/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "common/hash-str.h" #include "common/list.h" #include "common/memorypool.h" #include "common/str.h" #include "common/util.h" #include "common/mutex.h" namespace Common { MemoryPool *g_refCountPool = nullptr; // FIXME: This is never freed right now Mutex *g_refCountPoolMutex = nullptr; void lockMemoryPoolMutex() { // The Mutex class can only be used once g_system is set and initialized, // but we may use the String class earlier than that (it is for example // used in the OSystem_POSIX constructor). However in those early stages // we can hope we don't have multiple threads either. if (!g_system || !g_system->backendInitialized()) return; if (!g_refCountPoolMutex) g_refCountPoolMutex = new Mutex(); g_refCountPoolMutex->lock(); } void unlockMemoryPoolMutex() { if (g_refCountPoolMutex) g_refCountPoolMutex->unlock(); } void String::releaseMemoryPoolMutex() { if (g_refCountPoolMutex){ delete g_refCountPoolMutex; g_refCountPoolMutex = nullptr; } } static uint32 computeCapacity(uint32 len) { // By default, for the capacity we use the next multiple of 32 return ((len + 32 - 1) & ~0x1F); } String::String(const char *str) : _size(0), _str(_storage) { if (str == nullptr) { _storage[0] = 0; _size = 0; } else initWithCStr(str, strlen(str)); } String::String(const char *str, uint32 len) : _size(0), _str(_storage) { initWithCStr(str, len); } String::String(const char *beginP, const char *endP) : _size(0), _str(_storage) { assert(endP >= beginP); initWithCStr(beginP, endP - beginP); } void String::initWithCStr(const char *str, uint32 len) { assert(str); // Init _storage member explicitly (ie. without calling its constructor) // for GCC 2.95.x compatibility (see also tracker item #1602879). _storage[0] = 0; _size = len; if (len >= _builtinCapacity) { // Not enough internal storage, so allocate more _extern._capacity = computeCapacity(len + 1); _extern._refCount = nullptr; _str = new char[_extern._capacity]; assert(_str != nullptr); } // Copy the string into the storage area memmove(_str, str, len); _str[len] = 0; } String::String(const String &str) : _size(str._size) { if (str.isStorageIntern()) { // String in internal storage: just copy it memcpy(_storage, str._storage, _builtinCapacity); _str = _storage; } else { // String in external storage: use refcount mechanism str.incRefCount(); _extern._refCount = str._extern._refCount; _extern._capacity = str._extern._capacity; _str = str._str; } assert(_str != nullptr); } String::String(char c) : _size(0), _str(_storage) { _storage[0] = c; _storage[1] = 0; _size = (c == 0) ? 0 : 1; } String::String(const U32String &str) : _size(0), _str(_storage) { _storage[0] = 0; *this = String(str.encode()); } String::~String() { decRefCount(_extern._refCount); } void String::makeUnique() { ensureCapacity(_size, true); } /** * Ensure that enough storage is available to store at least new_size * characters plus a null byte. In addition, if we currently share * the storage with another string, unshare it, so that we can safely * write to the storage. */ void String::ensureCapacity(uint32 new_size, bool keep_old) { bool isShared; uint32 curCapacity, newCapacity; char *newStorage; int *oldRefCount = _extern._refCount; if (isStorageIntern()) { isShared = false; curCapacity = _builtinCapacity; } else { isShared = (oldRefCount && *oldRefCount > 1); curCapacity = _extern._capacity; } // Special case: If there is enough space, and we do not share // the storage, then there is nothing to do. if (!isShared && new_size < curCapacity) return; // We need to allocate storage on the heap! // Compute a suitable new capacity limit // If the current capacity is sufficient we use the same capacity if (new_size < curCapacity) newCapacity = curCapacity; else newCapacity = MAX(curCapacity * 2, computeCapacity(new_size+1)); // Allocate new storage newStorage = new char[newCapacity]; assert(newStorage); // Copy old data if needed, elsewise reset the new storage. if (keep_old) { assert(_size < newCapacity); memcpy(newStorage, _str, _size + 1); } else { _size = 0; newStorage[0] = 0; } // Release hold on the old storage ... decRefCount(oldRefCount); // ... in favor of the new storage _str = newStorage; if (!isStorageIntern()) { // Set the ref count & capacity if we use an external storage. // It is important to do this *after* copying any old content, // else we would override data that has not yet been copied! _extern._refCount = nullptr; _extern._capacity = newCapacity; } } void String::incRefCount() const { assert(!isStorageIntern()); if (_extern._refCount == nullptr) { lockMemoryPoolMutex(); if (g_refCountPool == nullptr) { g_refCountPool = new MemoryPool(sizeof(int)); assert(g_refCountPool); } _extern._refCount = (int *)g_refCountPool->allocChunk(); unlockMemoryPoolMutex(); *_extern._refCount = 2; } else { ++(*_extern._refCount); } } void String::decRefCount(int *oldRefCount) { if (isStorageIntern()) return; if (oldRefCount) { --(*oldRefCount); } if (!oldRefCount || *oldRefCount <= 0) { // The ref count reached zero, so we free the string storage // and the ref count storage. if (oldRefCount) { lockMemoryPoolMutex(); assert(g_refCountPool); g_refCountPool->freeChunk(oldRefCount); unlockMemoryPoolMutex(); } // Coverity thinks that we always free memory, as it assumes // (correctly) that there are cases when oldRefCount == 0 // Thus, DO NOT COMPILE, trick it and shut tons of false positives #ifndef __COVERITY__ delete[] _str; #endif // Even though _str points to a freed memory block now, // we do not change its value, because any code that calls // decRefCount will have to do this afterwards anyway. } } String &String::operator=(const char *str) { uint32 len = strlen(str); ensureCapacity(len, false); _size = len; memmove(_str, str, len + 1); return *this; } String &String::operator=(const String &str) { if (&str == this) return *this; if (str.isStorageIntern()) { decRefCount(_extern._refCount); _size = str._size; _str = _storage; memcpy(_str, str._str, _size + 1); } else { str.incRefCount(); decRefCount(_extern._refCount); _extern._refCount = str._extern._refCount; _extern._capacity = str._extern._capacity; _size = str._size; _str = str._str; } return *this; } String &String::operator=(char c) { decRefCount(_extern._refCount); _str = _storage; _str[0] = c; _str[1] = 0; _size = (c == 0) ? 0 : 1; return *this; } String &String::operator+=(const char *str) { if (pointerInOwnBuffer(str)) return operator+=(String(str)); int len = strlen(str); if (len > 0) { ensureCapacity(_size + len, true); memcpy(_str + _size, str, len + 1); _size += len; } return *this; } bool String::pointerInOwnBuffer(const char *str) const { //compared pointers must be in the same array or UB //cast to intptr however is IB //which includes comparision of the values uintptr ownBuffStart = (uintptr)_str; uintptr ownBuffEnd = (uintptr)(_str + _size); uintptr candidateAddr = (uintptr)str; return ownBuffStart <= candidateAddr && candidateAddr <= ownBuffEnd; } String &String::operator+=(const String &str) { if (&str == this) return operator+=(String(str)); int len = str._size; if (len > 0) { ensureCapacity(_size + len, true); memcpy(_str + _size, str._str, len + 1); _size += len; } return *this; } String &String::operator+=(char c) { ensureCapacity(_size + 1, true); _str[_size++] = c; _str[_size] = 0; return *this; } bool String::hasPrefix(const String &x) const { return hasPrefix(x.c_str()); } bool String::hasPrefix(const char *x) const { assert(x != nullptr); // Compare x with the start of _str. const char *y = c_str(); while (*x && *x == *y) { ++x; ++y; } // It's a prefix, if and only if all letters in x are 'used up' before // _str ends. return *x == 0; } bool String::hasPrefixIgnoreCase(const String &x) const { return hasPrefixIgnoreCase(x.c_str()); } bool String::hasPrefixIgnoreCase(const char *x) const { assert(x != nullptr); // Compare x with the start of _str. const char *y = c_str(); while (*x && tolower(*x) == tolower(*y)) { ++x; ++y; } // It's a prefix, if and only if all letters in x are 'used up' before // _str ends. return *x == 0; } bool String::hasSuffix(const String &x) const { return hasSuffix(x.c_str()); } bool String::hasSuffix(const char *x) const { assert(x != nullptr); // Compare x with the end of _str. const uint32 x_size = strlen(x); if (x_size > _size) return false; const char *y = c_str() + _size - x_size; while (*x && *x == *y) { ++x; ++y; } // It's a suffix, if and only if all letters in x are 'used up' before // _str ends. return *x == 0; } bool String::hasSuffixIgnoreCase(const String &x) const { return hasSuffixIgnoreCase(x.c_str()); } bool String::hasSuffixIgnoreCase(const char *x) const { assert(x != nullptr); // Compare x with the end of _str. const uint32 x_size = strlen(x); if (x_size > _size) return false; const char *y = c_str() + _size - x_size; while (*x && tolower(*x) == tolower(*y)) { ++x; ++y; } // It's a suffix, if and only if all letters in x are 'used up' before // _str ends. return *x == 0; } bool String::contains(const String &x) const { return strstr(c_str(), x.c_str()) != nullptr; } bool String::contains(const char *x) const { assert(x != nullptr); return strstr(c_str(), x) != nullptr; } bool String::contains(char x) const { return strchr(c_str(), x) != nullptr; } bool String::contains(uint32 x) const { for (String::const_iterator itr = begin(); itr != end(); itr++) { if (uint32(*itr) == x) { return true; } } return false; } uint64 String::asUint64() const { uint64 result = 0; for (uint32 i = 0; i < _size; ++i) { if (_str[i] < '0' || _str[i] > '9') break; result = result * 10L + (_str[i] - '0'); } return result; } bool String::matchString(const char *pat, bool ignoreCase, bool pathMode) const { return Common::matchString(c_str(), pat, ignoreCase, pathMode); } bool String::matchString(const String &pat, bool ignoreCase, bool pathMode) const { return Common::matchString(c_str(), pat.c_str(), ignoreCase, pathMode); } void String::deleteLastChar() { if (_size > 0) deleteChar(_size - 1); } void String::deleteChar(uint32 p) { assert(p < _size); makeUnique(); while (p++ < _size) _str[p - 1] = _str[p]; _size--; } void String::erase(uint32 p, uint32 len) { if (p == npos || len == 0) return; assert(p < _size); makeUnique(); // If len == npos or p + len is over the end, remove all the way to the end if (len == npos || p + len >= _size) { // Delete char at p as well. So _size = (p - 1) + 1 _size = p; // Null terminate _str[_size] = 0; return; } for ( ; p + len <= _size; p++) { _str[p] = _str[p + len]; } _size -= len; } String::iterator String::erase(iterator it) { this->deleteChar(it - _str); return it; } void String::clear() { decRefCount(_extern._refCount); _size = 0; _str = _storage; _storage[0] = 0; } void String::setChar(char c, uint32 p) { assert(p < _size); makeUnique(); _str[p] = c; } void String::insertChar(char c, uint32 p) { assert(p <= _size); ensureCapacity(_size + 1, true); _size++; for (uint32 i = _size; i > p; --i) _str[i] = _str[i - 1]; _str[p] = c; } void String::toLowercase() { makeUnique(); for (uint32 i = 0; i < _size; ++i) _str[i] = tolower(_str[i]); } void String::toUppercase() { makeUnique(); for (uint32 i = 0; i < _size; ++i) _str[i] = toupper(_str[i]); } void String::trim() { if (_size == 0) return; makeUnique(); // Trim trailing whitespace while (_size >= 1 && isSpace(_str[_size - 1])) --_size; _str[_size] = 0; // Trim leading whitespace char *t = _str; while (isSpace(*t)) t++; if (t != _str) { _size -= t - _str; memmove(_str, t, _size + 1); } } void String::wordWrap(const uint32 maxLength) { if (_size < maxLength) { return; } makeUnique(); const uint32 kNoSpace = 0xFFFFFFFF; uint32 i = 0; while (i < _size) { uint32 lastSpace = kNoSpace; uint32 x = 0; while (i < _size && x <= maxLength) { const char c = _str[i]; if (c == '\n') { lastSpace = kNoSpace; x = 0; } else { if (Common::isSpace(c)) { lastSpace = i; } ++x; } ++i; } if (x > maxLength) { if (lastSpace == kNoSpace) { insertChar('\n', i - 1); } else { setChar('\n', lastSpace); i = lastSpace + 1; } } } } uint String::hash() const { return hashit(c_str()); } void String::replace(uint32 pos, uint32 count, const String &str) { replace(pos, count, str, 