/* ScummVM - Scumm Interpreter * Copyright (C) 2003-2005 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * $Header$ * */ #include "sound/flac.h" #ifdef USE_FLAC #include "common/file.h" #include "common/util.h" #include "sound/audiostream.h" #include "sound/audiocd.h" #define FLAC__NO_DLL // that MS-magic gave me headaches - just link the library you like #include #pragma mark - #pragma mark --- Flac stream --- #pragma mark - static const uint MAX_OUTPUT_CHANNELS = 2; class FlacInputStream : public AudioStream { public: FlacInputStream(File *sourceFile, const uint32 fileStart, const uint32 fileStop); FlacInputStream(File *sourceFile, const uint32 fileStart = 0); virtual ~FlacInputStream(); int readBuffer(int16 *buffer, const int numSamples); bool isStereo() const { return _streaminfo.channels >= 2; } int getRate() const { return _streaminfo.sample_rate; } bool endOfStream() const { return _streaminfo.channels == 0 || (_lastSampleWritten && getBufferedSamples() == 0); } /** the mixer aint supporting it right now.. */ //bool endOfData() const { return getBufferedSamples() == 0; } bool endOfData() const { return endOfStream(); } uint getChannels() const { return MIN(_streaminfo.channels, MAX_OUTPUT_CHANNELS); } uint getBufferedSamples() const { return _preBuffer.bufFill; }; const FLAC__StreamMetadata_StreamInfo& getStreamInfo() const {return _streaminfo;} inline FLAC__SeekableStreamDecoderState getState() const; inline FLAC__StreamDecoderState getStreamDecoderState() const; bool isStreamDecoderReady() const { return getStreamDecoderState() == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC ; } bool init(); bool finish(); bool flush(); inline bool processSingleBlock(); inline bool processUntilEndOfMetadata(); bool seekAbsolute(FLAC__uint64 sample); inline void setLastSample(FLAC__uint64 absoluteSample); protected: inline ::FLAC__SeekableStreamDecoderReadStatus callbackRead(FLAC__byte buffer[], uint *bytes); inline ::FLAC__SeekableStreamDecoderSeekStatus callbackSeek(FLAC__uint64 absoluteByteOffset); inline ::FLAC__SeekableStreamDecoderTellStatus callbackTell(FLAC__uint64 *absoluteByteOffset); inline ::FLAC__SeekableStreamDecoderLengthStatus callbackLength(FLAC__uint64 *streamLength); inline bool callbackEOF(); inline ::FLAC__StreamDecoderWriteStatus callbackWrite(const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[]); inline void callbackMetadata(const ::FLAC__StreamMetadata *metadata); inline void callbackError(::FLAC__StreamDecoderErrorStatus status); ::FLAC__SeekableStreamDecoder *_decoder; private: static ::FLAC__SeekableStreamDecoderReadStatus callWrapRead(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__byte buffer[], uint *bytes, void *clientData); static ::FLAC__SeekableStreamDecoderSeekStatus callWrapSeek(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 absoluteByteOffset, void *clientData); static ::FLAC__SeekableStreamDecoderTellStatus callWrapTell(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *absoluteByteOffset, void *clientData); static ::FLAC__SeekableStreamDecoderLengthStatus callWrapLength(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *streamLength, void *clientData); static FLAC__bool callWrapEOF(const ::FLAC__SeekableStreamDecoder *decoder, void *clientData); static ::FLAC__StreamDecoderWriteStatus callWrapWrite(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *clientData); static void callWrapMetadata(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__StreamMetadata *metadata, void *clientData); static void callWrapError(const ::FLAC__SeekableStreamDecoder *decoder, ::FLAC__StreamDecoderErrorStatus status, void *clientData); // Private and undefined so you can't use them: FlacInputStream(const FlacInputStream &); void operator=(const FlacInputStream &); bool isValid() const { return _decoder != NULL; } bool allocateBuffer(uint minSamples); inline void flushBuffer(); inline void deleteBuffer(); /** Header of the Stream */ FLAC__StreamMetadata_StreamInfo _streaminfo; struct { /** Handle to the File */ File *fileHandle; /** Index of next Byte to read */ uint32 filePos; /** start of stream - not necessary start of file */ uint32 fileStartPos; /** last index of Stream + 1(!) - not necessary end of file */ uint32 fileEndPos; } _fileInfo; /** index of the first Sample to be played */ FLAC__uint64 _firstSample; /** index + 1(!) of the last Sample to be played - 0 is end of Stream*/ FLAC__uint64 _lastSample; /** true if the last Sample was decoded from the FLAC-API - there might still be data in the buffer */ bool _lastSampleWritten; typedef int16 bufType; enum { BUFTYPE_BITS = 16 }; struct { bufType *bufData; bufType *bufReadPos; uint bufSize; uint bufFill; } _preBuffer; bufType *_outBuffer; uint _requestedSamples; void setBestConvertBufferMethod(); typedef void (*PFCONVERTBUFFERS)(bufType*,const FLAC__int32*[], uint, const uint, const uint8); PFCONVERTBUFFERS _methodConvertBuffers; static void convertBuffersGeneric(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits); static void convertBuffersStereoNS(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits); static void convertBuffersStereo8Bit(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits); static void convertBuffersMonoNS(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits); static void convertBuffersMono8Bit(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits); }; FlacInputStream::FlacInputStream(File *sourceFile, const uint32 fileStart) : _decoder(::FLAC__seekable_stream_decoder_new()), _firstSample(0), _lastSample(0), _outBuffer(NULL), _requestedSamples(0), _lastSampleWritten(true), _methodConvertBuffers(&FlacInputStream::convertBuffersGeneric) { assert(sourceFile != NULL && sourceFile->isOpen()); memset(&_streaminfo, 0, sizeof(_streaminfo)); _preBuffer.bufData = NULL; _preBuffer.bufFill = 0; _preBuffer.bufSize = 0; _fileInfo.fileHandle = sourceFile; _fileInfo.fileStartPos = fileStart; _fileInfo.filePos = fileStart; _fileInfo.fileEndPos = sourceFile->size(); _fileInfo.fileHandle->incRef(); } FlacInputStream::FlacInputStream(File *sourceFile, const uint32 fileStart, const uint32 fileStop) : _decoder(::FLAC__seekable_stream_decoder_new()), _firstSample(0), _lastSample(0), _outBuffer(NULL), _requestedSamples(0), _lastSampleWritten(true), _methodConvertBuffers(&FlacInputStream::convertBuffersGeneric) { assert(sourceFile != NULL && sourceFile->isOpen()); assert(fileStop <= 0 || (fileStart < fileStop && fileStop <= sourceFile->size())); memset(&_streaminfo, 0, sizeof(_streaminfo)); _preBuffer.bufData = NULL; _preBuffer.bufFill = 0; _preBuffer.bufSize = 0; _fileInfo.fileHandle = sourceFile; _fileInfo.fileStartPos = fileStart; _fileInfo.filePos = fileStart; _fileInfo.fileEndPos = fileStop; _fileInfo.fileHandle->incRef(); } FlacInputStream::~FlacInputStream() { if (_decoder != NULL) { (void) ::FLAC__seekable_stream_decoder_finish(_decoder); ::FLAC__seekable_stream_decoder_delete(_decoder); } if (_preBuffer.bufData != NULL) delete[] _preBuffer.bufData; _fileInfo.fileHandle->decRef(); } inline FLAC__SeekableStreamDecoderState