TESTS: Reduce error for double precision math test

If we want to properly test the computation is in double precision,
we should be using a much smaller error than the one used for the
single precision tests.
This commit is contained in:
Thierry Crozat 2019-04-12 01:33:47 +01:00
parent 322af3e49a
commit 563520f5c8

View File

@ -2,7 +2,8 @@
#include "common/math.h" #include "common/math.h"
const float MAX_ERROR = 1e-7; const float MAX_ERROR_FLT = 1e-7f;
const double MAX_ERROR_DBL = 1e-15;
class MathTestSuite : public CxxTest::TestSuite class MathTestSuite : public CxxTest::TestSuite
{ {
public: public:
@ -19,27 +20,27 @@ class MathTestSuite : public CxxTest::TestSuite
void test_rad2deg() { void test_rad2deg() {
//float verion //float verion
TS_ASSERT_DELTA(Common::rad2deg(0), 0, MAX_ERROR); TS_ASSERT_DELTA(Common::rad2deg(0), 0, MAX_ERROR_FLT);
TS_ASSERT_DELTA(Common::rad2deg(M_PI), 180.0, 180.0 * MAX_ERROR); TS_ASSERT_DELTA(Common::rad2deg(M_PI), 180.0, 180.0 * MAX_ERROR_FLT);
TS_ASSERT_DELTA(Common::rad2deg(2.0 * M_PI), 360.0, 360.0 * MAX_ERROR); TS_ASSERT_DELTA(Common::rad2deg(2.0 * M_PI), 360.0, 360.0 * MAX_ERROR_FLT);
TS_ASSERT_DELTA(Common::rad2deg(M_PI / 2.0), 90.0, 90.0 * MAX_ERROR); TS_ASSERT_DELTA(Common::rad2deg(M_PI / 2.0), 90.0, 90.0 * MAX_ERROR_FLT);
//double version //double version
TS_ASSERT_DELTA(Common::rad2deg<double>(0), 0, MAX_ERROR); TS_ASSERT_DELTA(Common::rad2deg<double>(0), 0, MAX_ERROR_DBL);
TS_ASSERT_DELTA(Common::rad2deg<double>(M_PI), 180.0, 180.0 * MAX_ERROR); TS_ASSERT_DELTA(Common::rad2deg<double>(M_PI), 180.0, 180.0 * MAX_ERROR_DBL);
TS_ASSERT_DELTA(Common::rad2deg<double>(2.0 * M_PI), 360.0, 360.0 * MAX_ERROR); TS_ASSERT_DELTA(Common::rad2deg<double>(2.0 * M_PI), 360.0, 360.0 * MAX_ERROR_DBL);
TS_ASSERT_DELTA(Common::rad2deg<double>(M_PI / 2.0), 90.0, 90.0 * MAX_ERROR); TS_ASSERT_DELTA(Common::rad2deg<double>(M_PI / 2.0), 90.0, 90.0 * MAX_ERROR_DBL);
} }
void test_deg2rad() { void test_deg2rad() {
//float verion //float verion
TS_ASSERT_DELTA(Common::deg2rad(0), 0, MAX_ERROR); TS_ASSERT_DELTA(Common::deg2rad(0), 0, MAX_ERROR_FLT);
TS_ASSERT_DELTA(Common::deg2rad(180.0), M_PI, M_PI * MAX_ERROR); TS_ASSERT_DELTA(Common::deg2rad(180.0), M_PI, M_PI * MAX_ERROR_FLT);
TS_ASSERT_DELTA(Common::deg2rad(360.0), 2.0 * M_PI, 2.0 * M_PI * MAX_ERROR); TS_ASSERT_DELTA(Common::deg2rad(360.0), 2.0 * M_PI, 2.0 * M_PI * MAX_ERROR_FLT);
TS_ASSERT_DELTA(Common::deg2rad(90.0), M_PI / 2.0, M_PI / 2.0 * MAX_ERROR); TS_ASSERT_DELTA(Common::deg2rad(90.0), M_PI / 2.0, M_PI / 2.0 * MAX_ERROR_FLT);
//double version //double version
TS_ASSERT_DELTA(Common::deg2rad<double>(0), 0, MAX_ERROR); TS_ASSERT_DELTA(Common::deg2rad<double>(0), 0, MAX_ERROR_DBL);
TS_ASSERT_DELTA(Common::deg2rad<double>(180.0), M_PI, M_PI * MAX_ERROR); TS_ASSERT_DELTA(Common::deg2rad<double>(180.0), M_PI, M_PI * MAX_ERROR_DBL);
TS_ASSERT_DELTA(Common::deg2rad<double>(360.0), 2.0 * M_PI, 2.0 * M_PI * MAX_ERROR); TS_ASSERT_DELTA(Common::deg2rad<double>(360.0), 2.0 * M_PI, 2.0 * M_PI * MAX_ERROR_DBL);
TS_ASSERT_DELTA(Common::deg2rad<double>(90.0), M_PI / 2.0, M_PI / 2.0 * MAX_ERROR); TS_ASSERT_DELTA(Common::deg2rad<double>(90.0), M_PI / 2.0, M_PI / 2.0 * MAX_ERROR_DBL);
} }
}; };