0, str._size); } void String::replace(uint32 pos, uint32 count, const char *str) { replace(pos, count, str, 0, strlen(str)); } void String::replace(iterator begin_, iterator end_, const String &str) { replace(begin_ - _str, end_ - begin_, str._str, 0, str._size); } void String::replace(iterator begin_, iterator end_, const char *str) { replace(begin_ - _str, end_ - begin_, str, 0, strlen(str)); } void String::replace(uint32 posOri, uint32 countOri, const String &str, uint32 posDest, uint32 countDest) { replace(posOri, countOri, str._str, posDest, countDest); } void String::replace(uint32 posOri, uint32 countOri, const char *str, uint32 posDest, uint32 countDest) { ensureCapacity(_size + countDest - countOri, true); // Prepare string for the replaced text. if (countOri < countDest) { uint32 offset = countDest - countOri; ///< Offset to copy the characters uint32 newSize = _size + offset; _size = newSize; // Push the old characters to the end of the string for (uint32 i = _size; i >= posOri + countDest; i--) _str[i] = _str[i - offset]; } else if (countOri > countDest){ uint32 offset = countOri - countDest; ///< Number of positions that we have to pull back // Pull the remainder string back for (uint32 i = posOri + countDest; i < _size; i++) _str[i] = _str[i + offset]; _size -= offset; } // Copy the replaced part of the string for (uint32 i = 0; i < countDest; i++) _str[posOri + i] = str[posDest + i]; } uint32 String::find(const String &str, uint32 pos) const { if (pos >= _size) { return npos; } const char *strP = str.c_str(); for (const_iterator cur = begin() + pos; *cur; ++cur) { uint i = 0; while (true) { if (!strP[i]) { return cur - begin(); } if (cur[i] != strP[i]) { break; } ++i; } } return npos; } // static String String::format(const char *fmt, ...) { String output; va_list va; va_start(va, fmt); output = String::vformat(fmt, va); va_end(va); return output; } // static String String::vformat(const char *fmt, va_list args) { String output; assert(output.isStorageIntern()); va_list va; scumm_va_copy(va, args); int len = vsnprintf(output._str, _builtinCapacity, fmt, va); va_end(va); if (len == -1 || len == _builtinCapacity - 1) { // MSVC and IRIX don't return the size the full string would take up. // MSVC returns -1, IRIX returns the number of characters actually written, // which is at the most the size of the buffer minus one, as the string is // truncated to fit. // We assume MSVC failed to output the correct, null-terminated string // if the return value is either -1 or size. // For IRIX, because we lack a better mechanism, we assume failure // if the return value equals size - 1. // The downside to this is that whenever we try to format a string where the // size is 1 below the built-in capacity, the size is needlessly increased. // Try increasing the size of the string until it fits. int size = _builtinCapacity; do { size *= 2; output.ensureCapacity(size - 1, false); assert(!output.isStorageIntern()); size = output._extern._capacity; scumm_va_copy(va, args); len = vsnprintf(output._str, size, fmt, va); va_end(va); } while (len == -1 || len >= size - 1); output._size = len; } else if (len < (int)_builtinCapacity) { // vsnprintf succeeded output._size = len; } else { // vsnprintf didn't have enough space, so grow buffer output.ensureCapacity(len, false); scumm_va_copy(va, args); int len2 = vsnprintf(output._str, len + 1, fmt, va); va_end(va); assert(len == len2); output._size = len2; } return output; } size_t String::find(char c, size_t pos) const { const char *p = strchr(_str + pos, c); return p ? p - _str : npos; } size_t String::find(const char *s) const { const char *str = strstr(_str, s); return str ? str - _str : npos; } size_t String::rfind(const char *s) const { int sLen = strlen(s); for (int idx = (int)_size - sLen; idx >= 0; --idx) { if (!strncmp(_str + idx, s, sLen)) return idx; } return npos; } size_t String::rfind(char c, size_t pos) const { for (int idx = MIN((int)_size - 1, (int)pos); idx >= 0; --idx) { if ((*this)[idx] == c) return idx; } return npos; } size_t String::findFirstOf(char c, size_t pos) const { const char *strP = (pos >= _size) ? 