(horzEdge); +} +//------------------------------------------------------------------------------ + +inline bool IsMinima(TEdge *e) { + return e && (e->Prev->NextInLML != e) && (e->Next->NextInLML != e); +} +//------------------------------------------------------------------------------ + +inline bool IsMaxima(TEdge *e, const cInt Y) { + return e && e->Top.Y == Y && !e->NextInLML; +} +//------------------------------------------------------------------------------ + +inline bool IsIntermediate(TEdge *e, const cInt Y) { + return e->Top.Y == Y && e->NextInLML; +} +//------------------------------------------------------------------------------ + +TEdge *GetMaximaPair(TEdge *e) { + if ((e->Next->Top == e->Top) && !e->Next->NextInLML) + return e->Next; + else if ((e->Prev->Top == e->Top) && !e->Prev->NextInLML) + return e->Prev; + else + return 0; +} +//------------------------------------------------------------------------------ + +TEdge *GetMaximaPairEx(TEdge *e) { + //as GetMaximaPair() but returns 0 if MaxPair isn't in AEL (unless it's horizontal) + TEdge *result = GetMaximaPair(e); + if (result && (result->OutIdx == Skip || + (result->NextInAEL == result->PrevInAEL && !IsHorizontal(*result)))) + return 0; + return result; +} +//------------------------------------------------------------------------------ + +void Clipper::SwapPositionsInSEL(TEdge *Edge1, TEdge *Edge2) { + if (!(Edge1->NextInSEL) && !(Edge1->PrevInSEL)) + return; + if (!(Edge2->NextInSEL) && !(Edge2->PrevInSEL)) + return; + + if (Edge1->NextInSEL == Edge2) { + TEdge *Next = Edge2->NextInSEL; + if (Next) + Next->PrevInSEL = Edge1; + TEdge *Prev = Edge1->PrevInSEL; + if (Prev) + Prev->NextInSEL = Edge2; + Edge2->PrevInSEL = Prev; + Edge2->NextInSEL = Edge1; + Edge1->PrevInSEL = Edge2; + Edge1->NextInSEL = Next; + } else if (Edge2->NextInSEL == Edge1) { + TEdge *Next = Edge1->NextInSEL; + if (Next) + Next->PrevInSEL = Edge2; + TEdge *Prev = Edge2->PrevInSEL; + if (Prev) + Prev->NextInSEL = Edge1; + Edge1->PrevInSEL = Prev; + Edge1->NextInSEL = Edge2; + Edge2->PrevInSEL = Edge1; + Edge2->NextInSEL = Next; + } else { + TEdge *Next = Edge1->NextInSEL; + TEdge *Prev = Edge1->PrevInSEL; + Edge1->NextInSEL = Edge2->NextInSEL; + if (Edge1->NextInSEL) + Edge1->NextInSEL->PrevInSEL = Edge1; + Edge1->PrevInSEL = Edge2->PrevInSEL; + if (Edge1->PrevInSEL) + Edge1->PrevInSEL->NextInSEL = Edge1; + Edge2->NextInSEL = Next; + if (Edge2->NextInSEL) + Edge2->NextInSEL->PrevInSEL = Edge2; + Edge2->PrevInSEL = Prev; + if (Edge2->PrevInSEL) + Edge2->PrevInSEL->NextInSEL = Edge2; + } + + if (!Edge1->PrevInSEL) + m_SortedEdges = Edge1; + else if (!Edge2->PrevInSEL) + m_SortedEdges = Edge2; +} +//------------------------------------------------------------------------------ + +TEdge *GetNextInAEL(TEdge *e, Direction dir) { + return dir == dLeftToRight ? e->NextInAEL : e->PrevInAEL; +} +//------------------------------------------------------------------------------ + +void GetHorzDirection(TEdge &HorzEdge, Direction &Dir, cInt &Left, cInt &Right) { + if (HorzEdge.Bot.X < HorzEdge.Top.X) { + Left = HorzEdge.Bot.X; + Right = HorzEdge.Top.X; + Dir = dLeftToRight; + } else { + Left = HorzEdge.Top.X; + Right = HorzEdge.Bot.X; + Dir = dRightToLeft; + } +} +//------------------------------------------------------------------------ + +/******************************************************************************* +* Notes: Horizontal edges (HEs) at scanline intersections (ie at the Top or * +* Bottom of a scanbeam) are processed as if layered. The order in which HEs * +* are processed doesn't matter. HEs intersect with other HE Bot.Xs only [#] * +* (or they could intersect with Top.Xs only, ie EITHER Bot.Xs OR Top.Xs), * +* and with other non-horizontal edges [*]. Once these intersections are * +* processed, intermediate HEs then 'promote' the Edge above (NextInLML) into * +* the AEL. These 'promoted' edges may in turn intersect [%] with other HEs. * +*******************************************************************************/ + +void Clipper::ProcessHorizontal(TEdge *horzEdge) { + Direction dir; + cInt horzLeft, horzRight; + bool IsOpen = (horzEdge->WindDelta == 0); + + GetHorzDirection(*horzEdge, dir, horzLeft, horzRight); + + TEdge *eLastHorz = horzEdge, *eMaxPair = 0; + while (eLastHorz->NextInLML && IsHorizontal(*eLastHorz->NextInLML)) + eLastHorz = eLastHorz->NextInLML; + if (!eLastHorz->NextInLML) + eMaxPair = GetMaximaPair(eLastHorz); + + MaximaList::const_iterator maxIt; + MaximaList::const_reverse_iterator maxRit; + if (m_Maxima.size() > 0) { + //get the first maxima in range (X) ... + if (dir == dLeftToRight) { + maxIt = m_Maxima.begin(); + while (maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.X) + maxIt++; + if (maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.X) + maxIt = m_Maxima.end(); + } else { + maxRit = m_Maxima.rbegin(); + while (maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.X) + maxRit++; + if (maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.X) + maxRit = m_Maxima.rend(); + } + } + + OutPt *op1 = 0; + + for (;;) //loop through consec. horizontal edges + { + + bool IsLastHorz = (horzEdge == eLastHorz); + TEdge *e = GetNextInAEL(horzEdge, dir); + while (e) { + + //this code block inserts extra coords into horizontal edges (in output + //polygons) whereever maxima touch these horizontal edges. This helps + //'simplifying' polygons (ie if the Simplify property is set). + if (m_Maxima.size() > 0) { + if (dir == dLeftToRight) { + while (maxIt != m_Maxima.end() && *maxIt < e->Curr.X) { + if (horzEdge->OutIdx >= 0 && !IsOpen) + AddOutPt(horzEdge, IntPoint(*maxIt, horzEdge->Bot.Y)); + maxIt++; + } + } else { + while (maxRit != m_Maxima.rend() && *maxRit > e->Curr.X) { + if (horzEdge->OutIdx >= 0 && !IsOpen) + AddOutPt(horzEdge, IntPoint(*maxRit, horzEdge->Bot.Y)); + maxRit++; + } + } + } + + if ((dir == dLeftToRight && e->Curr.X > horzRight) || + (dir == dRightToLeft && e->Curr.X < horzLeft)) + break; + + //Also break if we've got to the end of an intermediate horizontal edge ... + //nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal. + if (e->Curr.X == horzEdge->Top.X && horzEdge->NextInLML && + e->Dx < horzEdge->NextInLML->Dx) + break; + + if (horzEdge->OutIdx >= 0 && !IsOpen) //note: may be done multiple times + { +#ifdef use_xyz + if (dir == dLeftToRight) SetZ(e->Curr, *horzEdge, *e); + else SetZ(e->Curr, *e, *horzEdge); +#endif + op1 = AddOutPt(horzEdge, e->Curr); + TEdge *eNextHorz = m_SortedEdges; + while (eNextHorz) { + if (eNextHorz->OutIdx >= 0 && + HorzSegmentsOverlap(horzEdge->Bot.X, + horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X)) { + OutPt *op2 = GetLastOutPt(eNextHorz); + AddJoin(op2, op1, eNextHorz->Top); + } + eNextHorz = eNextHorz->NextInSEL; + } + AddGhostJoin(op1, horzEdge->Bot); + } + + //OK, so far we're still in range of the horizontal Edge but make sure + //we're at the last of consec. horizontals when matching with eMaxPair + if (e == eMaxPair && IsLastHorz) { + if (horzEdge->OutIdx >= 0) + AddLocalMaxPoly(horzEdge, eMaxPair, horzEdge->Top); + DeleteFromAEL(horzEdge); + DeleteFromAEL(eMaxPair); + return; + } + + if (dir == dLeftToRight) { + IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y); + IntersectEdges(horzEdge, e, Pt); + } else { + IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y); + IntersectEdges(e, horzEdge, Pt); + } + TEdge *eNext = GetNextInAEL(e, dir); + SwapPositionsInAEL(horzEdge, e); + e = eNext; + } //end while(e) + + //Break out of loop if HorzEdge.NextInLML is not also horizontal ... + if (!horzEdge->NextInLML || !IsHorizontal(*horzEdge->NextInLML)) + break; + + UpdateEdgeIntoAEL(horzEdge); + if (horzEdge->OutIdx >= 0) + AddOutPt(horzEdge, horzEdge->Bot); + GetHorzDirection(*horzEdge, dir, horzLeft, horzRight); + + } //end for (;;) + + if (horzEdge->OutIdx >= 0 && !op1) { + op1 = GetLastOutPt(horzEdge); + TEdge *eNextHorz = m_SortedEdges; + while (eNextHorz) { + if (eNextHorz->OutIdx >= 0 && + HorzSegmentsOverlap(horzEdge->Bot.X, + horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X)) { + OutPt *op2 = GetLastOutPt(eNextHorz); + AddJoin(op2, op1, eNextHorz->Top); + } + eNextHorz = eNextHorz->NextInSEL; + } + AddGhostJoin(op1, horzEdge->Top); + } + + if (horzEdge->NextInLML) { + if (horzEdge->OutIdx >= 0) { + op1 = AddOutPt(horzEdge, horzEdge->Top); + UpdateEdgeIntoAEL(horzEdge); + if (horzEdge->WindDelta == 0) + return; + //nb: HorzEdge is no longer horizontal here + TEdge *ePrev = horzEdge->PrevInAEL; + TEdge *eNext = horzEdge->NextInAEL; + if (ePrev && ePrev->Curr.X == horzEdge->Bot.X && + ePrev->Curr.Y == horzEdge->Bot.Y && ePrev->WindDelta != 0 && + (ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y && + SlopesEqual(*horzEdge, *ePrev, m_UseFullRange))) { + OutPt *op2 = AddOutPt(ePrev, horzEdge->Bot); + AddJoin(op1, op2, horzEdge->Top); + } else if (eNext && eNext->Curr.X == horzEdge->Bot.X && + eNext->Curr.Y == horzEdge->Bot.Y && eNext->WindDelta != 0 && + eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y && + SlopesEqual(*horzEdge, *eNext, m_UseFullRange)) { + OutPt *op2 = AddOutPt(eNext, horzEdge->Bot); + AddJoin(op1, op2, horzEdge->Top); + } + } else + UpdateEdgeIntoAEL(horzEdge); + } else { + if (horzEdge->OutIdx >= 0) + AddOutPt(horzEdge, horzEdge->Top); + DeleteFromAEL(horzEdge); + } +} +//------------------------------------------------------------------------------ + +bool Clipper::ProcessIntersections(const cInt topY) { + if (!m_ActiveEdges) + return true; + { + BuildIntersectList(topY); + size_t IlSize = m_IntersectList.size(); + if (IlSize == 0) + return true; + if (IlSize == 1 || FixupIntersectionOrder()) + ProcessIntersectList(); + else + return false; + } + + m_SortedEdges = 0; + return true; +} +//------------------------------------------------------------------------------ + +void Clipper::DisposeIntersectNodes() { + for (size_t i = 0; i < m_IntersectList.size(); ++i) + delete m_IntersectList[i]; + m_IntersectList.clear(); +} +//------------------------------------------------------------------------------ + +void Clipper::BuildIntersectList(const cInt topY) { + if (!m_ActiveEdges) + return; + + //prepare for sorting ... + TEdge *e = m_ActiveEdges; + m_SortedEdges = e; + while (e) { + e->PrevInSEL = e->PrevInAEL; + e->NextInSEL = e->NextInAEL; + e->Curr.X = TopX(*e, topY); + e = e->NextInAEL; + } + + //bubblesort ... + bool isModified; + do { + isModified = false; + e = m_SortedEdges; + while (e->NextInSEL) { + TEdge *eNext = e->NextInSEL; + IntPoint Pt; + if (e->Curr.X > eNext->Curr.X) { + IntersectPoint(*e, *eNext, Pt); + if (Pt.Y < topY) + Pt = IntPoint(TopX(*e, topY), topY); + IntersectNode *newNode = new IntersectNode; + newNode->Edge1 = e; + newNode->Edge2 = eNext; + newNode->Pt = Pt; + m_IntersectList.push_back(newNode); + + SwapPositionsInSEL(e, eNext); + isModified = true; + } else + e = eNext; + } + if (e->PrevInSEL) + e->PrevInSEL->NextInSEL = 0; + else + break; + } while (isModified); + m_SortedEdges = 0; //important +} +//------------------------------------------------------------------------------ + + +void Clipper::ProcessIntersectList() { + for (size_t i = 0; i < m_IntersectList.size(); ++i) { + IntersectNode *iNode = m_IntersectList[i]; + { + IntersectEdges(iNode->Edge1, iNode->Edge2, iNode->Pt); + SwapPositionsInAEL(iNode->Edge1, iNode->Edge2); + } + delete iNode; + } + m_IntersectList.clear(); +} +//------------------------------------------------------------------------------ + +bool IntersectListSort(IntersectNode *node1, IntersectNode *node2) { + return node2->Pt.Y < node1->Pt.Y; +} +//------------------------------------------------------------------------------ + +inline bool EdgesAdjacent(const IntersectNode &inode) { + return (inode.Edge1->NextInSEL == inode.Edge2) || + (inode.Edge1->PrevInSEL == inode.Edge2); +} +//------------------------------------------------------------------------------ + +bool Clipper::FixupIntersectionOrder() { + //pre-condition: intersections are sorted Bottom-most first. + //Now it's crucial that intersections are made only between adjacent edges, + //so to ensure this the order of intersections may need adjusting ... + CopyAELToSEL(); + std::sort(m_IntersectList.begin(), m_IntersectList.end(), IntersectListSort); + size_t cnt = m_IntersectList.size(); + for (size_t i = 0; i < cnt; ++i) { + if (!EdgesAdjacent(*m_IntersectList[i])) { + size_t j = i + 1; + while (j < cnt && !EdgesAdjacent(*m_IntersectList[j])) + j++; + if (j == cnt) + return false; + std::swap(m_IntersectList[i], m_IntersectList[j]); + } + SwapPositionsInSEL(m_IntersectList[i]->Edge1, m_IntersectList[i]->Edge2); + } + return true; +} +//------------------------------------------------------------------------------ + +void Clipper::DoMaxima(TEdge *e) { + TEdge *eMaxPair = GetMaximaPairEx(e); + if (!eMaxPair) { + if (e->OutIdx >= 0) + AddOutPt(e, e->Top); + DeleteFromAEL(e); + return; + } + + TEdge *eNext = e->NextInAEL; + while (eNext && eNext != eMaxPair) { + IntersectEdges(e, eNext, e->Top); + SwapPositionsInAEL(e, eNext); + eNext = e->NextInAEL; + } + + if (e->OutIdx == Unassigned && eMaxPair->OutIdx == Unassigned) { + DeleteFromAEL(e); + DeleteFromAEL(eMaxPair); + } else if (e->OutIdx >= 0 && eMaxPair->OutIdx >= 0) { + if (e->OutIdx >= 0) + AddLocalMaxPoly(e, eMaxPair, e->Top); + DeleteFromAEL(e); + DeleteFromAEL(eMaxPair); + } +#ifdef use_lines + else if (e->WindDelta == 0) { + if (e->OutIdx >= 0) { + AddOutPt(e, e->Top); + e->OutIdx = Unassigned; + } + DeleteFromAEL(e); + + if (eMaxPair->OutIdx >= 0) { + AddOutPt(eMaxPair, e->Top); + eMaxPair->OutIdx = Unassigned; + } + DeleteFromAEL(eMaxPair); + } +#endif + else + error("DoMaxima error"); +} +//------------------------------------------------------------------------------ + +void Clipper::ProcessEdgesAtTopOfScanbeam(const cInt topY) { + TEdge *e = m_ActiveEdges; + while (e) { + //1. process maxima, treating them as if they're 'bent' horizontal edges, + // but exclude maxima with horizontal edges. nb: e can't be a horizontal. + bool IsMaximaEdge = IsMaxima(e, topY); + + if (IsMaximaEdge) { + TEdge *eMaxPair = GetMaximaPairEx(e); + IsMaximaEdge = (!eMaxPair || !IsHorizontal(*eMaxPair)); + } + + if (IsMaximaEdge) { + if (m_StrictSimple) + m_Maxima.push_back(e->Top.X); + TEdge *ePrev = e->PrevInAEL; + DoMaxima(e); + if (!ePrev) + e = m_ActiveEdges; + else + e = ePrev->NextInAEL; + } else { + //2. promote horizontal edges, otherwise update Curr.X and Curr.Y ... + if (IsIntermediate(e, topY) && IsHorizontal(*e->NextInLML)) { + UpdateEdgeIntoAEL(e); + if (e->OutIdx >= 0) + AddOutPt(e, e->Bot); + AddEdgeToSEL(e); + } else { + e->Curr.X = TopX(*e, topY); + e->Curr.Y = topY; +#ifdef use_xyz + e->Curr.Z = topY == e->Top.Y ? e->Top.Z : (topY == e->Bot.Y ? e->Bot.Z : 0); +#endif + } + + //When StrictlySimple and 'e' is being touched by another edge, then + //make sure both edges have a vertex here ... + if (m_StrictSimple) { + TEdge *ePrev = e->PrevInAEL; + if ((e->OutIdx >= 0) && (e->WindDelta != 0) && ePrev && (ePrev->OutIdx >= 0) && + (ePrev->Curr.X == e->Curr.X) && (ePrev->WindDelta != 0)) { + IntPoint pt = e->Curr; +#ifdef use_xyz + SetZ(pt, *ePrev, *e); +#endif + OutPt *op = AddOutPt(ePrev, pt); + OutPt *op2 = AddOutPt(e, pt); + AddJoin(op, op2, pt); //StrictlySimple (type-3) join + } + } + + e = e->NextInAEL; + } + } + + //3. Process horizontals at the Top of the scanbeam ... + m_Maxima.sort(); + ProcessHorizontals(); + m_Maxima.clear(); + + //4. Promote intermediate vertices ... + e = m_ActiveEdges; + while (e) { + if (IsIntermediate(e, topY)) { + OutPt *op = 0; + if (e->OutIdx >= 0) + op = AddOutPt(e, e->Top); + UpdateEdgeIntoAEL(e); + + //if output polygons share an edge, they'll need joining later ... + TEdge *ePrev = e->PrevInAEL; + TEdge *eNext = e->NextInAEL; + if (ePrev && ePrev->Curr.X == e->Bot.X && + ePrev->Curr.Y == e->Bot.Y && op && + ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y && + SlopesEqual(e->Curr, e->Top, ePrev->Curr, ePrev->Top, m_UseFullRange) && + (e->WindDelta != 0) && (ePrev->WindDelta != 0)) { + OutPt *op2 = AddOutPt(ePrev, e->Bot); + AddJoin(op, op2, e->Top); + } else if (eNext && eNext->Curr.X == e->Bot.X && + eNext->Curr.Y == e->Bot.Y && op && + eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y && + SlopesEqual(e->Curr, e->Top, eNext->Curr, eNext->Top, m_UseFullRange) && + (e->WindDelta != 0) && (eNext->WindDelta != 0)) { + OutPt *op2 = AddOutPt(eNext, e->Bot); + AddJoin(op, op2, e->Top); + } + } + e = e->NextInAEL; + } +} +//------------------------------------------------------------------------------ + +void Clipper::FixupOutPolyline(OutRec &outrec) { + OutPt *pp = outrec.Pts; + OutPt *lastPP = pp->Prev; + while (pp != lastPP) { + pp = pp->Next; + if (pp->Pt == pp->Prev->Pt) { + if (pp == lastPP) + lastPP = pp->Prev; + OutPt *tmpPP = pp->Prev; + tmpPP->Next = pp->Next; + pp->Next->Prev = tmpPP; + delete pp; + pp = tmpPP; + } + } + + if (pp == pp->Prev) { + DisposeOutPts(pp); + outrec.Pts = 0; + return; + } +} +//------------------------------------------------------------------------------ + +void Clipper::FixupOutPolygon(OutRec &outrec) { + //FixupOutPolygon() - removes duplicate points and simplifies consecutive + //parallel edges by removing the middle vertex. + OutPt *lastOK = 0; + outrec.BottomPt = 0; + OutPt *pp = outrec.Pts; + bool preserveCol = m_PreserveCollinear || m_StrictSimple; + + for (;;) { + if (pp->Prev == pp || pp->Prev == pp->Next) { + DisposeOutPts(pp); + outrec.Pts = 0; + return; + } + + //test for duplicate points and collinear edges ... + if ((pp->Pt == pp->Next->Pt) || (pp->Pt == pp->Prev->Pt) || + (SlopesEqual(pp->Prev->Pt, pp->Pt, pp->Next->Pt, m_UseFullRange) && + (!preserveCol || !Pt2IsBetweenPt1AndPt3(pp->Prev->Pt, pp->Pt, pp->Next->Pt)))) { + lastOK = 0; + OutPt *tmp = pp; + pp->Prev->Next = pp->Next; + pp->Next->Prev = pp->Prev; + pp = pp->Prev; + delete tmp; + } else if (pp == lastOK) + break; + else { + if (!lastOK) + lastOK = pp; + pp = pp->Next; + } + } + outrec.Pts = pp; +} +//------------------------------------------------------------------------------ + +int PointCount(OutPt *Pts) { + if (!Pts) + return 0; + int result = 0; + OutPt *p = Pts; + do { + result++; + p = p->Next; + } while (p != Pts); + return result; +} +//------------------------------------------------------------------------------ + +void Clipper::BuildResult(Paths &polys) { + polys.reserve(m_PolyOuts.size()); + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { + if (!m_PolyOuts[i]->Pts) + continue; + Path pg; + OutPt *p = m_PolyOuts[i]->Pts->Prev; + int cnt = PointCount(p); + if (cnt < 2) + continue; + pg.reserve(cnt); + for (int i = 0; i < cnt; ++i) { + pg.push_back(p->Pt); + p = p->Prev; + } + polys.push_back(pg); + } +} +//------------------------------------------------------------------------------ + +void Clipper::BuildResult2(PolyTree &polytree) { + polytree.Clear(); + polytree.AllNodes.reserve(m_PolyOuts.size()); + //add each output polygon/contour to polytree ... + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) { + OutRec *outRec = m_PolyOuts[i]; + int cnt = PointCount(outRec->Pts); + if ((outRec->IsOpen && cnt < 2) || (!outRec->IsOpen && cnt < 3)) + continue; + FixHoleLinkage(*outRec); + PolyNode *pn = new PolyNode(); + //nb: polytree takes ownership of all the PolyNodes + polytree.AllNodes.push_back(pn); + outRec->PolyNd = pn; + pn->Parent = 0; + pn->Index = 0; + pn->Contour.reserve(cnt); + OutPt *op = outRec->Pts->Prev; + for (int j = 0; j < cnt; j++) { + pn->Contour.push_back(op->Pt); + op = op->Prev; + } + } + + //fixup PolyNode links etc ... + polytree.Childs.reserve(m_PolyOuts.size()); + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) { + OutRec *outRec = m_PolyOuts[i]; + if (!outRec->PolyNd) + continue; + if (outRec->IsOpen) { + outRec->PolyNd->m_IsOpen = true; + polytree.AddChild(*outRec->PolyNd); + } else if (outRec->FirstLeft && outRec->FirstLeft->PolyNd) + outRec->FirstLeft->PolyNd->AddChild(*outRec->PolyNd); + else + polytree.AddChild(*outRec->PolyNd); + } +} +//------------------------------------------------------------------------------ + +void SwapIntersectNodes(IntersectNode &int1, IntersectNode &int2) { + //just swap the contents (because fIntersectNodes is a single-linked-list) + IntersectNode inode = int1; //gets a copy of Int1 + int1.Edge1 = int2.Edge1; + int1.Edge2 = int2.Edge2; + int1.Pt = int2.Pt; + int2.Edge1 = inode.Edge1; + int2.Edge2 = inode.Edge2; + int2.Pt = inode.Pt; +} +//------------------------------------------------------------------------------ + +inline bool E2InsertsBeforeE1(TEdge &e1, TEdge &e2) { + if (e2.Curr.X == e1.Curr.X) { + if (e2.Top.Y > e1.Top.Y) + return e2.Top.X < TopX(e1, e2.Top.Y); + else + return e1.Top.X > TopX(e2, e1.Top.Y); + } else + return e2.Curr.X < e1.Curr.X; +} +//------------------------------------------------------------------------------ + +bool GetOverlap(const cInt a1, const cInt a2, const cInt b1, const cInt b2, + cInt &Left, cInt &Right) { + if (a1 < a2) { + if (b1 < b2) { + Left = std::max(a1, b1); + Right = std::min(a2, b2); + } else { + Left = std::max(a1, b2); + Right = std::min(a2, b1); + } + } else { + if (b1 < b2) { + Left = std::max(a2, b1); + Right = std::min(a1, b2); + } else { + Left = std::max(a2, b2); + Right = std::min(a1, b1); + } + } + return Left < Right; +} +//------------------------------------------------------------------------------ + +inline void UpdateOutPtIdxs(OutRec &outrec) { + OutPt *op = outrec.Pts; + do { + op->Idx = outrec.Idx; + op = op->Prev; + } while (op != outrec.Pts); +} +//------------------------------------------------------------------------------ + +void Clipper::InsertEdgeIntoAEL(TEdge *edge, TEdge *startEdge) { + if (!m_ActiveEdges) { + edge->PrevInAEL = 0; + edge->NextInAEL = 0; + m_ActiveEdges = edge; + } else if (!startEdge && E2InsertsBeforeE1(*m_ActiveEdges, *edge)) { + edge->PrevInAEL = 0; + edge->NextInAEL = m_ActiveEdges; + m_ActiveEdges->PrevInAEL = edge; + m_ActiveEdges = edge; + } else { + if (!startEdge) + startEdge = m_ActiveEdges; + while (startEdge->NextInAEL && + !E2InsertsBeforeE1(*startEdge->NextInAEL, *edge)) + startEdge = startEdge->NextInAEL; + edge->NextInAEL = startEdge->NextInAEL; + if (startEdge->NextInAEL) + startEdge->NextInAEL->PrevInAEL = edge; + edge->PrevInAEL = startEdge; + startEdge->NextInAEL = edge; + } +} +//---------------------------------------------------------------------- + +OutPt *DupOutPt(OutPt *outPt, bool InsertAfter) { + OutPt *result = new OutPt; + result->Pt = outPt->Pt; + result->Idx = outPt->Idx; + if (InsertAfter) { + result->Next = outPt->Next; + result->Prev = outPt; + outPt->Next->Prev = result; + outPt->Next = result; + } else { + result->Prev = outPt->Prev; + result->Next = outPt; + outPt->Prev->Next = result; + outPt->Prev = result; + } + return result; +} +//------------------------------------------------------------------------------ + +bool JoinHorz(OutPt *op1, OutPt *op1b, OutPt *op2, OutPt *op2b, + const IntPoint Pt, bool DiscardLeft) { + Direction Dir1 = (op1->Pt.X > op1b->Pt.X ? dRightToLeft : dLeftToRight); + Direction Dir2 = (op2->Pt.X > op2b->Pt.X ? dRightToLeft : dLeftToRight); + if (Dir1 == Dir2) + return false; + + //When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we + //want Op1b to be on the Right. (And likewise with Op2 and Op2b.) + //So, to facilitate this while inserting Op1b and Op2b ... + //when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b, + //otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.) + if (Dir1 == dLeftToRight) { + while (op1->Next->Pt.X <= Pt.X && + op1->Next->Pt.X >= op1->Pt.X && op1->Next->Pt.Y == Pt.Y) + op1 = op1->Next; + if (DiscardLeft && (op1->Pt.X != Pt.X)) + op1 = op1->Next; + op1b = DupOutPt(op1, !DiscardLeft); + if (op1b->Pt != Pt) { + op1 = op1b; + op1->Pt = Pt; + op1b = DupOutPt(op1, !DiscardLeft); + } + } else { + while (op1->Next->Pt.X >= Pt.X && + op1->Next->Pt.X <= op1->Pt.X && op1->Next->Pt.Y == Pt.Y) + op1 = op1->Next; + if (!DiscardLeft && (op1->Pt.X != Pt.X)) + op1 = op1->Next; + op1b = DupOutPt(op1, DiscardLeft); + if (op1b->Pt != Pt) { + op1 = op1b; + op1->Pt = Pt; + op1b = DupOutPt(op1, DiscardLeft); + } + } + + if (Dir2 == dLeftToRight) { + while (op2->Next->Pt.X <= Pt.X && + op2->Next->Pt.X >= op2->Pt.X && op2->Next->Pt.Y == Pt.Y) + op2 = op2->Next; + if (DiscardLeft && (op2->Pt.X != Pt.X)) + op2 = op2->Next; + op2b = DupOutPt(op2, !DiscardLeft); + if (op2b->Pt != Pt) { + op2 = op2b; + op2->Pt = Pt; + op2b = DupOutPt(op2, !DiscardLeft); + } + } else { + while (op2->Next->Pt.X >= Pt.X && + op2->Next->Pt.X <= op2->Pt.X && op2->Next->Pt.Y == Pt.Y) + op2 = op2->Next; + if (!DiscardLeft && (op2->Pt.X != Pt.X)) + op2 = op2->Next; + op2b = DupOutPt(op2, DiscardLeft); + if (op2b->Pt != Pt) { + op2 = op2b; + op2->Pt = Pt; + op2b = DupOutPt(op2, DiscardLeft); + } + } + + if ((Dir1 == dLeftToRight) == DiscardLeft) { + op1->Prev = op2; + op2->Next = op1; + op1b->Next = op2b; + op2b->Prev = op1b; + } else { + op1->Next = op2; + op2->Prev = op1; + op1b->Prev = op2b; + op2b->Next = op1b; + } + return true; +} +//------------------------------------------------------------------------------ + +bool Clipper::JoinPoints(Join *j, OutRec *outRec1, OutRec *outRec2) { + OutPt *op1 = j->OutPt1, *op1b; + OutPt *op2 = j->OutPt2, *op2b; + + //There are 3 kinds of joins for output polygons ... + //1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are vertices anywhere + //along (horizontal) collinear edges (& Join.OffPt is on the same horizontal). + //2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same + //location at the Bottom of the overlapping segment (& Join.OffPt is above). + //3. StrictSimple joins where edges touch but are not collinear and where + //Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point. + bool isHorizontal = (j->OutPt1->Pt.Y == j->OffPt.Y); + + if (isHorizontal && (j->OffPt == j->OutPt1->Pt) && + (j->OffPt == j->OutPt2->Pt)) { + //Strictly Simple join ... + if (outRec1 != outRec2) + return false; + op1b = j->OutPt1->Next; + while (op1b != op1 && (op1b->Pt == j->OffPt)) + op1b = op1b->Next; + bool reverse1 = (op1b->Pt.Y > j->OffPt.Y); + op2b = j->OutPt2->Next; + while (op2b != op2 && (op2b->Pt == j->OffPt)) + op2b = op2b->Next; + bool reverse2 = (op2b->Pt.Y > j->OffPt.Y); + if (reverse1 == reverse2) + return false; + if (reverse1) { + op1b = DupOutPt(op1, false); + op2b = DupOutPt(op2, true); + op1->Prev = op2; + op2->Next = op1; + op1b->Next = op2b; + op2b->Prev = op1b; + j->OutPt1 = op1; + j->OutPt2 = op1b; + return true; + } else { + op1b = DupOutPt(op1, true); + op2b = DupOutPt(op2, false); + op1->Next = op2; + op2->Prev = op1; + op1b->Prev = op2b; + op2b->Next = op1b; + j->OutPt1 = op1; + j->OutPt2 = op1b; + return true; + } + } else if (isHorizontal) { + //treat horizontal joins differently to non-horizontal joins since with + //them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt + //may be anywhere along the horizontal edge. + op1b = op1; + while (op1->Prev->Pt.Y == op1->Pt.Y && op1->Prev != op1b && op1->Prev != op2) + op1 = op1->Prev; + while (op1b->Next->Pt.Y == op1b->Pt.Y && op1b->Next != op1 && op1b->Next != op2) + op1b = op1b->Next; + if (op1b->Next == op1 || op1b->Next == op2) + return false; //a flat 'polygon' + + op2b = op2; + while (op2->Prev->Pt.Y == op2->Pt.Y && op2->Prev != op2b && op2->Prev != op1b) + op2 = op2->Prev; + while (op2b->Next->Pt.Y == op2b->Pt.Y && op2b->Next != op2 && op2b->Next != op1) + op2b = op2b->Next; + if (op2b->Next == op2 || op2b->Next == op1) + return false; //a flat 'polygon' + + cInt Left, Right; + //Op1 --> Op1b & Op2 --> Op2b are the extremites of the horizontal edges + if (!GetOverlap(op1->Pt.X, op1b->Pt.X, op2->Pt.X, op2b->Pt.X, Left, Right)) + return false; + + //DiscardLeftSide: when overlapping edges are joined, a spike will created + //which needs to be cleaned up. However, we don't want Op1 or Op2 caught up + //on the discard Side as either may still be needed for other joins ... + IntPoint Pt; + bool DiscardLeftSide; + if (op1->Pt.X >= Left && op1->Pt.X <= Right) { + Pt = op1->Pt; + DiscardLeftSide = (op1->Pt.X > op1b->Pt.X); + } else if (op2->Pt.X >= Left && op2->Pt.X <= Right) { + Pt = op2->Pt; + DiscardLeftSide = (op2->Pt.X > op2b->Pt.X); + } else if (op1b->Pt.X >= Left && op1b->Pt.X <= Right) { + Pt = op1b->Pt; + DiscardLeftSide = op1b->Pt.X > op1->Pt.X; + } else { + Pt = op2b->Pt; + DiscardLeftSide = (op2b->Pt.X > op2->Pt.X); + } + j->OutPt1 = op1; + j->OutPt2 = op2; + return JoinHorz(op1, op1b, op2, op2b, Pt, DiscardLeftSide); + } else { + //nb: For non-horizontal joins ... + // 1. Jr.OutPt1.Pt.Y == Jr.OutPt2.Pt.Y + // 2. Jr.OutPt1.Pt > Jr.OffPt.Y + + //make sure the polygons are correctly oriented ... + op1b = op1->Next; + while ((op1b->Pt == op1->Pt) && (op1b != op1)) + op1b = op1b->Next; + bool Reverse1 = ((op1b->Pt.Y > op1->Pt.Y) || + !SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange)); + if (Reverse1) { + op1b = op1->Prev; + while ((op1b->Pt == op1->Pt) && (op1b != op1)) + op1b = op1b->Prev; + if ((op1b->Pt.Y > op1->Pt.Y) || + !SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange)) + return false; + } + op2b = op2->Next; + while ((op2b->Pt == op2->Pt) && (op2b != op2)) + op2b = op2b->Next; + bool Reverse2 = ((op2b->Pt.Y > op2->Pt.Y) || + !SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange)); + if (Reverse2) { + op2b = op2->Prev; + while ((op2b->Pt == op2->Pt) && (op2b != op2)) + op2b = op2b->Prev; + if ((op2b->Pt.Y > op2->Pt.Y) || + !SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange)) + return false; + } + + if ((op1b == op1) || (op2b == op2) || (op1b == op2b) || + ((outRec1 == outRec2) && (Reverse1 == Reverse2))) + return false; + + if (Reverse1) { + op1b = DupOutPt(op1, false); + op2b = DupOutPt(op2, true); + op1->Prev = op2; + op2->Next = op1; + op1b->Next = op2b; + op2b->Prev = op1b; + j->OutPt1 = op1; + j->OutPt2 = op1b; + return true; + } else { + op1b = DupOutPt(op1, true); + op2b = DupOutPt(op2, false); + op1->Next = op2; + op2->Prev = op1; + op1b->Prev = op2b; + op2b->Next = op1b; + j->OutPt1 = op1; + j->OutPt2 = op1b; + return true; + } + } +} +//---------------------------------------------------------------------- + +static OutRec *ParseFirstLeft(OutRec *FirstLeft) { + while (FirstLeft && !FirstLeft->Pts) + FirstLeft = FirstLeft->FirstLeft; + return FirstLeft; +} +//------------------------------------------------------------------------------ + +void Clipper::FixupFirstLefts1(OutRec *OldOutRec, OutRec *NewOutRec) { + //tests if NewOutRec contains the polygon before reassigning FirstLeft + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { + OutRec *outRec = m_PolyOuts[i]; + OutRec *firstLeft = ParseFirstLeft(outRec->FirstLeft); + if (outRec->Pts && firstLeft == OldOutRec) { + if (Poly2ContainsPoly1(outRec->Pts, NewOutRec->Pts)) + outRec->FirstLeft = NewOutRec; + } + } +} +//---------------------------------------------------------------------- + +void Clipper::FixupFirstLefts2(OutRec *InnerOutRec, OutRec *OuterOutRec) { + //A polygon has split into two such that one is now the inner of the other. + //It's possible that these polygons now wrap around other polygons, so check + //every polygon that's also contained by OuterOutRec's FirstLeft container + //(including 0) to see if they've become inner to the new inner polygon ... + OutRec *orfl = OuterOutRec->FirstLeft; + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { + OutRec *outRec = m_PolyOuts[i]; + + if (!outRec->Pts || outRec == OuterOutRec || outRec == InnerOutRec) + continue; + OutRec *firstLeft = ParseFirstLeft(outRec->FirstLeft); + if (firstLeft != orfl && firstLeft != InnerOutRec && firstLeft != OuterOutRec) + continue; + if (Poly2ContainsPoly1(outRec->Pts, InnerOutRec->Pts)) + outRec->FirstLeft = InnerOutRec; + else if (Poly2ContainsPoly1(outRec->Pts, OuterOutRec->Pts)) + outRec->FirstLeft = OuterOutRec; + else if (outRec->FirstLeft == InnerOutRec || outRec->FirstLeft == OuterOutRec) + outRec->FirstLeft = orfl; + } +} +//---------------------------------------------------------------------- +void Clipper::FixupFirstLefts3(OutRec *OldOutRec, OutRec *NewOutRec) { + //reassigns FirstLeft WITHOUT testing if NewOutRec contains the polygon + for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { + OutRec *outRec = m_PolyOuts[i]; + OutRec *firstLeft = ParseFirstLeft(outRec->FirstLeft); + if (outRec->Pts && firstLeft == OldOutRec) + outRec->FirstLeft = NewOutRec; + } +} +//---------------------------------------------------------------------- + +void Clipper::JoinCommonEdges() { + for (JoinList::size_type i = 0; i < m_Joins.size(); i++) { + Join *join = m_Joins[i]; + + OutRec *outRec1 = GetOutRec(join->OutPt1->Idx); + OutRec *outRec2 = GetOutRec(join->OutPt2->Idx); + + if (!outRec1->Pts || !outRec2->Pts) + continue; + if (outRec1->IsOpen || outRec2->IsOpen) + continue; + + //get the polygon fragment with the correct hole state (FirstLeft) + //before calling JoinPoints() ... + OutRec *holeStateRec; + if (outRec1 == outRec2) + holeStateRec = outRec1; + else if (OutRec1RightOfOutRec2(outRec1, outRec2)) + holeStateRec = outRec2; + else if (OutRec1RightOfOutRec2(outRec2, outRec1)) + holeStateRec = outRec1; + else + holeStateRec = GetLowermostRec(outRec1, outRec2); + + if (!JoinPoints(join, outRec1, outRec2)) + continue; + + if (outRec1 == outRec2) { + //instead of joining two polygons, we've just created a new one by + //splitting one polygon into two. + outRec1->Pts = join->OutPt1; + outRec1->BottomPt = 0; + outRec2 = CreateOutRec(); + outRec2->Pts = join->OutPt2; + + //update all OutRec2.Pts Idx's ... + UpdateOutPtIdxs(*outRec2); + + if (Poly2ContainsPoly1(outRec2->Pts, outRec1->Pts)) { + //outRec1 contains outRec2 ... + outRec2->IsHole = !outRec1->IsHole; + outRec2->FirstLeft = outRec1; + + if (m_UsingPolyTree) + FixupFirstLefts2(outRec2, outRec1); + + if ((outRec2->IsHole ^ m_ReverseOutput) == (Area(*outRec2) > 0)) + ReversePolyPtLinks(outRec2->Pts); + + } else if (Poly2ContainsPoly1(outRec1->Pts, outRec2->Pts)) { + //outRec2 contains outRec1 ... + outRec2->IsHole = outRec1->IsHole; + outRec1->IsHole = !outRec2->IsHole; + outRec2->FirstLeft = outRec1->FirstLeft; + outRec1->FirstLeft = outRec2; + + if (m_UsingPolyTree) + FixupFirstLefts2(outRec1, outRec2); + + if ((outRec1->IsHole ^ m_ReverseOutput) == (Area(*outRec1) > 0)) + ReversePolyPtLinks(outRec1->Pts); + } else { + //the 2 polygons are completely separate ... + outRec2->IsHole = outRec1->IsHole; + outRec2->FirstLeft = outRec1->FirstLeft; + + //fixup FirstLeft pointers that may need reassigning to OutRec2 + if (m_UsingPolyTree) + FixupFirstLefts1(outRec1, outRec2); + } + + } else { + //joined 2 polygons together ... + + outRec2->Pts = 0; + outRec2->BottomPt = 0; + outRec2->Idx = outRec1->Idx; + + outRec1->IsHole = holeStateRec->IsHole; + if (holeStateRec == outRec2) + outRec1->FirstLeft = outRec2->FirstLeft; + outRec2->FirstLeft = outRec1; + + if (m_UsingPolyTree) + FixupFirstLefts3(outRec2, outRec1); + } + } +} + +//------------------------------------------------------------------------------ +// ClipperOffset support functions ... +//------------------------------------------------------------------------------ + +DoublePoint GetUnitNormal(const IntPoint &pt1, const IntPoint &pt2) { + if (pt2.X == pt1.X && pt2.Y == pt1.Y) + return DoublePoint(0, 0); + + double Dx = (double) (pt2.X - pt1.X); + double dy = (double) (pt2.Y - pt1.Y); + double f = 1 * 1.0 / std::sqrt(Dx * Dx + dy * dy); + Dx *= f; + dy *= f; + return DoublePoint(dy, -Dx); +} + +//------------------------------------------------------------------------------ +// ClipperOffset class +//------------------------------------------------------------------------------ + +ClipperOffset::ClipperOffset(double miterLimit, double arcTolerance) { + this->MiterLimit = miterLimit; + this->ArcTolerance = arcTolerance; + m_lowest.X = -1; +} +//------------------------------------------------------------------------------ + +ClipperOffset::~ClipperOffset() { + Clear(); +} +//------------------------------------------------------------------------------ + +void ClipperOffset::Clear() { + for (int i = 0; i < m_polyNodes.ChildCount(); ++i) + delete m_polyNodes.Childs[i]; + m_polyNodes.Childs.clear(); + m_lowest.X = -1; +} +//------------------------------------------------------------------------------ + +void ClipperOffset::AddPath(const Path &path, JoinType joinType, EndType endType) { + int highI = (int) path.size() - 1; + if (highI < 0) + return; + PolyNode *newNode = new PolyNode(); + newNode->m_jointype = joinType; + newNode->m_endtype = endType; + + //strip duplicate points from path and also get index to the lowest point ... + if (endType == etClosedLine || endType == etClosedPolygon) + while (highI > 0 && path[0] == path[highI]) + highI--; + newNode->Contour.reserve(highI + 1); + newNode->Contour.push_back(path[0]); + int j = 0, k = 0; + for (int i = 1; i <= highI; i++) + if (newNode->Contour[j] != path[i]) { + j++; + newNode->Contour.push_back(path[i]); + if (path[i].Y > newNode->Contour[k].Y || + (path[i].Y == newNode->Contour[k].Y && + path[i].X < newNode->Contour[k].X)) + k = j; + } + if (endType == etClosedPolygon && j < 2) { + delete newNode; + return; + } + m_polyNodes.AddChild(*newNode); + + //if this path's lowest pt is lower than all the others then update m_lowest + if (endType != etClosedPolygon) + return; + if (m_lowest.X < 0) + m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k); + else { + IntPoint ip = m_polyNodes.Childs[(int) m_lowest.X]->Contour[(int) m_lowest.Y]; + if (newNode->Contour[k].Y > ip.Y || + (newNode->Contour[k].Y == ip.Y && + newNode->Contour[k].X < ip.X)) + m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k); + } +} +//------------------------------------------------------------------------------ + +void ClipperOffset::AddPaths(const Paths &paths, JoinType joinType, EndType endType) { + for (Paths::size_type i = 0; i < paths.size(); ++i) + AddPath(paths[i], joinType, endType); +} +//------------------------------------------------------------------------------ + +void ClipperOffset::FixOrientations() { + //fixup orientations of all closed paths if the orientation of the + //closed path with the lowermost vertex is wrong ... + if (m_lowest.X >= 0 && + !Orientation(m_polyNodes.Childs[(int) m_lowest.X]->Contour)) { + for (int i = 0; i < m_polyNodes.ChildCount(); ++i) { + PolyNode &node = *m_polyNodes.Childs[i]; + if (node.m_endtype == etClosedPolygon || + (node.m_endtype == etClosedLine && Orientation(node.Contour))) + ReversePath(node.Contour); + } + } else { + for (int i = 0; i < m_polyNodes.ChildCount(); ++i) { + PolyNode &node = *m_polyNodes.Childs[i]; + if (node.m_endtype == etClosedLine && !Orientation(node.Contour)) + ReversePath(node.Contour); + } + } +} +//------------------------------------------------------------------------------ + +void ClipperOffset::Execute(Paths &solution, double delta) { + solution.clear(); + FixOrientations(); + DoOffset(delta); + + //now clean up 'corners' ... + Clipper clpr; + clpr.AddPaths(m_destPolys, ptSubject, true); + if (delta > 0) { + clpr.Execute(ctUnion, solution, pftPositive, pftPositive); + } else { + IntRect r = clpr.GetBounds(); + Path outer(4); + outer[0] = IntPoint(r.left - 10, r.bottom + 10); + outer[1] = IntPoint(r.right + 10, r.bottom + 10); + outer[2] = IntPoint(r.right + 10, r.top - 10); + outer[3] = IntPoint(r.left - 10, r.top - 10); + + clpr.AddPath(outer, ptSubject, true); + clpr.ReverseSolution(true); + clpr.Execute(ctUnion, solution, pftNegative, pftNegative); + if (solution.size() > 0) + solution.erase(solution.begin()); + } +} +//------------------------------------------------------------------------------ + +void ClipperOffset::Execute(PolyTree &solution, double delta) { + solution.Clear(); + FixOrientations(); + DoOffset(delta); + + //now clean up 'corners' ... + Clipper clpr; + clpr.AddPaths(m_destPolys, ptSubject, true); + if (delta > 0) { + clpr.Execute(ctUnion, solution, pftPositive, pftPositive); + } else { + IntRect r = clpr.GetBounds(); + Path outer(4); + outer[0] = IntPoint(r.left - 10, r.bottom + 10); + outer[1] = IntPoint(r.right + 10, r.bottom + 10); + outer[2] = IntPoint(r.right + 10, r.top - 10); + outer[3] = IntPoint(r.left - 10, r.top - 10); + + clpr.AddPath(outer, ptSubject, true); + clpr.ReverseSolution(true); + clpr.Execute(ctUnion, solution, pftNegative, pftNegative); + //remove the outer PolyNode rectangle ... + if (solution.ChildCount() == 1 && solution.Childs[0]->ChildCount() > 0) { + PolyNode *outerNode = solution.Childs[0]; + solution.Childs.reserve(outerNode->ChildCount()); + solution.Childs[0] = outerNode->Childs[0]; + solution.Childs[0]->Parent = outerNode->Parent; + for (int i = 1; i < outerNode->ChildCount(); ++i) + solution.AddChild(*outerNode->Childs[i]); + } else + solution.Clear(); + } +} +//------------------------------------------------------------------------------ + +void ClipperOffset::DoOffset(double delta) { + m_destPolys.clear(); + m_delta = delta; + + //if Zero offset, just copy any CLOSED polygons to m_p and return ... + if (NEAR_ZERO(delta)) { + m_destPolys.reserve(m_polyNodes.ChildCount()); + for (int i = 0; i < m_polyNodes.ChildCount(); i++) { + PolyNode &node = *m_polyNodes.Childs[i]; + if (node.m_endtype == etClosedPolygon) + m_destPolys.push_back(node.Contour); + } + return; + } + + //see offset_triginometry3.svg in the documentation folder ... + if (MiterLimit > 2) + m_miterLim = 2 / (MiterLimit * MiterLimit); + else + m_miterLim = 0.5; + + double y; + if (ArcTolerance <= 0.0) + y = def_arc_tolerance; + else if (ArcTolerance > std::fabs(delta) * def_arc_tolerance) + y = std::fabs(delta) * def_arc_tolerance; + else + y = ArcTolerance; + //see offset_triginometry2.svg in the documentation folder ... + double steps = pi / std::acos(1 - y / std::fabs(delta)); + if (steps > std::fabs(delta) * pi) + steps = std::fabs(delta) * pi; //ie excessive precision check + m_sin = std::sin(two_pi / steps); + m_cos = std::cos(two_pi / steps); + m_StepsPerRad = steps / two_pi; + if (delta < 0.0) + m_sin = -m_sin; + + m_destPolys.reserve(m_polyNodes.ChildCount() * 2); + for (int i = 0; i < m_polyNodes.ChildCount(); i++) { + PolyNode &node = *m_polyNodes.Childs[i]; + m_srcPoly = node.Contour; + + int len = (int) m_srcPoly.size(); + if (len == 0 || (delta <= 0 && (len < 3 || node.m_endtype != etClosedPolygon))) + continue; + + m_destPoly.clear(); + if (len == 1) { + if (node.m_jointype == jtRound) { + double X = 1.0, Y = 0.0; + for (cInt j = 1; j <= steps; j++) { + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[0].X + X * delta), + Round(m_srcPoly[0].Y + Y * delta))); + double X2 = X; + X = X * m_cos - m_sin * Y; + Y = X2 * m_sin + Y * m_cos; + } + } else { + double X = -1.0, Y = -1.0; + for (int j = 0; j < 4; ++j) { + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[0].X + X * delta), + Round(m_srcPoly[0].Y + Y * delta))); + if (X < 0) + X = 1; + else if (Y < 0) + Y = 1; + else + X = -1; + } + } + m_destPolys.push_back(m_destPoly); + continue; + } + //build m_normals ... + m_normals.clear(); + m_normals.reserve(len); + for (int j = 0; j < len - 1; ++j) + m_normals.push_back(GetUnitNormal(m_srcPoly[j], m_srcPoly[j + 1])); + if (node.m_endtype == etClosedLine || node.m_endtype == etClosedPolygon) + m_normals.push_back(GetUnitNormal(m_srcPoly[len - 1], m_srcPoly[0])); + else + m_normals.push_back(DoublePoint(m_normals[len - 2])); + + if (node.m_endtype == etClosedPolygon) { + int k = len - 1; + for (int j = 0; j < len; ++j) + OffsetPoint(j, k, node.m_jointype); + m_destPolys.push_back(m_destPoly); + } else if (node.m_endtype == etClosedLine) { + int k = len - 1; + for (int j = 0; j < len; ++j) + OffsetPoint(j, k, node.m_jointype); + m_destPolys.push_back(m_destPoly); + m_destPoly.clear(); + //re-build m_normals ... + DoublePoint n = m_normals[len - 1]; + for (int j = len - 1; j > 0; j--) + m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y); + m_normals[0] = DoublePoint(-n.X, -n.Y); + k = 0; + for (int j = len - 1; j >= 0; j--) + OffsetPoint(j, k, node.m_jointype); + m_destPolys.push_back(m_destPoly); + } else { + int k = 0; + for (int j = 1; j < len - 1; ++j) + OffsetPoint(j, k, node.m_jointype); + + IntPoint pt1; + if (node.m_endtype == etOpenButt) { + int j = len - 1; + pt1 = IntPoint((cInt) Round(m_srcPoly[j].X + m_normals[j].X * + delta), (cInt) Round(m_srcPoly[j].Y + m_normals[j].Y * delta)); + m_destPoly.push_back(pt1); + pt1 = IntPoint((cInt) Round(m_srcPoly[j].X - m_normals[j].X * + delta), (cInt) Round(m_srcPoly[j].Y - m_normals[j].Y * delta)); + m_destPoly.push_back(pt1); + } else { + int j = len - 1; + k = len - 2; + m_sinA = 0; + m_normals[j] = DoublePoint(-m_normals[j].X, -m_normals[j].Y); + if (node.m_endtype == etOpenSquare) + DoSquare(j, k); + else + DoRound(j, k); + } + + //re-build m_normals ... + for (int j = len - 1; j > 0; j--) + m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y); + m_normals[0] = DoublePoint(-m_normals[1].X, -m_normals[1].Y); + + k = len - 1; + for (int j = k - 1; j > 0; --j) + OffsetPoint(j, k, node.m_jointype); + + if (node.m_endtype == etOpenButt) { + pt1 = IntPoint((cInt) Round(m_srcPoly[0].X - m_normals[0].X * delta), + (cInt) Round(m_srcPoly[0].Y - m_normals[0].Y * delta)); + m_destPoly.push_back(pt1); + pt1 = IntPoint((cInt) Round(m_srcPoly[0].X + m_normals[0].X * delta), + (cInt) Round(m_srcPoly[0].Y + m_normals[0].Y * delta)); + m_destPoly.push_back(pt1); + } else { + k = 1; + m_sinA = 0; + if (node.m_endtype == etOpenSquare) + DoSquare(0, 1); + else + DoRound(0, 1); + } + m_destPolys.push_back(m_destPoly); + } + } +} +//------------------------------------------------------------------------------ + +void ClipperOffset::OffsetPoint(int j, int &k, JoinType jointype) { + //cross product ... + m_sinA = (m_normals[k].X * m_normals[j].Y - m_normals[j].X * m_normals[k].Y); + if (std::fabs(m_sinA * m_delta) < 1.0) { + //dot product ... + double cosA = (m_normals[k].X * m_normals[j].X + m_normals[j].Y * m_normals[k].Y); + if (cosA > 0) // angle => 0 degrees + { + m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta), + Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta))); + return; + } + //else angle => 180 degrees + } else if (m_sinA > 1.0) + m_sinA = 1.0; + else if (m_sinA < -1.0) + m_sinA = -1.0; + + if (m_sinA * m_delta < 0) { + m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta), + Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta))); + m_destPoly.push_back(m_srcPoly[j]); + m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[j].X * m_delta), + Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta))); + } else + switch (jointype) { + case jtMiter: { + double r = 1 + (m_normals[j].X * m_normals[k].X + + m_normals[j].Y * m_normals[k].Y); + if (r >= m_miterLim) + DoMiter(j, k, r); + else + DoSquare(j, k); + break; + } + case jtSquare: DoSquare(j, k); + break; + case jtRound: DoRound(j, k); + break; + } + k = j; +} +//------------------------------------------------------------------------------ + +void ClipperOffset::DoSquare(int j, int k) { + double dx = std::tan(std::atan2(m_sinA, + m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y) / 4); + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[j].X + m_delta * (m_normals[k].X - m_normals[k].Y * dx)), + Round(m_srcPoly[j].Y + m_delta * (m_normals[k].Y + m_normals[k].X * dx)))); + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[j].X + m_delta * (m_normals[j].X + m_normals[j].Y * dx)), + Round(m_srcPoly[j].Y + m_delta * (m_normals[j].Y - m_normals[j].X * dx)))); +} +//------------------------------------------------------------------------------ + +void ClipperOffset::DoMiter(int j, int k, double r) { + double q = m_delta / r; + m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + (m_normals[k].X + m_normals[j].X) * q), + Round(m_srcPoly[j].Y + (m_normals[k].Y + m_normals[j].Y) * q))); +} +//------------------------------------------------------------------------------ + +void ClipperOffset::DoRound(int j, int k) { + double a = std::atan2(m_sinA, + m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y); + int steps = std::max((int) Round(m_StepsPerRad * std::fabs(a)), 1); + + double X = m_normals[k].X, Y = m_normals[k].Y, X2; + for (int i = 0; i < steps; ++i) { + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[j].X + X * m_delta), + Round(m_srcPoly[j].Y + Y * m_delta))); + X2 = X; + X = X * m_cos - m_sin * Y; + Y = X2 * m_sin + Y * m_cos; + } + m_destPoly.push_back(IntPoint( + Round(m_srcPoly[j].X + m_normals[j].X * m_delta), + Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta))); +} + +//------------------------------------------------------------------------------ +// Miscellaneous public functions +//------------------------------------------------------------------------------ + +void Clipper::DoSimplePolygons() { + PolyOutList::size_type i = 0; + while (i < m_PolyOuts.size()) { + OutRec *outrec = m_PolyOuts[i++]; + OutPt *op = outrec->Pts; + if (!op || outrec->IsOpen) + continue; + do //for each Pt in Polygon until duplicate found do ... + { + OutPt *op2 = op->Next; + while (op2 != outrec->Pts) { + if ((op->Pt == op2->Pt) && op2->Next != op && op2->Prev != op) { + //split the polygon into two ... + OutPt *op3 = op->Prev; + OutPt *op4 = op2->Prev; + op->Prev = op4; + op4->Next = op; + op2->Prev = op3; + op3->Next = op2; + + outrec->Pts = op; + OutRec *outrec2 = CreateOutRec(); + outrec2->Pts = op2; + UpdateOutPtIdxs(*outrec2); + if (Poly2ContainsPoly1(outrec2->Pts, outrec->Pts)) { + //OutRec2 is contained by OutRec1 ... + outrec2->IsHole = !outrec->IsHole; + outrec2->FirstLeft = outrec; + if (m_UsingPolyTree) + FixupFirstLefts2(outrec2, outrec); + } else if (Poly2ContainsPoly1(outrec->Pts, outrec2->Pts)) { + //OutRec1 is contained by OutRec2 ... + outrec2->IsHole = outrec->IsHole; + outrec->IsHole = !outrec2->IsHole; + outrec2->FirstLeft = outrec->FirstLeft; + outrec->FirstLeft = outrec2; + if (m_UsingPolyTree) + FixupFirstLefts2(outrec, outrec2); + } else { + //the 2 polygons are separate ... + outrec2->IsHole = outrec->IsHole; + outrec2->FirstLeft = outrec->FirstLeft; + if (m_UsingPolyTree) + FixupFirstLefts1(outrec, outrec2); + } + op2 = op; //ie get ready for the Next iteration + } + op2 = op2->Next; + } + op = op->Next; + } while (op != outrec->Pts); + } +} +//------------------------------------------------------------------------------ + +void ReversePath(Path &p) { + std::reverse(p.begin(), p.end()); +} +//------------------------------------------------------------------------------ + +void ReversePaths(Paths &p) { + for (Paths::size_type i = 0; i < p.size(); ++i) + ReversePath(p[i]); +} +//------------------------------------------------------------------------------ + +void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType) { + Clipper c; + c.StrictlySimple(true); + c.AddPath(in_poly, ptSubject, true); + c.Execute(ctUnion, out_polys, fillType, fillType); +} +//------------------------------------------------------------------------------ + +void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType) { + Clipper c; + c.StrictlySimple(true); + c.AddPaths(in_polys, ptSubject, true); + c.Execute(ctUnion, out_polys, fillType, fillType); +} +//------------------------------------------------------------------------------ + +void SimplifyPolygons(Paths &polys, PolyFillType fillType) { + SimplifyPolygons(polys, polys, fillType); +} +//------------------------------------------------------------------------------ + +inline double DistanceSqrd(const IntPoint &pt1, const IntPoint &pt2) { + double Dx = ((double) pt1.X - pt2.X); + double dy = ((double) pt1.Y - pt2.Y); + return (Dx * Dx + dy * dy); +} +//------------------------------------------------------------------------------ + +double DistanceFromLineSqrd( + const IntPoint &pt, const IntPoint &ln1, const IntPoint &ln2) { + //The equation of a line in general form (Ax + By + C = 0) + //given 2 points (x�,y�) & (x�,y�) is ... + //(y� - y�)x + (x� - x�)y + (y� - y�)x� - (x� - x�)y� = 0 + //A = (y� - y�); B = (x� - x�); C = (y� - y�)x� - (x� - x�)y� + //perpendicular distance of point (x�,y�) = (Ax� + By� + C)/Sqrt(A� + B�) + //see http://en.wikipedia.org/wiki/Perpendicular_distance + double A = double(ln1.Y - ln2.Y); + double B = double(ln2.X - ln1.X); + double C = A * ln1.X + B * ln1.Y; + C = A * pt.X + B * pt.Y - C; + return (C * C) / (A * A + B * B); +} +//--------------------------------------------------------------------------- + +bool SlopesNearCollinear(const IntPoint &pt1, + const IntPoint &pt2, const IntPoint &pt3, double distSqrd) { + //this function is more accurate when the point that's geometrically + //between the other 2 points is the one that's tested for distance. + //ie makes it more likely to pick up 'spikes' ... + if (Abs(pt1.X - pt2.X) > Abs(pt1.Y - pt2.Y)) { + if ((pt1.X > pt2.X) == (pt1.X < pt3.X)) + return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd; + else if ((pt2.X > pt1.X) == (pt2.X < pt3.X)) + return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd; + else + return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd; + } else { + if ((pt1.Y > pt2.Y) == (pt1.Y < pt3.Y)) + return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd; + else if ((pt2.Y > pt1.Y) == (pt2.Y < pt3.Y)) + return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd; + else + return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd; + } +} +//------------------------------------------------------------------------------ + +bool PointsAreClose(IntPoint pt1, IntPoint pt2, double distSqrd) { + double Dx = (double) pt1.X - pt2.X; + double dy = (double) pt1.Y - pt2.Y; + return ((Dx * Dx) + (dy * dy) <= distSqrd); +} +//------------------------------------------------------------------------------ + +OutPt *ExcludeOp(OutPt *op) { + OutPt *result = op->Prev; + result->Next = op->Next; + op->Next->Prev = result; + result->Idx = 0; + return result; +} +//------------------------------------------------------------------------------ + +void CleanPolygon(const Path &in_poly, Path &out_poly, double distance) { + //distance = proximity in units/pixels below which vertices + //will be stripped. Default ~= sqrt(2). + + size_t size = in_poly.size(); + + if (size == 0) { + out_poly.clear(); + return; + } + + OutPt *outPts = new OutPt[size]; + for (size_t i = 0; i < size; ++i) { + outPts[i].Pt = in_poly[i]; + outPts[i].Next = &outPts[(i + 1) % size]; + outPts[i].Next->Prev = &outPts[i]; + outPts[i].Idx = 0; + } + + double distSqrd = distance * distance; + OutPt *op = &outPts[0]; + while (op->Idx == 0 && op->Next != op->Prev) { + if (PointsAreClose(op->Pt, op->Prev->Pt, distSqrd)) { + op = ExcludeOp(op); + size--; + } else if (PointsAreClose(op->Prev->Pt, op->Next->Pt, distSqrd)) { + ExcludeOp(op->Next); + op = ExcludeOp(op); + size -= 2; + } else if (SlopesNearCollinear(op->Prev->Pt, op->Pt, op->Next->Pt, distSqrd)) { + op = ExcludeOp(op); + size--; + } else { + op->Idx = 1; + op = op->Next; + } + } + + if (size < 3) + size = 0; + out_poly.resize(size); + for (size_t i = 0; i < size; ++i) { + out_poly[i] = op->Pt; + op = op->Next; + } + delete[] outPts; +} +//------------------------------------------------------------------------------ + +void CleanPolygon(Path &poly, double distance) { + CleanPolygon(poly, poly, distance); +} +//------------------------------------------------------------------------------ + +void CleanPolygons(const Paths &in_polys, Paths &out_polys, double distance) { + out_polys.resize(in_polys.size()); + for (Paths::size_type i = 0; i < in_polys.size(); ++i) + CleanPolygon(in_polys[i], out_polys[i], distance); +} +//------------------------------------------------------------------------------ + +void CleanPolygons(Paths &polys, double distance) { + CleanPolygons(polys, polys, distance); +} +//------------------------------------------------------------------------------ + +void Minkowski(const Path &poly, const Path &path, + Paths &solution, bool isSum, bool isClosed) { + int delta = (isClosed ? 