FlacInputStream::getState() const { assert(isValid()); return ::FLAC__seekable_stream_decoder_get_state(_decoder); } inline FLAC__StreamDecoderState FlacInputStream::getStreamDecoderState() const { assert(isValid()); return ::FLAC__seekable_stream_decoder_get_stream_decoder_state(_decoder); } bool FlacInputStream::init() { assert(isValid()); memset(&_streaminfo, 0, sizeof (_streaminfo)); deleteBuffer(); _fileInfo.filePos = _fileInfo.fileStartPos; _lastSampleWritten = false; _methodConvertBuffers = &FlacInputStream::convertBuffersGeneric; ::FLAC__seekable_stream_decoder_set_read_callback(_decoder, &FlacInputStream::callWrapRead); ::FLAC__seekable_stream_decoder_set_seek_callback(_decoder, &FlacInputStream::callWrapSeek); ::FLAC__seekable_stream_decoder_set_tell_callback(_decoder, &FlacInputStream::callWrapTell); ::FLAC__seekable_stream_decoder_set_length_callback(_decoder, &FlacInputStream::callWrapLength); ::FLAC__seekable_stream_decoder_set_eof_callback(_decoder, &FlacInputStream::callWrapEOF); ::FLAC__seekable_stream_decoder_set_write_callback(_decoder, &FlacInputStream::callWrapWrite); ::FLAC__seekable_stream_decoder_set_metadata_callback(_decoder, &FlacInputStream::callWrapMetadata); ::FLAC__seekable_stream_decoder_set_error_callback(_decoder, &FlacInputStream::callWrapError); ::FLAC__seekable_stream_decoder_set_client_data(_decoder, (void*)this); if (::FLAC__seekable_stream_decoder_init(_decoder) == FLAC__SEEKABLE_STREAM_DECODER_OK) { if (processUntilEndOfMetadata() && _streaminfo.channels > 0) { if (_firstSample == 0 || 0 != ::FLAC__seekable_stream_decoder_seek_absolute(_decoder, _firstSample)) { // FLAC__StreamDecoderState state = getStreamDecoderState(); return true; // no error occured } } } warning("FlacInputStream: could not create an Audiostream from File %s", _fileInfo.fileHandle->name()); return false; } bool FlacInputStream::finish() { assert(isValid()); deleteBuffer(); return 0 != ::FLAC__seekable_stream_decoder_finish(_decoder); } bool FlacInputStream::flush() { assert(isValid()); flushBuffer(); return 0 != ::FLAC__seekable_stream_decoder_flush(_decoder); } inline bool FlacInputStream::processSingleBlock() { assert(isValid()); return 0 != ::FLAC__seekable_stream_decoder_process_single(_decoder); } inline bool FlacInputStream::processUntilEndOfMetadata() { assert(isValid()); return 0 != ::FLAC__seekable_stream_decoder_process_until_end_of_metadata(_decoder); } bool FlacInputStream::seekAbsolute(FLAC__uint64 sample) { assert(isValid()); const bool result = (0 != ::FLAC__seekable_stream_decoder_seek_absolute(_decoder, sample)); if (result) { flushBuffer(); _lastSampleWritten = (_lastSample != 0 && sample >= _lastSample); // only set if we are SURE } return result; } int FlacInputStream::readBuffer(int16 *buffer, const int numSamples) { const uint kNumChannels = getChannels(); if (kNumChannels == 0) { warning("FlacInputStream: Stream not sucessfully initialised, cant playback"); return -1; // streaminfo wasnt read! } assert(numSamples % kNumChannels == 0); // must be multiple of channels! assert(buffer != NULL); assert(_outBuffer == NULL); assert(_requestedSamples == 0); _outBuffer = buffer; _requestedSamples = numSamples; if (_preBuffer.bufFill > 0) { assert(_preBuffer.bufData != NULL && _preBuffer.bufReadPos != NULL && _preBuffer.bufSize > 0); assert(_preBuffer.bufReadPos >= _preBuffer.bufData); assert(_preBuffer.bufFill % kNumChannels == 0); const uint copySamples = MIN((uint)numSamples, _preBuffer.bufFill); memcpy(buffer, _preBuffer.bufReadPos, copySamples*sizeof(buffer[0])); _outBuffer = buffer + copySamples; _requestedSamples = numSamples - copySamples; _preBuffer.bufReadPos += copySamples; _preBuffer.bufFill -= copySamples; } bool decoderOk = true; if (!