0 : strchr(_str + pos, c); return strP ? strP - _str : npos; } size_t String::findFirstOf(const char *chars, size_t pos) const { for (uint idx = pos; idx < _size; ++idx) { if (strchr(chars, (*this)[idx])) return idx; } return npos; } size_t String::findLastOf(char c, size_t pos) const { int start = (pos == npos) ? (int)_size - 1 : MIN((int)_size - 1, (int)pos); for (int idx = start; idx >= 0; --idx) { if ((*this)[idx] == c) return idx; } return npos; } size_t String::findLastOf(const char *chars, size_t pos) const { int start = (pos == npos) ? (int)_size - 1 : MIN((int)_size - 1, (int)pos); for (int idx = start; idx >= 0; --idx) { if (strchr(chars, (*this)[idx])) return idx; } return npos; } size_t String::findFirstNotOf(char c, size_t pos) const { for (uint idx = pos; idx < _size; ++idx) { if ((*this)[idx] != c) return idx; } return npos; } size_t String::findFirstNotOf(const char *chars, size_t pos) const { for (uint idx = pos; idx < _size; ++idx) { if (!strchr(chars, (*this)[idx])) return idx; } return npos; } size_t String::findLastNotOf(char c) const { for (int idx = (int)_size - 1; idx >= 0; --idx) { if ((*this)[idx] != c) return idx; } return npos; } size_t String::findLastNotOf(const char *chars) const { for (int idx = (int)_size - 1; idx >= 0; --idx) { if (!strchr(chars, (*this)[idx])) return idx; } return npos; } String String::substr(size_t pos, size_t len) const { if (pos >= _size) return String(); else if (len == npos) return String(_str + pos); else return String(_str + pos, MIN((size_t)_size - pos, len)); } #pragma mark - bool String::operator==(const String &x) const { return equals(x); } bool String::operator==(const char *x) const { assert(x != nullptr); return equals(x); } bool String::operator!=(const String &x) const { return !equals(x); } bool String::operator !=(const char *x) const { assert(x != nullptr); return !equals(x); } bool String::operator<(const String &x) const { return compareTo(x) < 0; } bool String::operator<=(const String &x) const { return compareTo(x) <= 0; } bool String::operator>(const String &x) const { return compareTo(x) > 0; } bool String::operator>=(const String &x) const { return compareTo(x) >= 0; } #pragma mark - bool operator==(const char* y, const String &x) { return (x == y); } bool operator!=(const char* y, const String &x) { return x != y; } #pragma mark - bool String::equals(const String &x) const { return (0 == compareTo(x)); } bool String::equals(const char *x) const { assert(x != nullptr); return (0 == compareTo(x)); } bool String::equalsIgnoreCase(const String &x) const { return (0 == compareToIgnoreCase(x)); } bool String::equalsIgnoreCase(const char *x) const { assert(x != nullptr); return (0 == compareToIgnoreCase(x)); } int String::compareTo(const String &x) const { return compareTo(x.c_str()); } int String::compareTo(const char *x) const { assert(x != nullptr); return strcmp(c_str(), x); } int String::compareToIgnoreCase(const String &x) const { return compareToIgnoreCase(x.c_str()); } int String::compareToIgnoreCase(const char *x) const { assert(x != nullptr); return scumm_stricmp(c_str(), x); } int String::compareDictionary(const String &x) const { return compareDictionary(x.c_str()); } int String::compareDictionary(const char *x) const { assert(x != nullptr); return scumm_compareDictionary(c_str(), x); } #pragma mark - String operator+(const String &x, const String &y) { String temp(x); temp += y; return temp; } String operator+(const char *x, const String &y) { String temp(x); temp += y; return temp; } String operator+(const String &x, const char *y) { String temp(x); temp += y; return temp; } String operator+(char x, const String &y) { String temp(x); temp += y; return temp; } String operator+(const String &x, char y) { String temp(x); temp += y; return temp; } char *ltrim(char *t) { while (isSpace(*t)) t++; return t; } char *rtrim(char *t) { int l = strlen(t) - 1; while (l >= 0 && isSpace(t[l])) t[l--] = 0; return t; } char *trim(char *t) { return rtrim(ltrim(t)); } String