1 : 0); + size_t polyCnt = poly.size(); + size_t pathCnt = path.size(); + Paths pp; + pp.reserve(pathCnt); + if (isSum) + for (size_t i = 0; i < pathCnt; ++i) { + Path p; + p.reserve(polyCnt); + for (size_t j = 0; j < poly.size(); ++j) + p.push_back(IntPoint(path[i].X + poly[j].X, path[i].Y + poly[j].Y)); + pp.push_back(p); + } + else + for (size_t i = 0; i < pathCnt; ++i) { + Path p; + p.reserve(polyCnt); + for (size_t j = 0; j < poly.size(); ++j) + p.push_back(IntPoint(path[i].X - poly[j].X, path[i].Y - poly[j].Y)); + pp.push_back(p); + } + + solution.clear(); + solution.reserve((pathCnt + delta) * (polyCnt + 1)); + for (size_t i = 0; i < pathCnt - 1 + delta; ++i) + for (size_t j = 0; j < polyCnt; ++j) { + Path quad; + quad.reserve(4); + quad.push_back(pp[i % pathCnt][j % polyCnt]); + quad.push_back(pp[(i + 1) % pathCnt][j % polyCnt]); + quad.push_back(pp[(i + 1) % pathCnt][(j + 1) % polyCnt]); + quad.push_back(pp[i % pathCnt][(j + 1) % polyCnt]); + if (!Orientation(quad)) + ReversePath(quad); + solution.push_back(quad); + } +} +//------------------------------------------------------------------------------ + +void MinkowskiSum(const Path &pattern, const Path &path, Paths &solution, bool pathIsClosed) { + Minkowski(pattern, path, solution, true, pathIsClosed); + Clipper c; + c.AddPaths(solution, ptSubject, true); + c.Execute(ctUnion, solution, pftNonZero, pftNonZero); +} +//------------------------------------------------------------------------------ + +void TranslatePath(const Path &input, Path &output, const IntPoint delta) { + //precondition: input != output + output.resize(input.size()); + for (size_t i = 0; i < input.size(); ++i) + output[i] = IntPoint(input[i].X + delta.X, input[i].Y + delta.Y); +} +//------------------------------------------------------------------------------ + +void MinkowskiSum(const Path &pattern, const Paths &paths, Paths &solution, bool pathIsClosed) { + Clipper c; + for (size_t i = 0; i < paths.size(); ++i) { + Paths tmp; + Minkowski(pattern, paths[i], tmp, true, pathIsClosed); + c.AddPaths(tmp, ptSubject, true); + if (pathIsClosed) { + Path tmp2; + TranslatePath(paths[i], tmp2, pattern[0]); + c.AddPath(tmp2, ptClip, true); + } + } + c.Execute(ctUnion, solution, pftNonZero, pftNonZero); +} +//------------------------------------------------------------------------------ + +void MinkowskiDiff(const Path &poly1, const Path &poly2, Paths &solution) { + Minkowski(poly1, poly2, solution, false, true); + Clipper c; + c.AddPaths(solution, ptSubject, true); + c.Execute(ctUnion, solution, pftNonZero, pftNonZero); +} +//------------------------------------------------------------------------------ + +enum NodeType { ntAny, ntOpen, ntClosed }; + +void AddPolyNodeToPaths(const PolyNode &polynode, NodeType nodetype, Paths &paths) { + bool match = true; + if (nodetype == ntClosed) + match = !polynode.IsOpen(); + else if (nodetype == ntOpen) + return; + + if (!polynode.Contour.empty() && match) + paths.push_back(polynode.Contour); + for (int i = 0; i < polynode.ChildCount(); ++i) + AddPolyNodeToPaths(*polynode.Childs[i], nodetype, paths); +} +//------------------------------------------------------------------------------ + +void PolyTreeToPaths(const PolyTree &polytree, Paths &paths) { + paths.resize(0); + paths.reserve(polytree.Total()); + AddPolyNodeToPaths(polytree, ntAny, paths); +} +//------------------------------------------------------------------------------ + +void ClosedPathsFromPolyTree(const PolyTree &polytree, Paths &paths) { + paths.resize(0); + paths.reserve(polytree.Total()); + AddPolyNodeToPaths(polytree, ntClosed, paths); +} +//------------------------------------------------------------------------------ + +void OpenPathsFromPolyTree(PolyTree &polytree, Paths &paths) { + paths.resize(0); + paths.reserve(polytree.Total()); + //Open paths are top level only, so ... + for (int i = 0; i < polytree.ChildCount(); ++i) + if (polytree.Childs[i]->IsOpen()) + paths.push_back(polytree.Childs[i]->Contour); +} +//------------------------------------------------------------------------------ + +std::ostream &operator<<(std::ostream &s, const IntPoint &p) { + s << "(" << p.X << "," << p.Y << ")"; + return s; +} +//------------------------------------------------------------------------------ + +std::ostream &operator<<(std::ostream &s, const Path &p) { + if (p.empty()) + return s; + Path::size_type last = p.size() - 1; + for (Path::size_type i = 0; i < last; i++) + s << "(" << p[i].X << "," << p[i].Y << "), "; + s << "(" << p[last].X << "," << p[last].Y << ")\n"; + return s; +} +//------------------------------------------------------------------------------ + +std::ostream &operator<<(std::ostream &s, const Paths &p) { + for (Paths::size_type i = 0; i < p.size(); i++) + s << p[i]; + s << "\n"; + return s; +} +//------------------------------------------------------------------------------ + +} //ClipperLib namespace diff --git a/engines/twp/clipper/clipper.hpp b/engines/twp/clipper/clipper.hpp new file mode 100644 index 00000000000..c036c130f9f --- /dev/null +++ b/engines/twp/clipper/clipper.hpp @@ -0,0 +1,403 @@ +/******************************************************************************* +* * +* Author : Angus Johnson * +* Version : 6.4.2 * +* Date : 27 February 2017 * +* Website : http://www.angusj.com * +* Copyright : Angus Johnson 2010-2017 * +* * +* License: * +* Use, modification & distribution is subject to Boost Software License Ver 1. * +* http://www.boost.org/LICENSE_1_0.txt * +* * +* Attributions: * +* The code in this library is an extension of Bala Vatti's clipping algorithm: * +* "A generic solution to polygon clipping" * +* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * +* http://portal.acm.org/citation.cfm?id=129906 * +* * +* Computer graphics and geometric modeling: implementation and algorithms * +* By Max K. Agoston * +* Springer; 1 edition (January 4, 2005) * +* http://books.google.com/books?q=vatti+clipping+agoston * +* * +* See also: * +* "Polygon Offsetting by Computing Winding Numbers" * +* Paper no. DETC2005-85513 pp. 565-575 * +* ASME 2005 International Design Engineering Technical Conferences * +* and Computers and Information in Engineering Conference (IDETC/CIE2005) * +* September 24-28, 2005 , Long Beach, California, USA * +* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * +* * +*******************************************************************************/ + +#ifndef clipper_hpp +#define clipper_hpp + +#define CLIPPER_VERSION "6.4.2" + +//use_int32: When enabled 32bit ints are used instead of 64bit ints. This +//improve performance but coordinate values are limited to the range +/- 46340 +//#define use_int32 + +//use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance. +//#define use_xyz + +//use_lines: Enables line clipping. Adds a very minor cost to performance. +#define use_lines + +//use_deprecated: Enables temporary support for the obsolete functions +//#define use_deprecated + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace ClipperLib { + +enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor }; +enum PolyType { ptSubject, ptClip }; +//By far the most widely used winding rules for polygon filling are +//EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32) +//Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL) +//see http://glprogramming.com/red/chapter11.html +enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative }; + +#ifdef use_int32 +typedef int cInt; +static cInt const loRange = 0x7FFF; +static cInt const hiRange = 0x7FFF; +#else +typedef signed long long cInt; +static cInt const loRange = 0x3FFFFFFF; +static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL; +typedef signed long long long64; //used by Int128 class +typedef unsigned long long ulong64; + +#endif + +struct IntPoint { + cInt X; + cInt Y; +#ifdef use_xyz + cInt Z; + IntPoint(cInt x = 0, cInt y = 0, cInt z = 0): X(x), Y(y), Z(z) {}; +#else + IntPoint(cInt x = 0, cInt y = 0) : X(x), Y(y) {}; +#endif + + friend inline bool operator==(const IntPoint &a, const IntPoint &b) { + return a.X == b.X && a.Y == b.Y; + } + friend inline bool operator!=(const IntPoint &a, const IntPoint &b) { + return a.X != b.X || a.Y != b.Y; + } +}; +//------------------------------------------------------------------------------ + +typedef std::vector Path; +typedef std::vector Paths; + +inline Path &operator<<(Path &poly, const IntPoint &p) { + poly.push_back(p); + return poly; +} +inline Paths &operator<<(Paths &polys, const Path &p) { + polys.push_back(p); + return polys; +} + +std::ostream &operator<<(std::ostream &s, const IntPoint &p); +std::ostream &operator<<(std::ostream &s, const Path &p); +std::ostream &operator<<(std::ostream &s, const Paths &p); + +struct DoublePoint { + double X; + double Y; + DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {} + DoublePoint(IntPoint ip) : X((double) ip.X), Y((double) ip.Y) {} +}; +//------------------------------------------------------------------------------ + +#ifdef use_xyz +typedef void (*ZFillCallback)(IntPoint& e1bot, IntPoint& e1top, IntPoint& e2bot, IntPoint& e2top, IntPoint& pt); +#endif + +enum InitOptions { ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4 }; +enum JoinType { jtSquare, jtRound, jtMiter }; +enum EndType { etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound }; + +class PolyNode; +typedef std::vector PolyNodes; + +class PolyNode { +public: + PolyNode(); + virtual ~PolyNode() {}; + Path Contour; + PolyNodes Childs; + PolyNode *Parent; + PolyNode *GetNext() const; + bool IsHole() const; + bool IsOpen() const; + int ChildCount() const; +private: + //PolyNode& operator =(PolyNode& other); + unsigned Index; //node index in Parent.Childs + bool m_IsOpen; + JoinType m_jointype; + EndType m_endtype; + PolyNode *GetNextSiblingUp() const; + void AddChild(PolyNode &child); + friend class Clipper; //to access Index + friend class ClipperOffset; +}; + +class PolyTree : public PolyNode { +public: + ~PolyTree() { Clear(); }; + PolyNode *GetFirst() const; + void Clear(); + int Total() const; +private: + //PolyTree& operator =(PolyTree& other); + PolyNodes AllNodes; + friend class Clipper; //to access AllNodes +}; + +bool Orientation(const Path &poly); +double Area(const Path &poly); +int PointInPolygon(const IntPoint &pt, const Path &path); + +void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType = pftEvenOdd); +void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType = pftEvenOdd); +void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd); + +void CleanPolygon(const Path &in_poly, Path &out_poly, double distance = 1.415); +void CleanPolygon(Path &poly, double distance = 1.415); +void CleanPolygons(const Paths &in_polys, Paths &out_polys, double distance = 1.415); +void CleanPolygons(Paths &polys, double distance = 1.415); + +void MinkowskiSum(const Path &pattern, const Path &path, Paths &solution, bool pathIsClosed); +void MinkowskiSum(const Path &pattern, const Paths &paths, Paths &solution, bool pathIsClosed); +void MinkowskiDiff(const Path &poly1, const Path &poly2, Paths &solution); + +void PolyTreeToPaths(const PolyTree &polytree, Paths &paths); +void ClosedPathsFromPolyTree(const PolyTree &polytree, Paths &paths); +void OpenPathsFromPolyTree(PolyTree &polytree, Paths &paths); + +void ReversePath(Path &p); +void ReversePaths(Paths &p); + +struct IntRect { cInt left; cInt top; cInt right; cInt bottom; }; + +//enums that are used internally ... +enum EdgeSide { esLeft = 1, esRight = 2 }; + +//forward declarations (for stuff used internally) ... +struct TEdge; +struct IntersectNode; +struct LocalMinimum; +struct OutPt; +struct OutRec; +struct Join; + +typedef std::vector PolyOutList; +typedef std::vector EdgeList; +typedef std::vector JoinList; +typedef std::vector IntersectList; + +//------------------------------------------------------------------------------ + +//ClipperBase is the ancestor to the Clipper class. It should not be +//instantiated directly. This class simply abstracts the conversion of sets of +//polygon coordinates into edge objects that are stored in a LocalMinima list. +class ClipperBase { +public: + ClipperBase(); + virtual ~ClipperBase(); + virtual bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed); + bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed); + virtual void Clear(); + IntRect GetBounds(); + bool PreserveCollinear() { return m_PreserveCollinear; }; + void PreserveCollinear(bool value) { m_PreserveCollinear = value; }; +protected: + void DisposeLocalMinimaList(); + TEdge *AddBoundsToLML(TEdge *e, bool IsClosed); + virtual void Reset(); + TEdge *ProcessBound(TEdge *E, bool IsClockwise); + void InsertScanbeam(const cInt Y); + bool PopScanbeam(cInt &Y); + bool LocalMinimaPending(); + bool PopLocalMinima(cInt Y, const LocalMinimum *&locMin); + OutRec *CreateOutRec(); + void DisposeAllOutRecs(); + void DisposeOutRec(PolyOutList::size_type index); + void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2); + void DeleteFromAEL(TEdge *e); + void UpdateEdgeIntoAEL(TEdge *&e); + + typedef std::vector MinimaList; + MinimaList::iterator m_CurrentLM; + MinimaList m_MinimaList; + + bool m_UseFullRange; + EdgeList m_edges; + bool m_PreserveCollinear; + bool m_HasOpenPaths; + PolyOutList m_PolyOuts; + TEdge *m_ActiveEdges; + + typedef std::priority_queue ScanbeamList; + ScanbeamList m_Scanbeam; +}; +//------------------------------------------------------------------------------ + +class Clipper : public virtual ClipperBase { +public: + Clipper(int initOptions = 0); + bool Execute(ClipType clipType, + Paths &solution, + PolyFillType fillType = pftEvenOdd); + bool Execute(ClipType clipType, + Paths &solution, + PolyFillType subjFillType, + PolyFillType clipFillType); + bool Execute(ClipType clipType, + PolyTree &polytree, + PolyFillType fillType = pftEvenOdd); + bool Execute(ClipType clipType, + PolyTree &polytree, + PolyFillType subjFillType, + PolyFillType clipFillType); + bool ReverseSolution() { return m_ReverseOutput; }; + void ReverseSolution(bool value) { m_ReverseOutput = value; }; + bool StrictlySimple() { return m_StrictSimple; }; + void StrictlySimple(bool value) { m_StrictSimple = value; }; + //set the callback function for z value filling on intersections (otherwise Z is 0) +#ifdef use_xyz + void ZFillFunction(ZFillCallback zFillFunc); +#endif +protected: + virtual bool ExecuteInternal(); +private: + JoinList m_Joins; + JoinList m_GhostJoins; + IntersectList m_IntersectList; + ClipType m_ClipType; + typedef std::list MaximaList; + MaximaList m_Maxima; + TEdge *m_SortedEdges; + bool m_ExecuteLocked; + PolyFillType m_ClipFillType; + PolyFillType m_SubjFillType; + bool m_ReverseOutput; + bool m_UsingPolyTree; + bool m_StrictSimple; +#ifdef use_xyz + ZFillCallback m_ZFill; //custom callback +#endif + void SetWindingCount(TEdge &edge); + bool IsEvenOddFillType(const TEdge &edge) const; + bool IsEvenOddAltFillType(const TEdge &edge) const; + void InsertLocalMinimaIntoAEL(const cInt botY); + void InsertEdgeIntoAEL(TEdge *edge, TEdge *startEdge); + void AddEdgeToSEL(TEdge *edge); + bool PopEdgeFromSEL(TEdge *&edge); + void CopyAELToSEL(); + void DeleteFromSEL(TEdge *e); + void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2); + bool IsContributing(const TEdge &edge) const; + bool IsTopHorz(const cInt XPos); + void DoMaxima(TEdge *e); + void ProcessHorizontals(); + void ProcessHorizontal(TEdge *horzEdge); + void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt); + OutPt *AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt); + OutRec *GetOutRec(int idx); + void AppendPolygon(TEdge *e1, TEdge *e2); + void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt); + OutPt *AddOutPt(TEdge *e, const IntPoint &pt); + OutPt *GetLastOutPt(TEdge *e); + bool ProcessIntersections(const cInt topY); + void BuildIntersectList(const cInt topY); + void ProcessIntersectList(); + void ProcessEdgesAtTopOfScanbeam(const cInt topY); + void BuildResult(Paths &polys); + void BuildResult2(PolyTree &polytree); + void SetHoleState(TEdge *e, OutRec *outrec); + void DisposeIntersectNodes(); + bool FixupIntersectionOrder(); + void FixupOutPolygon(OutRec &outrec); + void FixupOutPolyline(OutRec &outrec); + bool IsHole(TEdge *e); + bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl); + void FixHoleLinkage(OutRec &outrec); + void AddJoin(OutPt *op1, OutPt *op2, const IntPoint offPt); + void ClearJoins(); + void ClearGhostJoins(); + void AddGhostJoin(OutPt *op, const IntPoint offPt); + bool JoinPoints(Join *j, OutRec *outRec1, OutRec *outRec2); + void JoinCommonEdges(); + void DoSimplePolygons(); + void FixupFirstLefts1(OutRec *OldOutRec, OutRec *NewOutRec); + void FixupFirstLefts2(OutRec *InnerOutRec, OutRec *OuterOutRec); + void FixupFirstLefts3(OutRec *OldOutRec, OutRec *NewOutRec); +#ifdef use_xyz + void SetZ(IntPoint& pt, TEdge& e1, TEdge& e2); +#endif +}; +//------------------------------------------------------------------------------ + +class ClipperOffset { +public: + ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25); + ~ClipperOffset(); + void AddPath(const Path &path, JoinType joinType, EndType endType); + void AddPaths(const Paths &paths, JoinType joinType, EndType endType); + void Execute(Paths &solution, double delta); + void Execute(PolyTree &solution, double delta); + void Clear(); + double MiterLimit; + double ArcTolerance; +private: + Paths m_destPolys; + Path m_srcPoly; + Path m_destPoly; + std::vector m_normals; + double m_delta, m_sinA, m_sin, m_cos; + double m_miterLim, m_StepsPerRad; + IntPoint m_lowest; + PolyNode m_polyNodes; + + void FixOrientations(); + void DoOffset(double delta); + void OffsetPoint(int j, int &k, JoinType jointype); + void DoSquare(int j, int k); + void DoMiter(int j, int k, double r); + void DoRound(int j, int k); +}; +//------------------------------------------------------------------------------ + +class clipperException : public std::exception { +public: + clipperException(const char *description) : m_descr(description) {} + virtual ~clipperException() throw() {} + virtual const char *what() const throw() { return m_descr.c_str(); } +private: + std::string m_descr; +}; +//------------------------------------------------------------------------------ + +} //ClipperLib namespace + +#endif //clipper_hpp + + diff --git a/engines/twp/gfx.cpp b/engines/twp/gfx.cpp index d4550a07403..d64a139de08 100644 --- a/engines/twp/gfx.cpp +++ b/engines/twp/gfx.cpp @@ -250,6 +250,11 @@ void Gfx::drawLines(Vertex *vertices, int count, Math::Matrix4 trsf) { drawPrimitives(GL_LINE_STRIP, vertices, count, trsf); } +void Gfx::drawLinesLoop(Vertex *vertices, int count, Math::Matrix4 trsf) { + noTexture(); + drawPrimitives(GL_LINE_LOOP, vertices, count, trsf); +} + void Gfx::drawPrimitives(uint32 primitivesType, Vertex *vertices, int v_size, Math::Matrix4 trsf, Texture *texture) { if (v_size > 0) { _texture = texture ? texture : &gEmptyTexture; diff --git a/engines/twp/gfx.h b/engines/twp/gfx.h index f2365752e51..6c4c7e1d4fa 100644 --- a/engines/twp/gfx.h +++ b/engines/twp/gfx.h @@ -162,6 +162,7 @@ public: void drawPrimitives(uint32 primitivesType, Vertex *vertices, int v_size, Math::Matrix4 transf = Math::Matrix4(), Texture *texture = NULL); void drawPrimitives(uint32 primitivesType, Vertex *vertices, int v_size, uint32 *indices, int i_size, Math::Matrix4 transf = Math::Matrix4(), Texture *texture = NULL); void drawLines(Vertex *vertices, int count, Math::Matrix4 trsf = Math::Matrix4()); + void drawLinesLoop(Vertex *vertices, int count, Math::Matrix4 trsf = Math::Matrix4()); void draw(Vertex *vertices, int v_size, uint32 *indices, int i_size, Math::Matrix4 trsf = Math::Matrix4(), Texture *texture = NULL); void drawQuad(Math::Vector2d size, Color color = Color(), Math::Matrix4 trsf = Math::Matrix4()); void drawSprite(Common::Rect textRect, Texture &texture, Color color = Color(), Math::Matrix4 trsf = Math::Matrix4(), bool flipX = false, bool flipY = false); diff --git a/engines/twp/graph.cpp b/engines/twp/graph.cpp new file mode 100644 index 00000000000..9a064a202f8 --- /dev/null +++ b/engines/twp/graph.cpp @@ -0,0 +1,504 @@ +/* ScummVM - Graphic Adventure Engine + * + * ScummVM is the legal property of its developers, whose names + * are too numerous to list here. Please refer to the COPYRIGHT + * file distributed with this source distribution. + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + +#include "twp/graph.h" +#include "twp/util.h" + +#define EPSILON 1e-9 + +namespace Twp { + +struct Segment { + Segment(Math::Vector2d s, Math::Vector2d t); + void normalize(); + float distance(Math::Vector2d p); + + Math::Vector2d start, to; + float left, right, top, bottom; + float a, b, c; +}; + +Segment::Segment(Math::Vector2d s, Math::Vector2d t) { + start = s; + to = t; + left = MIN(s.getX(), t.getX()); + right = MAX(s.getX(), t.getX()); + top = MIN(s.getY(), t.getY()); + bottom = MAX(s.getY(), t.getY()); + a = s.getY() - t.getY(); + b = t.getX() - s.getX(); + c = -a * s.getX() - b * s.getY(); + normalize(); +} + +void Segment::normalize() { + float z = sqrt(a * a + b * b); + if (abs(z) > EPSILON) { + a /= z; + b /= z; + c /= z; + } +} + +float Segment::distance(Math::Vector2d p) { + return a * p.getX() + b * p.getY() + c; +} + +IndexedPriorityQueue::IndexedPriorityQueue(Common::Array &keys) + : _keys(keys) { +} + +void IndexedPriorityQueue::insert(int index) { + _data.push_back(index); + reorderUp(); +} + +int IndexedPriorityQueue::pop() { + int r = _data[0]; + _data[0] = _data[_data.size() - 1]; + _data.pop_back(); + reorderDown(); + return r; +} + +void IndexedPriorityQueue::reorderUp() { + if (_data.empty()) + return; + size_t a = _data.size() - 1; + while (a > 0) { + if (_keys[_data[a]] >= _keys[_data[a - 1]]) + return; + int tmp = _data[a]; + _data[a] = _data[a - 1]; + _data[a - 1] = tmp; + a--; + } +} + +void IndexedPriorityQueue::reorderDown() { + if (_data.empty()) + return; + for (int a = 0; a < static_cast(_data.size() - 1); a++) { + if (_keys[_data[a]] <= _keys[_data[a + 1]]) + return; + int tmp = _data[a]; + _data[a] = _data[a + 1]; + _data[a + 1] = tmp; + } +} + +bool IndexedPriorityQueue::isEmpty() { + return _data.empty(); +} + +Graph::Graph() {} + +Graph::Graph(const Graph &graph) { + _nodes = graph._nodes; + _concaveVertices = graph._concaveVertices; + for (int i = 0; i < graph._edges.size(); i++) { + const Common::Array &e = graph._edges[i]; + Common::Array sEdges; + for (int j = 0; j < e.size(); j++) { + const GraphEdge &se = e[j]; + sEdges.push_back(GraphEdge(se.start, se.to, se.cost)); + } + _edges.push_back(sEdges); + } +} + +GraphEdge::GraphEdge(int s, int t, float c) + : start(s), to(t), cost(c) { +} + +void Graph::addNode(Math::Vector2d node) { + _nodes.push_back(node); + _edges.push_back(Common::Array()); +} + +AStar::AStar(Graph *graph) + : _fCost(graph->_nodes.size()), _gCost(graph->_nodes.size()), _spt(graph->_nodes.size()), _sf(graph->_nodes.size()) { + _graph = graph; +} + +// TODO this really should have some simd optimization +// matrix multiplication is based on this +static float dot(Math::Vector2d u, Math::Vector2d v) { + float result = 0.f; + result += u.getX() * v.getX(); + result += u.getY() * v.getY(); + return result; +} + +static float length(Math::Vector2d v) { return sqrt(dot(v, v)); } + +void AStar::search(int source, int target) { + IndexedPriorityQueue pq(_fCost); + pq.insert(source); + while (!pq.isEmpty()) { + int NCN = pq.pop(); + _spt[NCN] = _sf[NCN]; + if (NCN != target) { + // for (edge in _graph->edges[NCN]) { + for (int i = 0; i < _graph->_edges[NCN].size(); i++) { + GraphEdge &edge = _graph->_edges[NCN][i]; + float Hcost = length(_graph->_nodes[edge.to] - _graph->_nodes[target]); + float Gcost = _gCost[NCN] + edge.cost; + if (!_sf[edge.to]) { + _fCost[edge.to] = Gcost + Hcost; + _gCost[edge.to] = Gcost; + pq.insert(edge.to); + _sf[edge.to] = &edge; + } else if (Gcost < _gCost[edge.to] && !_spt[edge.to]) { + _fCost[edge.to] = Gcost + Hcost; + _gCost[edge.to] = Gcost; + pq.reorderUp(); + _sf[edge.to] = &edge; + } + } + } + } +} + +void Graph::addEdge(GraphEdge e) { + if (!edge(e.start, e.to)) { + _edges[e.start].push_back(e); + } + if (!edge(e.to, e.start)) { + GraphEdge e2(e.to, e.start, e.cost); + _edges[e.to].push_back(e); + } +} + +GraphEdge *Graph::edge(int start, int to) { + Common::Array &edges = _edges[start]; + for (int i = 0; i < edges.size(); i++) { + GraphEdge *e = &edges[i]; + if (e->to == to) + return e; + } + return nullptr; +} + +Common::Array reverse(const Common::Array &arr) { + Common::Array result(arr.size()); + for (int i = 0; i < arr.size(); i++) { + result[arr.size() - 1 - i] = arr[i]; + } + return result; +} + +Common::Array Graph::getPath(int source, int target) { + Common::Array result; + AStar astar(this); + if (target >= 0) { + astar.search(source, target); + int nd = target; + result.push_back(nd); + while ((nd != source) && (astar._spt[nd] != nullptr)) { + nd = astar._spt[nd]->start; + result.push_back(nd); + } + return reverse(result); + } + return result; +} + +void PathFinder::setWalkboxes(const Common::Array &walkboxes) { + _walkboxes = walkboxes; +} + +// Indicates whether or not the specified position is inside this walkbox. +static bool inside(const Walkbox &self, Math::Vector2d position, bool toleranceOnOutside = true) { + bool result = false; + Math::Vector2d point = position; + const float epsilon = 1.0f; + + // Must have 3 or more edges + const Common::Array &polygon = self.getPoints(); + if (polygon.size() < 3) + return false; + + Math::Vector2d oldPoint(polygon[polygon.size() - 1]); + float oldSqDist = distanceSquared(oldPoint, point); + + for (int i = 0; i < polygon.size(); i++) { + Math::Vector2d newPoint = polygon[i]; + float newSqDist = distanceSquared(newPoint, point); + + if (oldSqDist + newSqDist + 2.0f * sqrt(oldSqDist * newSqDist) - distanceSquared(newPoint, oldPoint) < epsilon) + return toleranceOnOutside; + + Math::Vector2d left; + Math::Vector2d right; + if (newPoint.getX() > oldPoint.getX()) { + left = oldPoint; + right = newPoint; + } else { + left = newPoint; + right = oldPoint; + } + + if ((left.getX() < point.getX()) && (point.getX() <= right.getX()) && ((point.getY() - left.getY()) * (right.getX() - left.getX()) < (right.getY() - left.getY()) * (point.getX() - left.getX()))) + result = !result; + + oldPoint = newPoint; + oldSqDist = newSqDist; + } + return result; +} + +Math::Vector2d Walkbox::getClosestPointOnEdge(Math::Vector2d p3) const { + int vi1 = -1; + int vi2 = -1; + float minDist = 100000.0f; + + const Common::Array &polygon = getPoints(); + for (int i = 0; i < polygon.size(); i++) { + float dist = distanceToSegment(p3, polygon[i], polygon[(i + 1) % polygon.size()]); + if (dist < minDist) { + minDist = dist; + vi1 = i; + vi2 = (i + 1) % polygon.size(); + } + } + + Math::Vector2d p1 = polygon[vi1]; + Math::Vector2d p2 = polygon[vi2]; + + float x1 = p1.getX(); + float y1 = p1.getY(); + float x2 = p2.getX(); + float y2 = p2.getY(); + float x3 = p3.getX(); + float y3 = p3.getY(); + + float u = (((x3 - x1) * (x2 - x1)) + ((y3 - y1) * (y2 - y1))) / (((x2 - x1) * (x2 - x1)) + ((y2 - y1) * (y2 - y1))); + + float xu = x1 + u * (x2 - x1); + float yu = y1 + u * (y2 - y1); + + if (u < 0) + return Math::Vector2d(x1, y1); + if (u > 1) + return Math::Vector2d(x2, y2); + return Math::Vector2d(xu, yu); +} + +static bool less(Math::Vector2d p1, Math::Vector2d p2) { + return ((p1.getX() < p2.getX() - EPSILON) || (abs(p1.getX() - p2.getX()) < EPSILON) && (p1.getY() < p2.getY() - EPSILON)); +} + +static float det(float a, float b, float c, float d) { + return a * d - b * c; +} + +static bool betw(float l, float r, float x) { + return (MIN(l, r) <= x + EPSILON) && (x <= MAX(l, r) + EPSILON); +} + +static bool intersect_1d(float a, float b, float c, float d) { + float a2 = a; + float b2 = b; + float c2 = c; + float d2 = d; + if (a2 > b2) + SWAP(a2, b2); + if (c2 > d2) + SWAP(c2, d2); + return MAX(a2, c2) <= MIN(b2, d2) + EPSILON; +} + +static bool lineSegmentsCross(Math::Vector2d a1, Math::Vector2d b1, Math::Vector2d c1, Math::Vector2d d1) { + Math::Vector2d a = a1; + Math::Vector2d b = b1; + Math::Vector2d c = c1; + Math::Vector2d d = d1; + if ((!intersect_1d(a.getX(), b.getX(), c.getX(), d.getX())) || (!intersect_1d(a.getY(), b.getY(), c.getY(), d.getY()))) + return false; + + Segment m(a, b); + Segment n(c, d); + float zn = det(m.a, m.b, n.a, n.b); + + if (abs(zn) < EPSILON) { + if ((abs(m.distance(c)) > EPSILON) || (abs(n.distance(a)) > EPSILON)) + return false; + + if (less(b, a)) + SWAP(a, b); + if (less(d, c)) + SWAP(c, d); + return true; + } + + float lx = -det(m.c, m.b, n.c, n.b) / zn; + float ly = -det(m.a, m.c, n.a, n.c) / zn; + return betw(a.getX(), b.getX(), lx) && betw(a.getY(), b.getY(), ly) && betw(c.getX(), d.getX(), lx) && betw(c.getY(), d.getY(), ly); +} + +bool PathFinder::inLineOfSight(Math::Vector2d start, Math::Vector2d to) { + const float epsilon = 0.5f; + + // Not in LOS if any of the ends is outside the polygon + if (!_walkboxes[0].contains(start) || !_walkboxes[0].contains(to)) + return false; + + // In LOS if it's the same start and end location + if (length(start - to) < epsilon) + return true; + + // Not in LOS if any edge is intersected by the start-end line segment + for (int i = 0; i < _walkboxes.size(); i++) { + Walkbox &walkbox = _walkboxes[i]; + const Common::Array &polygon = walkbox.getPoints(); + int size = polygon.size(); + for (int j = 0; j < size; j++) { + Math::Vector2d v1 = polygon[j]; + Math::Vector2d v2 = polygon[(j + 1) % size]; + if (!lineSegmentsCross(start, to, v1, v2)) + continue; + + // In some cases a 'snapped' endpoint is just a little over the line due to rounding errors. So a 0.5 margin is used to tackle those cases. + if ((distanceToSegment(start, v1, v2) > epsilon) && (distanceToSegment(to, v1, v2) > epsilon)) + return false; + } + } + + // Finally the middle point in the segment determines if in LOS or not + Math::Vector2d v2 = (start + to) / 2.0f; + bool result = _walkboxes[0].contains(v2); + for (int i = 1; i < _walkboxes.size(); i++) { + if (_walkboxes[i].contains(v2, false)) + result = false; + } + return result; +} + +static int minIndex(const Common::Array values) { + float min = values[0]; + int index = 0; + for (int i = 1; i < values.size(); i++) { + if (values[i] < min) { + index = i; + min = values[i]; + } + } + return index; +} + +Graph *PathFinder::createGraph() { + Graph *result = new Graph(); + for (int i = 0; i < _walkboxes.size(); i++) { + Walkbox &walkbox = _walkboxes[i]; + if (walkbox.getPoints().size() > 2) { + bool visible = walkbox.isVisible(); + for (int j = 0; j < walkbox.getPoints().size(); j++) { + if (walkbox.concave(j) == visible) { + Math::Vector2d vertex = walkbox.getPoints()[j]; + result->_concaveVertices.push_back(vertex); + result->addNode(vertex); + } + } + } + } + + for (int i = 0; i < result->_concaveVertices.size(); i++) { + for (int j = 0; j < result->_concaveVertices.size(); j++) { + Math::Vector2d c1(result->_concaveVertices[i]); + Math::Vector2d c2(result->_concaveVertices[j]); + if (inLineOfSight(c1, c2)) { + float d = distance(c1, c2); + result->addEdge(GraphEdge(i, j, d)); + } + } + } + return result; +} + +Common::Array PathFinder::calculatePath(Math::Vector2d start, Math::Vector2d to) { + Common::Array result; + if (_walkboxes.size() > 0) { + // find the walkbox where the actor is and put it first + for (int i = 0; i < _walkboxes.size(); i++) { + const Walkbox &wb = _walkboxes[i]; + if (inside(wb, start) && (i != 0)) { + SWAP(_walkboxes[0], _walkboxes[i]); + break; + } + } + + // if no walkbox has been found => find the nearest walkbox + if (!inside(_walkboxes[0], start)) { + Common::Array dists(_walkboxes.size()); + for (int i = 0; i < _walkboxes.size(); i++) { + Walkbox wb = _walkboxes[i]; + dists[i] = distance(wb.getClosestPointOnEdge(start), start); + } + + int index = minIndex(dists); + if (index != 0) + SWAP(_walkboxes[0], _walkboxes[index]); + } + + if (!