lastPathComponent(const String &path, const char sep) { const char *str = path.c_str(); const char *last = str + path.size(); // Skip over trailing slashes while (last > str && *(last - 1) == sep) --last; // Path consisted of only slashes -> return empty string if (last == str) return String(); // Now scan the whole component const char *first = last - 1; while (first > str && *first != sep) --first; if (*first == sep) first++; return String(first, last); } String normalizePath(const String &path, const char sep) { if (path.empty()) return path; const char *cur = path.c_str(); String result; // If there is a leading slash, preserve that: if (*cur == sep) { result += sep; // Skip over multiple leading slashes, so "//" equals "/" while (*cur == sep) ++cur; } // Scan for path components till the end of the String List comps; while (*cur != 0) { const char *start = cur; // Scan till the next path separator resp. the end of the string while (*cur != sep && *cur != 0) cur++; const String component(start, cur); if (component.empty() || component == ".") { // Skip empty components and dot components } else if (!comps.empty() && component == ".." && comps.back() != "..") { // If stack is non-empty and top is not "..", remove top comps.pop_back(); } else { // Add the component to the stack comps.push_back(component); } // Skip over separator chars while (*cur == sep) cur++; } // Finally, assemble all components back into a path while (!comps.empty()) { result += comps.front(); comps.pop_front(); if (!comps.empty()) result += sep; } return result; } bool matchString(const char *str, const char *pat, bool ignoreCase, bool pathMode) { assert(str); assert(pat); const char *p = nullptr; const char *q = nullptr; bool escaped = false; for (;;) { if (pathMode && *str == '/') { p = nullptr; q = nullptr; if (*pat == '?') return false; } const char curPat = *pat; switch (*pat) { case '*': if (*str) { // Record pattern / string position for backtracking p = ++pat; q = str; } else { // If we've reached the end of str, we can't backtrack further // NB: We can't simply check if pat also ended here, because // the pattern might end with any number of *s. ++pat; p = nullptr; q = nullptr; } // If pattern ended with * -> match if (!*pat) return true; break; case '\\': if (!escaped) { pat++; break; } // fallthrough case '#': // treat # as a wildcard for digits unless escaped if (!escaped) { if (!isDigit(*str)) return false; pat++; str++; break; } // fallthrough default: if ((!ignoreCase && *pat != *str) || (ignoreCase && tolower(*pat) != tolower(*str))) { if (p) { // No match, oops -> try to backtrack pat = p; str = ++q; if (!*str) return !*pat; break; } else return false; } // fallthrough case '?': if (!*str) return !*pat; pat++; str++; } escaped = !escaped && (curPat == '\\'); } } void replace(Common::String &source, const Common::String &what, const Common::String &with) { const char *cstr = source.c_str(); const char *position = strstr(cstr, what.c_str()); if (position) { uint32 index = position - cstr; source.replace(index, what.size(), with); } } String tag2string(uint32 tag) { char str[5]; str[0] = (char)(tag >> 24); str[1] = (char)(tag >> 16); str[2] = (char)(tag >> 8); str[3] = (char)tag; str[4] = '\0'; // Replace non-printable chars by dot for (int i = 0; i < 4; ++i) { if (!Common::isPrint(str[i])) str[i] = '.'; } return String(str); } size_t strlcpy(char *dst, const char *src, size_t size) { // Our backup of the source's start, we need this // to calculate the source's length. const char * const srcStart = src; // In case a non-empty size was specified we // copy over (size - 1) bytes at max. if (size != 0) { // Copy over (size - 1) bytes at max. while (--size != 0) { if ((*dst++ = *src) == 0) break; ++src; } // In case the source string was longer than the // destination, we need to add a terminating // zero. if (size == 0) *dst = 0; } // Move to the terminating zero of the source // string, we need this to determine the length // of the source string. while (*src) ++src; // Return the source string's