_graph) + _graph = createGraph(); + + // create new node on start position + Graph *walkgraph = new Graph(*_graph); + int startNodeIndex = walkgraph->_nodes.size(); + + // if destination is not inside current walkable area, then get the closest point + const Walkbox &wb = _walkboxes[0]; + if (wb.isVisible() && !wb.contains(to)) + to = wb.getClosestPointOnEdge(to); + + walkgraph->addNode(start); + + for (int i = 0; i < walkgraph->_concaveVertices.size(); i++) { + Math::Vector2d c = walkgraph->_concaveVertices[i]; + if (inLineOfSight(start, c)) + walkgraph->addEdge(GraphEdge(startNodeIndex, i, distance(start, c))); + } + + // create new node on end position + int endNodeIndex = walkgraph->_nodes.size(); + walkgraph->addNode(to); + + for (int i = 0; i < walkgraph->_concaveVertices.size(); i++) { + Math::Vector2d c = walkgraph->_concaveVertices[i]; + if (inLineOfSight(to, c)) + walkgraph->addEdge(GraphEdge(i, endNodeIndex, distance(to, c))); + } + + if (inLineOfSight(start, to)) + walkgraph->addEdge(GraphEdge(startNodeIndex, endNodeIndex, distance(start, to))); + + Common::Array indices = walkgraph->getPath(startNodeIndex, endNodeIndex); + for (int i = 0; i < indices.size(); i++) { + int index = indices[i]; + result.push_back(walkgraph->_nodes[index]); + } + } + return result; +} + +} // namespace Twp diff --git a/engines/twp/graph.h b/engines/twp/graph.h new file mode 100644 index 00000000000..38f9d4a2783 --- /dev/null +++ b/engines/twp/graph.h @@ -0,0 +1,131 @@ +/* ScummVM - Graphic Adventure Engine + * + * ScummVM is the legal property of its developers, whose names + * are too numerous to list here. Please refer to the COPYRIGHT + * file distributed with this source distribution. + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + +#ifndef TWP_GRAPH_H +#define TWP_GRAPH_H + +#include "common/array.h" +#include "math/vector2d.h" + +namespace Twp { + +class IndexedPriorityQueue { +public: + explicit IndexedPriorityQueue(Common::Array &keys); + + void insert(int index); + int pop(); + + void reorderUp(); + void reorderDown(); + + bool isEmpty(); + +private: + Common::Array &_keys; + Common::Array _data; +}; + +// An edge is a part of a walkable area, it is used by a Graph. +// See also: +// - PathFinder +// - Graph +struct GraphEdge { + GraphEdge(int start, int to, float cost); + + int start; // Index of the node in the graph representing the start of the edge. + int to; // Index of the node in the graph representing the end of the edge. + float cost; // Cost of the edge in the graph. +}; + +// A graph helps to find a path between two points. +// This class has been ported from http://www.groebelsloot.com/2016/03/13/pathfinding-part-2/ +// and modified +class Graph { +public: + Graph(); + Graph(const Graph &graph); + void addNode(Math::Vector2d node); + void addEdge(GraphEdge edge); + // Gets the edge from 'from' index to 'to' index. + GraphEdge *edge(int start, int to); + Common::Array getPath(int source, int target); + + Common::Array _nodes; + Common::Array > _edges; + Common::Array _concaveVertices; +}; + +class AStar { +public: + AStar(Graph *graph); + void search(int source, int target); + + Graph *_graph = nullptr; + Common::Array _spt; // The Shortest Path Tree + Common::Array _gCost; // This array will store the G cost of each node + Common::Array _fCost; // This array will store the F cost of each node + Common::Array _sf; // The Search Frontier +}; + +// Represents an area where an actor can or cannot walk +class Walkbox { +public: + Walkbox(const Common::Array &polygon, bool visible = true); + + // Indicates whether or not the specified position is inside this walkbox. + bool contains(Math::Vector2d position, bool toleranceOnOutside = true) const; + bool concave(int vertex) const; + void setVisible(bool visible) { _visible = visible; } + bool isVisible() const { return _visible; } + const Common::Array& getPoints() const { return _polygon; } + Math::Vector2d getClosestPointOnEdge(Math::Vector2d p3) const; + +public: + Common::String _name; + +private: + Common::Array _polygon; + bool _visible; +}; + +// A PathFinder is used to find a walkable path within one or several walkboxes. +class PathFinder { +public: + void setWalkboxes(const Common::Array &walkboxes); + Common::Array calculatePath(Math::Vector2d start, Math::Vector2d to); + void setDirty(bool dirty) { _isDirty = dirty; } + bool isDirty() const { return _isDirty; } + const Graph* getGraph() const { return _graph; } + +private: + Graph *createGraph(); + bool inLineOfSight(Math::Vector2d start, Math::Vector2d to); + +private: + Common::Array _walkboxes; + Graph *_graph = nullptr; + bool _isDirty = true; +}; + +} // namespace Twp + +#endif diff --git a/engines/twp/module.mk b/engines/twp/module.mk index 2bb57b22dba..4d9f081e9e8 100644 --- a/engines/twp/module.mk +++ b/engines/twp/module.mk @@ -21,8 +21,11 @@ SQUIRREL_OBJS = \ squirrel/sqstdrex.o \ squirrel/sqstdaux.o +CLIPPER_OBJS = clipper/clipper.o + MODULE_OBJS = \ $(SQUIRREL_OBJS) \ + $(CLIPPER_OBJS) \ twp.o \ console.o \ metaengine.o \ @@ -58,6 +61,8 @@ MODULE_OBJS = \ hud.o \ lip.o \ callback.o \ + graph.o \ + walkboxnode.o \ # This module can be built as a plugin ifeq ($(ENABLE_TWP), DYNAMIC_PLUGIN) diff --git a/engines/twp/motor.h b/engines/twp/motor.h index d93e3c0f178..fa1448ed5d7 100644 --- a/engines/twp/motor.h +++ b/engines/twp/motor.h @@ -208,6 +208,8 @@ public: WalkTo(Object *obj, Math::Vector2d dest, int facing = 0); virtual void disable() override; + const Common::Array& getPath() const { return _path; } + private: void actorArrived(); virtual void update(float elapsed) override; diff --git a/engines/twp/room.cpp b/engines/twp/room.cpp index 017cc35b0a5..ede917c10f8 100644 --- a/engines/twp/room.cpp +++ b/engines/twp/room.cpp @@ -19,6 +19,8 @@ * */ +#define FORBIDDEN_SYMBOL_ALLOW_ALL + #include "twp/twp.h" #include "twp/room.h" #include "twp/ggpack.h" @@ -28,6 +30,7 @@ #include "twp/ids.h" #include "twp/object.h" #include "twp/util.h" +#include "twp/clipper/clipper.hpp" #include "common/algorithm.h" namespace Twp { @@ -94,6 +97,50 @@ static Scaling parseScaling(const Common::JSONArray &jScalings) { return result; } +static ClipperLib::Path toPolygon(const Walkbox &walkbox) { + ClipperLib::Path path; + const Common::Array &points = walkbox.getPoints(); + for (int i = 0; i < points.size(); i++) { + path.push_back(ClipperLib::IntPoint(points[i].getX(), points[i].getY())); + } + return path; +} + +static Walkbox toWalkbox(const ClipperLib::Path &path) { + Common::Array pts; + for (int i = 0; i < path.size(); i++) { + const ClipperLib::IntPoint &pt = path[i]; + pts.push_back(Math::Vector2d(pt.X, pt.Y)); + } + return Walkbox(pts, ClipperLib::Orientation(path)); +} + +static Common::Array merge(const Common::Array &walkboxes) { + Common::Array result; + if (walkboxes.size() > 0) { + ClipperLib::Paths subjects, clips; + for (int i = 0; i < walkboxes.size(); i++) { + const Walkbox &wb = walkboxes[i]; + if (wb.isVisible()) { + subjects.push_back(toPolygon(wb)); + } else { + clips.push_back(toPolygon(wb)); + } + } + + ClipperLib::Paths solutions; + ClipperLib::Clipper c; + c.AddPaths(subjects, ClipperLib::ptSubject, true); + c.AddPaths(clips, ClipperLib::ptClip, true); + c.Execute(ClipperLib::ClipType::ctUnion, solutions, ClipperLib::pftEvenOdd); + + for (int i = 0; i < solutions.size(); i++) { + result.push_back(toWalkbox(solutions[i])); + } + } + return result; +} + Room::Room(const Common::String &name, HSQOBJECT &table) : _table(table) { setId(_table, newRoomId()); _name = name; @@ -321,6 +368,8 @@ void Room::load(Common::SeekableReadStream &s) { _scaling = _scalings[0]; } + _mergedPolygon = merge(_walkboxes); + delete value; } @@ -409,8 +458,28 @@ void Room::update(float elapsed) { } } +void Room::walkboxHidden(const Common::String &name, bool hidden) { + for (int i = 0; i < _walkboxes.size(); i++) { + Walkbox &wb = _walkboxes[i]; + if (wb._name == name) { + wb.setVisible(!hidden); + // 1 walkbox has change so update merged polygon + _mergedPolygon = merge(_walkboxes); + _pathFinder.setDirty(true); + return; + } + } +} + Common::Array Room::calculatePath(Math::Vector2d frm, Math::Vector2d to) { - return {frm, to}; + if (_mergedPolygon.size() > 0) { + if (_pathFinder.isDirty()) { + _pathFinder.setWalkboxes(_mergedPolygon); + _pathFinder.setDirty(false); + } + return _pathFinder.calculatePath(frm, to); + } + return {}; } Layer::Layer(const Common::String &name, Math::Vector2d parallax, int zsort) { @@ -429,6 +498,56 @@ Walkbox::Walkbox(const Common::Array &polygon, bool visible) : _polygon(polygon), _visible(visible) { } +bool Walkbox::concave(int vertex) const { + Math::Vector2d current = _polygon[vertex]; + Math::Vector2d next = _polygon[(vertex + 1) % _polygon.size()]; + Math::Vector2d previous = _polygon[vertex == 0 ? _polygon.size() - 1 : vertex - 1]; + + Math::Vector2d left(current.getX() - previous.getX(), current.getY() - previous.getY()); + Math::Vector2d right(next.getX() - current.getX(), next.getY() - current.getY()); + + float cross = (left.getX() * right.getY()) - (left.getY() * right.getX()); + return _visible ? cross < 0 : cross >= 0; +} + +bool Walkbox::contains(Math::Vector2d position, bool toleranceOnOutside) const { + Math::Vector2d point = position; + const float epsilon = 1.0f; + bool result = false; + + // Must have 3 or more edges + if (_polygon.size() < 3) + return false; + + Math::Vector2d oldPoint(_polygon[_polygon.size() - 1]); + float oldSqDist = distanceSquared(oldPoint, point); + + for (int i = 0; i < _polygon.size(); i++) { + Math::Vector2d newPoint = _polygon[i]; + float newSqDist = distanceSquared(newPoint, point); + + if (oldSqDist + newSqDist + 2.0f * sqrt(oldSqDist * newSqDist) - distanceSquared(newPoint, oldPoint) < epsilon) + return toleranceOnOutside; + + Math::Vector2d left; + Math::Vector2d right; + if (newPoint.getX() > oldPoint.getX()) { + left = oldPoint; + right = newPoint; + } else { + left = newPoint; + right = oldPoint; + } + + if ((left.getX() < point.getX()) && (point.getX() <= right.getX()) && ((point.getY() - left.getY()) * (right.getX() - left.getX())) < ((right.getY() - left.getY()) * (point.getX() - left.getX()))) + result = !result; + + oldPoint = newPoint; + oldSqDist = newSqDist; + } + return result; +} + float Scaling::getScaling(float yPos) { if (values.size() == 0) return 1.0f; diff --git a/engines/twp/room.h b/engines/twp/room.h index 637575021d9..c350a41a579 100644 --- a/engines/twp/room.h +++ b/engines/twp/room.h @@ -30,6 +30,7 @@ #include "twp/font.h" #include "twp/motor.h" #include "twp/scenegraph.h" +#include "twp/graph.h" #define FULLSCREENCLOSEUP 1 #define FULLSCREENROOM 2 @@ -61,19 +62,6 @@ public: Node *_node = nullptr; }; -// Represents an area where an actor can or cannot walk -class Walkbox { -public: - Walkbox(const Common::Array &polygon, bool visible = true); - -public: - Common::String _name; - -private: - Common::Array _polygon; - bool _visible; -}; - struct ScalingValue { float scale; int y; @@ -105,6 +93,7 @@ struct Lights { Color _ambientLight; // Ambient light color }; +class PathFinder; class Scene; class Room { public: @@ -129,6 +118,7 @@ public: void setOverlay(Color color); Color getOverlay() const; + void walkboxHidden(const Common::String &name, bool hidden); Common::Array calculatePath(Math::Vector2d frm, Math::Vector2d to); public: @@ -139,12 +129,12 @@ public: int _height = 0; // Height of the room (what else ?) Common::Array _layers; // Parallax layers of a room Common::Array _walkboxes; // Represents the areas where an actor can or cannot walk + Common::Array _mergedPolygon; Common::Array _scalings; // Defines the scaling of the actor in the room Scaling _scaling; // Defines the scaling of the actor in the room HSQOBJECT _table; // Squirrel table representing this room bool _entering = false; // Indicates whether or not an actor is entering this room Lights _lights; // Lights of the room - Common::Array _mergedPolygon; Common::Array _triggers; // Triggers currently enabled in the room bool _pseudo = false; Common::Array _objects; @@ -152,6 +142,7 @@ public: OverlayNode _overlayNode; // Represents an overlay RoomEffect _effect; Motor* _overlayTo = nullptr; + PathFinder _pathFinder; }; } // namespace Twp diff --git a/engines/twp/roomlib.cpp b/engines/twp/roomlib.cpp index 08c45bbc48b..7f8eb815d76 100644 --- a/engines/twp/roomlib.cpp +++ b/engines/twp/roomlib.cpp @@ -322,24 +322,24 @@ static SQInteger roomLayer(HSQUIRRELVM v) { // } static SQInteger roomOverlayColor(HSQUIRRELVM v) { int startColor; - SQInteger numArgs = sq_gettop(v); - if (SQ_FAILED(sqget(v, 2, startColor))) - return sq_throwerror(v, "failed to get startColor"); - Room* room = g_engine->_room; - if (room->_overlayTo) - room->_overlayTo->disable(); - room->setOverlay(Color::fromRgba(startColor)); - if (numArgs == 4) { - int endColor; - if (SQ_FAILED(sqget(v, 3, endColor))) - return sq_throwerror(v, "failed to get endColor"); - float duration; - if (SQ_FAILED(sqget(v, 4, duration))) - return sq_throwerror(v, "failed to get duration"); - debug("start overlay from {rgba(startColor)} to {rgba(endColor)} in {duration}s"); - g_engine->_room->_overlayTo = new OverlayTo(duration, room, Color::fromRgba(endColor)); - } - return 0; + SQInteger numArgs = sq_gettop(v); + if (SQ_FAILED(sqget(v, 2, startColor))) + return sq_throwerror(v, "failed to get startColor"); + Room *room = g_engine->_room; + if (room->_overlayTo) + room->_overlayTo->disable(); + room->setOverlay(Color::fromRgba(startColor)); + if (numArgs == 4) { + int endColor; + if (SQ_FAILED(sqget(v, 3, endColor))) + return sq_throwerror(v, "failed to get endColor"); + float duration; + if (SQ_FAILED(sqget(v, 4, duration))) + return sq_throwerror(v, "failed to get duration"); + debug("start overlay from {rgba(startColor)} to {rgba(endColor)} in {duration}s"); + g_engine->_room->_overlayTo = new OverlayTo(duration, room, Color::fromRgba(endColor)); + } + return 0; } static SQInteger roomRotateTo(HSQUIRRELVM v) { @@ -355,8 +355,17 @@ static SQInteger roomSize(HSQUIRRELVM v) { return 1; } +// Sets walkbox to be hidden (YES) or not (NO). +// If the walkbox is hidden, the actors cannot walk to any point within that area anymore, nor to any walkbox that's connected to it on the other side from the actor. +// Often used on small walkboxes below a gate or door to keep the actor from crossing that boundary if the gate/door is closed. static SQInteger walkboxHidden(HSQUIRRELVM v) { - warning("TODO: walkboxHidden not implemented"); + Common::String walkbox; + if (SQ_FAILED(sqget(v, 2, walkbox))) + return sq_throwerror(v, "failed to get object or walkbox"); + int hidden = 0; + if (SQ_FAILED(sqget(v, 3, hidden))) + return sq_throwerror(v, "failed to get object or hidden"); + g_engine->_room->walkboxHidden(walkbox, hidden != 0); return 0; } diff --git a/engines/twp/scenegraph.cpp b/engines/twp/scenegraph.cpp index 932a670d87d..b654ba5b0ae 100644 --- a/engines/twp/scenegraph.cpp +++ b/engines/twp/scenegraph.cpp @@ -410,7 +410,8 @@ Scene::Scene() : Node("Scene") { } Scene::~Scene() {} -InputState::InputState() : Node("InputState") {} +InputState::InputState() : Node("InputState") { +} InputState::~InputState() {} @@ -422,7 +423,7 @@ void InputState::drawCore(Math::Matrix4 trsf) { // cursorName = "hotspot_" & self.cursorName const SpriteSheetFrame &sf = gameSheet->frameTable["cursor"]; Math::Vector3d pos(sf.spriteSourceSize.left - sf.sourceSize.getX() / 2.f, -sf.spriteSourceSize.height() - sf.spriteSourceSize.top + sf.sourceSize.getY() / 2.f, 0.f); - trsf.translate(pos); + trsf.translate(pos * 2.f); scale(trsf, Math::Vector2d(2.f, 2.f)); g_engine->getGfx().drawSprite(sf.frame, *texture, getComputedColor(), trsf); } diff --git a/engines/twp/twp.cpp b/engines/twp/twp.cpp index 96d08865ec1..97de6cbc463 100644 --- a/engines/twp/twp.cpp +++ b/engines/twp/twp.cpp @@ -57,6 +57,8 @@ TwpEngine::TwpEngine(OSystem *syst, const ADGameDescription *gameDesc) g_engine = this; sq_resetobject(&_defaultObj); _screenScene.setName("Screen"); + _scene.addChild(&_walkboxNode); + _screenScene.addChild(&_pathNode); _screenScene.addChild(&_inputState); _screenScene.addChild(&_sentence); _screenScene.addChild(&_dialog); @@ -73,7 +75,6 @@ static Math::Vector2d winToScreen(Math::Vector2d pos) { Math::Vector2d TwpEngine::roomToScreen(Math::Vector2d pos) { Math::Vector2d screenSize = _room->getScreenSize(); - pos = Math::Vector2d(pos.getX(), SCREEN_HEIGHT - pos.getY()); return Math::Vector2d(SCREEN_WIDTH, SCREEN_HEIGHT) * (pos - _gfx.cameraPos()) / screenSize; } @@ -341,7 +342,7 @@ void TwpEngine::update(float elapsed) { // } else { // walkFast(false); // } - if (_cursor.isLeftDown() || _cursor.isRightDown()) + if (_cursor.leftDown || _cursor.rightDown) clickedAt(scrPos); } } else { @@ -351,11 +352,11 @@ void TwpEngine::update(float elapsed) { Common::String cText = !_noun1 ? "" : _textDb.getText(_noun1->_name); _sentence.setText(cText); // TODO: _inputState.setCursorShape(CursorShape::Normal); - if (_cursor.isLeftDown()) + if (_cursor.leftDown) clickedAt(scrPos); } - if (_cursor.isLeftDown() || _cursor.isRightDown()) + if (_cursor.leftDown || _cursor.rightDown) clickedAt(_cursor.pos); } @@ -544,11 +545,11 @@ void TwpEngine::draw() { _gfx.drawSprite(*screenTexture, Color(), Math::Matrix4(), false, _fadeShader->_effect != FadeEffect::None); // draw UI + _gfx.cameraPos(camPos); _screenScene.draw(); g_system->updateScreen(); - _gfx.cameraPos(camPos); } Common::Error TwpEngine::run() { @@ -1116,12 +1117,12 @@ bool TwpEngine::callVerb(Object *actor, VerbId verbId, Object *noun1, Object *no } else { bool handled = false; if (sqrawexists(noun2->_table, verbFuncName)) { - debug("call {verbFuncName} on {noun2.key}"); + debug("call %s on %s", verbFuncName.c_str(), noun2->_key.c_str()); sqcallfunc(handled, noun2->_table, verbFuncName.c_str(), noun1->_table); } // verbGive is called on object only for non selectable actors if (!handled && !selectable(noun2) && sqrawexists(noun1->_table, verbFuncName)) { - debug("call {verbFuncName} on {noun1.key}"); + debug("call %s on %s", verbFuncName.c_str(), noun1->_key.c_str()); sqcall(noun1->_table, verbFuncName.c_str(), noun2->_table); handled = true; } @@ -1138,7 +1139,7 @@ bool TwpEngine::callVerb(Object *actor, VerbId verbId, Object *noun1, Object *no if (!noun2) { if (sqrawexists(noun1->_table, verbFuncName)) { int count = sqparamCount(getVm(), noun1->_table, verbFuncName); - debug("call {noun1.key}.{verbFuncName}"); + debug("call %s.%s", noun1->_key.c_str(), verbFuncName.c_str()); if (count == 1) { sqcall(noun1->_table, verbFuncName.c_str()); } else { @@ -1147,17 +1148,17 @@ bool TwpEngine::callVerb(Object *actor, VerbId verbId, Object *noun1, Object *no } else if (sqrawexists(noun1->_table, VERBDEFAULT)) { sqcall(noun1->_table, VERBDEFAULT); } else { - debug("call defaultObject.{verbFuncName}"); + debug("call defaultObject.%s", verbFuncName.c_str()); sqcall(_defaultObj, verbFuncName.c_str(), noun1->_table, actor->_table); } } else { if (sqrawexists(noun1->_table, verbFuncName)) { - debug("call {noun1.key}.{verbFuncName}"); + debug("call %s.%s", noun1->_key.c_str(), verbFuncName.c_str()); sqcall(noun1->_table, verbFuncName.c_str(), noun2->_table); } else if (sqrawexists(noun1->_table, VERBDEFAULT)) { sqcall(noun1->_table, VERBDEFAULT); } else { - debug("call defaultObject.{verbFuncName}"); + debug("call defaultObject.%s", verbFuncName.c_str()); sqcall(_defaultObj, verbFuncName.c_str(), noun1->_table, noun2->_table); } } diff --git a/engines/twp/twp.h b/engines/twp/twp.h index 5ee63d0ba5b..d1575e29bc6 100644 --- a/engines/twp/twp.h +++ b/engines/twp/twp.h @@ -44,6 +44,7 @@ #include "twp/dialog.h" #include "twp/hud.h" #include "twp/callback.h" +#include "twp/walkboxnode.h" #define SCREEN_WIDTH 1280 #define SCREEN_HEIGHT 720 @@ -210,6 +211,8 @@ private: ShaderParams _shaderParams; unique_ptr _fadeShader; SentenceNode _sentence; + WalkboxNode _walkboxNode; + PathNode _pathNode; }; extern TwpEngine *g_engine; diff --git a/engines/twp/util.cpp b/engines/twp/util.cpp index c7c211f4543..ff43ba1670b 100644 --- a/engines/twp/util.cpp +++ b/engines/twp/util.cpp @@ -134,6 +134,22 @@ float distanceSquared(Math::Vector2d p1, Math::Vector2d p2) { return dx * dx + dy * dy; } +float distanceToSegmentSquared(Math::Vector2d p, Math::Vector2d v, Math::Vector2d w) { + float l2 = distanceSquared(v, w); + if (l2 == 0) + return distanceSquared(p, v); + float t = ((p.getX() - v.getX()) * (w.getX() - v.getX()) + (p.getY() - v.getY()) * (w.getY() - v.getY())) / l2; + if (t < 0) + return distanceSquared(p, v); + if (t > 1) + return distanceSquared(p, w); + return distanceSquared(p, Math::Vector2d(v.getX() + t * (w.getX() - v.getX()), v.getY() + t * (w.getY() - v.getY()))); +} + +float distanceToSegment(Math::Vector2d p, Math::Vector2d v, Math::Vector2d w) { + return sqrt(distanceToSegmentSquared(p, v, w)); +} + float distance(Math::Vector2d p1, Math::Vector2d p2) { return sqrt(distanceSquared(p1, p2)); } diff --git a/engines/twp/util.h b/engines/twp/util.h index 743a579b2e5..564aa0ef7b0 100644 --- a/engines/twp/util.h +++ b/engines/twp/util.h @@ -50,6 +50,8 @@ Common::Rect parseRect(const Common::String &s); void parseObjectAnimations(const Common::JSONArray &jAnims, Common::Array &anims); float distance(Math::Vector2d p1, Math::Vector2d p2); +float distanceSquared(Math::Vector2d p1, Math::Vector2d p2); +float distanceToSegment(Math::Vector2d p, Math::Vector2d v, Math::Vector2d w); template int find(Common::Array& array, const T& o) { diff --git a/engines/twp/walkboxnode.cpp b/engines/twp/walkboxnode.cpp new file mode 100644 index 00000000000..0d11adbb0bc --- /dev/null +++ b/engines/twp/walkboxnode.cpp @@ -0,0 +1,175 @@ +/* ScummVM - Graphic Adventure Engine + * + * ScummVM is the legal property of its developers, whose names + * are too numerous to list here. Please refer to the COPYRIGHT + * file distributed with this source distribution. + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + +#include "twp/twp.h" +#include "twp/walkboxnode.h" + +namespace Twp { + +WalkboxNode::WalkboxNode() : Node("Walkbox") { + _zOrder = -1000; + _mode = WalkboxMode::Merged; +} + +void WalkboxNode::drawCore(Math::Matrix4 trsf) { + if (g_engine->_room) { + switch (_mode) { + case WalkboxMode::All: { + Math::Matrix4 transf; + // cancel camera pos + Math::Vector2d pos = g_engine->getGfx().cameraPos(); + transf.translate(Math::Vector3d(-pos.getX(), pos.getY(), 0.f)); + for (int i = 0; i < g_engine->_room->_walkboxes.size(); i++) { + Walkbox &wb = g_engine->_room->_walkboxes[i]; + if (wb.isVisible()) { + Color color = wb.isVisible() ? Color(0.f, 1.f, 0.f) : Color(1.f, 0.f, 0.f); + Common::Array vertices; + for (int j = 0; j < wb.getPoints().size(); j++) { + Math::Vector2d p = wb.getPoints()[j]; + Vertex v; + v.pos = p; + v.color = color; + vertices.push_back(v); + } + g_engine->getGfx().drawLinesLoop(&vertices[0], vertices.size(), transf); + } + } + } break; + case WalkboxMode::Merged: { + Math::Matrix4 transf; + Math::Vector2d pos = g_engine->getGfx().cameraPos(); + // cancel camera pos + transf.translate(Math::Vector3d(-pos.getX(), pos.getY(), 0.f)); + for (int i = 0; i < g_engine->_room->_mergedPolygon.size(); i++) { + Walkbox &wb = g_engine->_room->_mergedPolygon[i]; + Color color = wb.isVisible() ? Color(0.f, 1.f, 0.f) : Color(1.f, 0.f, 0.f); + Common::Array vertices; + for (int j = 0; j < wb.getPoints().size(); j++) { + Math::Vector2d p = wb.getPoints()[j]; + Vertex v; + v.pos = p; + v.color = color; + vertices.push_back(v); + } + g_engine->getGfx().drawLinesLoop(&vertices[0], vertices.size(), transf); + } + } break; + default: + break; + } + } +} + +PathNode::PathNode() : Node("Path") { + _zOrder = -1000; +} + +Math::Vector2d PathNode::fixPos(Math::Vector2d pos) { + for (int i = 0; i < g_engine->_room->_mergedPolygon.size(); i++) { + Walkbox &wb = g_engine->_room->_mergedPolygon[i]; + if (!wb.isVisible() && wb.contains(pos)) { + return wb.getClosestPointOnEdge(pos); + } + } + // for wb in gEngine.room.mergedPolygon: + // if wb.visible and not wb.contains(pos): + // return wb.getClosestPointOnEdge(pos) + return pos; +} + +void PathNode::drawCore(Math::Matrix4 trsf) { + Color yellow(1.f, 1.f, 0.f); + Object *actor = g_engine->_actor; + // draw actor path + if (actor && actor->getWalkTo()) { + WalkTo *walkTo = (WalkTo *)actor->getWalkTo(); + const Common::Array &path = walkTo->getPath(); + if (path.size() > 0) { + Common::Array vertices; + Vertex v; + v.pos = g_engine->roomToScreen(actor->_node->getPos()); + v.color = yellow; + vertices.push_back(v); + for (int i = 0; i < path.size(); i++) { + Math::Vector2d p = g_engine->roomToScreen(path[i]); + v.pos = p; + v.color = yellow; + vertices.push_back(v); + + Math::Matrix4 t; + p -= Math::Vector2d(2.f, 2.f); + t.translate(Math::Vector3d(p.getX(), p.getY(), 0.f)); + g_engine->getGfx().drawQuad(Math::Vector2d(4.f, 4.f), yellow, t); + } + g_engine->getGfx().drawLines(&vertices[0], vertices.size()); + } + } + + // draw graph nodes + const Graph *graph = g_engine->_room->_pathFinder.getGraph(); + if (graph) { + for (int i = 0; i < graph->_concaveVertices.size(); i++) { + Math::Vector2d v = graph->_concaveVertices[i]; + Math::Matrix4 t; + Math::Vector2d p = g_engine->roomToScreen(v) - Math::Vector2d(2.f, 2.f); + t.translate(Math::Vector3d(p.getX(), p.getY(), 0.f)); + g_engine->getGfx().drawQuad(Math::Vector2d(4.f, 4.f), yellow); + } + + // for (int i = 0; i < graph->_edges.size(); i++) { + // const Common::Array &edges = graph->_edges[i]; + // for (int j = 0; j < edges.size(); j++) { + // const GraphEdge &edge = edges[j]; + // Math::Vector2d p1 = g_engine->roomToScreen(graph->_nodes[edge.start]); + // Math::Vector2d p2 = g_engine->roomToScreen(graph->_nodes[edge.to]); + // Vertex vertices[] = {Vertex{.pos = p1, .color = Color()}, Vertex{.pos = p2, .color = Color()}}; + // g_engine->getGfx().drawLines(&vertices[0], 2); + // } + // } + } + + // draw path from actor to mouse position + if (actor) { + Math::Vector2d pos = g_engine->roomToScreen(actor->_node->getPos()) - Math::Vector2d(2.f, 2.f); + Math::Matrix4 t; + t.translate(Math::Vector3d(pos.getX(), pos.getY(), 0.f)); + g_engine->getGfx().drawQuad(Math::Vector2d(4.f, 4.f), yellow, t); + Math::Vector2d scrPos = g_engine->_cursor.pos; + Math::Vector2d roomPos = g_engine->screenToRoom(scrPos); + Math::Vector2d p = fixPos(roomPos); + t = Math::Matrix4(); + pos = g_engine->roomToScreen(p) - Math::Vector2d(4.f, 4.f); + t.translate(Math::Vector3d(pos.getX(), pos.getY(), 0.f)); + g_engine->getGfx().drawQuad(Math::Vector2d(8.f, 8.f), yellow, t); + + Common::Array path = g_engine->_room->calculatePath(fixPos(actor->_node->getPos()), p); + Common::Array vertices; + for (int i = 0; i < path.size(); i++) { + Vertex v; + v.pos = g_engine->roomToScreen(path[i]);; + v.color = yellow; + vertices.push_back(v); + } + g_engine->getGfx().drawLines(&vertices[0], vertices.size()); + } +} + +} // namespace Twp diff --git a/engines/twp/walkboxnode.h b/engines/twp/walkboxnode.h new file mode 100644 index 00000000000..3e73bcf8686 --- /dev/null +++ b/engines/twp/walkboxnode.h @@ -0,0 +1,57 @@ +/* ScummVM - Graphic Adventure Engine + * + * ScummVM is the legal property of its developers, whose names + * are too numerous to list here. Please refer to the COPYRIGHT + * file distributed with this source distribution. + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + +#ifndef TWP_WALKBOXMODE_H +#define TWP_WALKBOXMODE_H + +#include "twp/scenegraph.h" + +namespace Twp { + +enum class WalkboxMode { + None, + Merged, + All +}; + +class WalkboxNode : public Node { +public: + WalkboxNode(); + +private: + virtual void drawCore(Math::Matrix4 trsf) override; + +private: + WalkboxMode _mode; +}; + +class PathNode : public Node { +public: + PathNode(); + +private: + Math::Vector2d fixPos(Math::Vector2d pos); + virtual void drawCore(Math::Matrix4 trsf) override; +}; + +} // namespace Twp + +#endif