length. return src - srcStart; } size_t strlcat(char *dst, const char *src, size_t size) { // In case the destination buffer does not contain // space for at least 1 character, we will just // return the source string's length. if (size == 0) return strlen(src); // Our backup of the source's start, we need this // to calculate the source's length. const char * const srcStart = src; // Our backup of the destination's start, we need // this to calculate the destination's length. const char * const dstStart = dst; // Search the end of the destination, but do not // move past the terminating zero. while (size-- != 0 && *dst != 0) ++dst; // Calculate the destination's length; const size_t dstLength = dst - dstStart; // In case we reached the end of the destination // buffer before we had a chance to append any // characters we will just return the destination // length plus the source string's length. if (size == 0) return dstLength + strlen(srcStart); // Copy over all of the source that fits // the destination buffer. We also need // to take the terminating zero we will // add into consideration. while (size-- != 0 && *src != 0) *dst++ = *src++; *dst = 0; // Move to the terminating zero of the source // string, we need this to determine the length // of the source string. while (*src) ++src; // Return the total length of the result string return dstLength + (src - srcStart); } size_t strnlen(const char *src, size_t maxSize) { size_t counter = 0; while (counter != maxSize && *src++) ++counter; return counter; } String toPrintable(const String &in, bool keepNewLines) { Common::String res; const char *tr = "\x01\x01\x02\x03\x04\x05\x06" "a" //"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"; "b" "t" "n" "v" "f" "r\x0e\x0f" "\x10\x11\x12\x13\x14\x15\x16\x17" "\x18\x19\x1a" "e\x1c\x1d\x1e\x1f"; for (const byte *p = (const byte *)in.c_str(); *p; p++) { if (*p == '\n') { if (keepNewLines) res += *p; else res += "\\n"; continue; } if (*p < 0x20 || *p == '\'' || *p == '\"' || *p == '\\') { res += '\\'; if (*p < 0x20) { if (tr[*p] < 0x20) res += Common::String::format("x%02x", *p); else res += tr[*p]; } else { res += *p; // We will escape it } } else if (*p > 0x7e) { res += Common::String::format("\\x%02x", *p); } else res += *p; } return res; } } // End of namespace Common // Portable implementation of stricmp / strcasecmp / strcmpi. // TODO: Rename this to Common::strcasecmp int scumm_stricmp(const char *s1, const char *s2) { byte l1, l2; do { // Don't use ++ inside tolower, in case the macro uses its // arguments more than once. l1 = (byte)*s1++; l1 = tolower(l1); l2 = (byte)*s2++; l2 = tolower(l2); } while (l1 == l2 && l1 != 0); return l1 - l2; } // Portable implementation of strnicmp / strncasecmp / strncmpi. // TODO: Rename this to Common::strncasecmp int scumm_strnicmp(const char *s1, const char *s2, uint n) { byte l1, l2; do { if (n-- == 0) return 0; // no difference found so far -> signal equality // Don't use ++ inside tolower, in case the macro uses its // arguments more than once. l1 = (byte)*s1++; l1 = tolower(l1); l2 = (byte)*s2++; l2 = tolower(l2); } while (l1 == l2 && l1 != 0); return l1 - l2; } const char *scumm_skipArticle(const char *s1) { int o1 = 0; if (!scumm_strnicmp(s1, "the ", 4)) o1 = 4; else if (!scumm_strnicmp(s1, "a ", 2)) o1 = 2; else if (!scumm_strnicmp(s1, "an ", 3)) o1 = 3; return &s1[o1]; } int scumm_compareDictionary(const char *s1, const char *s2) { return scumm_stricmp(scumm_skipArticle(s1), scumm_skipArticle(s2)); } // Portable implementation of strdup. char *scumm_strdup(const char *in) { const size_t len = strlen(in) + 1; char *out = (char *)malloc(len); if (out) { strcpy(out, in); } return out; } // Portable implementation of strcasestr. const char *scumm_strcasestr(const char *s, const char *find) { char c, sc; size_t len; if ((c = *find++) != 0) { c = (char)tolower((unsigned char)c); len = strlen(find); do { do { if ((sc = *s++) == 0) return (NULL); } while ((char)tolower((unsigned char)sc) != c); } while (scumm_strnicmp(s, find, len) != 0); s--; } return s; }