_lastSampleWritten) { FLAC__StreamDecoderState state = getStreamDecoderState(); for (; _requestedSamples > 0 && state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; state = getStreamDecoderState()) { assert(_preBuffer.bufFill == 0); assert(_requestedSamples % kNumChannels == 0); processSingleBlock(); } if (state != FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC) { switch (state) { case FLAC__STREAM_DECODER_END_OF_STREAM : _lastSampleWritten = true; decoderOk = true; // no REAL error break; default: decoderOk = false; warning("FlacInputStream: An error occured while decoding. DecoderState is: %s", FLAC__StreamDecoderStateString[getStreamDecoderState()]); } } } const int samples = (int)(_outBuffer - buffer); assert(samples % kNumChannels == 0); _outBuffer = NULL; // basically unnessecary, only for the purpose of the asserts _requestedSamples = 0; // basically unnessecary, only for the purpose of the asserts return decoderOk ? samples : -1; } inline ::FLAC__SeekableStreamDecoderReadStatus FlacInputStream::callbackRead(FLAC__byte buffer[], uint *bytes) { assert(_fileInfo.fileHandle != NULL); if (*bytes == 0) return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_ERROR; /* abort to avoid a deadlock */ const uint32 length = MIN(_fileInfo.fileEndPos - _fileInfo.filePos, static_cast(*bytes)); _fileInfo.fileHandle->seek(_fileInfo.filePos); const uint32 bytesRead = _fileInfo.fileHandle->read(buffer, length); if (bytesRead == 0 && _fileInfo.fileHandle->ioFailed()) return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_ERROR; _fileInfo.filePos += bytesRead; *bytes = static_cast(bytesRead); return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_OK; } inline void FlacInputStream::setLastSample(FLAC__uint64 absoluteSample) { if (_lastSampleWritten && absoluteSample > _lastSample) _lastSampleWritten = false; _lastSample = absoluteSample; } inline void FlacInputStream::flushBuffer() { _lastSampleWritten = _lastSampleWritten && _preBuffer.bufFill == 0; _preBuffer.bufFill = 0; } inline void FlacInputStream::deleteBuffer() { flushBuffer(); _preBuffer.bufSize = 0; if (_preBuffer.bufData != NULL) { delete[] _preBuffer.bufData; _preBuffer.bufData = NULL; } } bool FlacInputStream::allocateBuffer(uint minSamples) { uint allocateSize = minSamples / getChannels(); /** insert funky algorythm for optimum buffersize here */ allocateSize = MIN(_streaminfo.max_blocksize, MAX(_streaminfo.min_blocksize, allocateSize)); allocateSize += 8 - (allocateSize % 8); // make sure its an nice even amount allocateSize *= getChannels(); deleteBuffer(); _preBuffer.bufData = new bufType[allocateSize]; if (_preBuffer.bufData != NULL) { _preBuffer.bufSize = allocateSize; return true; } return false; } void FlacInputStream::setBestConvertBufferMethod() { PFCONVERTBUFFERS tempMethod = &FlacInputStream::convertBuffersGeneric; const uint kNumChannels = getChannels(); const uint8 kNumBits = (uint8)_streaminfo.bits_per_sample; assert(kNumChannels >= 1); assert(kNumBits >= 4 && kNumBits <=32); if (kNumChannels == 1) { if (kNumBits == 8) tempMethod = &FlacInputStream::convertBuffersMono8Bit; if (kNumBits == BUFTYPE_BITS) tempMethod = &FlacInputStream::convertBuffersMonoNS; } else if (kNumChannels == 2) { if (kNumBits == 8) tempMethod = &FlacInputStream::convertBuffersStereo8Bit; if (kNumBits == BUFTYPE_BITS) tempMethod = &FlacInputStream::convertBuffersStereoNS; } /* else ... */ _methodConvertBuffers = tempMethod; } // 1 channel, no scaling void FlacInputStream::convertBuffersMonoNS(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits) { assert(numChannels == 1); assert(numBits == BUFTYPE_BITS); FLAC__int32 const* inChannel1 = inChannels[0]; while (numSamples >= 4) { bufDestination[0] = static_cast(inChannel1[0]); bufDestination[1] = static_cast(inChannel1[1]); bufDestination[2] = static_cast(inChannel1[2]); bufDestination[3] = static_cast(inChannel1[3]); bufDestination += 4; inChannel1 += 4; numSamples -= 4; } for (; numSamples > 0; --numSamples) { *bufDestination++ = static_cast(*inChannel1++); } inChannels[0] = inChannel1; assert(numSamples == 0); // dint copy too many samples } // 1 channel, scaling from 8Bit void FlacInputStream::convertBuffersMono8Bit(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits) { assert(numChannels == 1); assert(numBits == 8); assert(8 < BUFTYPE_BITS); FLAC__int32 const* inChannel1 = inChannels[0]; while (numSamples >= 4) { bufDestination[0] = static_cast(inChannel1[0]) << (BUFTYPE_BITS - 8); bufDestination[1] = static_cast(inChannel1[1]) << (BUFTYPE_BITS - 8); bufDestination[2] = static_cast(inChannel1[2]) << (BUFTYPE_BITS - 8); bufDestination[3] = static_cast(inChannel1[3]) << (BUFTYPE_BITS - 8); bufDestination += 4; inChannel1 += 4; numSamples -= 4; } for (; numSamples > 0; --numSamples) { *bufDestination++ = static_cast(*inChannel1++) << (BUFTYPE_BITS - 8); } inChannels[0] = inChannel1; assert(numSamples == 0); // dint copy too many samples } // 2 channels, no scaling void FlacInputStream::convertBuffersStereoNS(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits) { assert(numChannels == 2); assert(numBits == BUFTYPE_BITS); assert(numSamples % 2 == 0); // must be integral multiply of channels FLAC__int32 const* inChannel1 = inChannels[0]; // Left Channel FLAC__int32 const* inChannel2 = inChannels[1]; // Right Channel while (numSamples >= 2*2) { bufDestination[0] = static_cast(inChannel1[0]); bufDestination[1] = static_cast(inChannel2[0]); bufDestination[2] = static_cast(inChannel1[1]); bufDestination[3] = static_cast(inChannel2[1]); bufDestination += 2 * 2; inChannel1 += 2; inChannel2 += 2; numSamples -= 2 * 2; } while (numSamples > 0) { bufDestination[0] = static_cast(*inChannel1++); bufDestination[1] = static_cast(*inChannel2++); bufDestination += 2; numSamples -= 2; } inChannels[0] = inChannel1; inChannels[1] = inChannel2; assert(numSamples == 0); // dint copy too many samples } // 2 channels, scaling from 8Bit void FlacInputStream::convertBuffersStereo8Bit(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits) { assert(numChannels == 2); assert(numBits == 8); assert(numSamples % 2 == 0); // must be integral multiply of channels assert(8 < BUFTYPE_BITS); FLAC__int32 const* inChannel1 = inChannels[0]; // Left Channel FLAC__int32 const* inChannel2 = inChannels[1]; // Right Channel while (numSamples >= 2*2) { bufDestination[0] = static_cast(inChannel1[0]) << (BUFTYPE_BITS - 8); bufDestination[1] = static_cast(inChannel2[0]) << (BUFTYPE_BITS - 8); bufDestination[2] = static_cast(inChannel1[1]) << (BUFTYPE_BITS - 8); bufDestination[3] = static_cast(inChannel2[1]) << (BUFTYPE_BITS - 8); bufDestination += 2 * 2; inChannel1 += 2; inChannel2 += 2; numSamples -= 2 * 2; } while (numSamples > 0) { bufDestination[0] = static_cast(*inChannel1++) << (BUFTYPE_BITS - 8); bufDestination[1] = static_cast(*inChannel2++) << (BUFTYPE_BITS - 8); bufDestination += 2; numSamples -= 2; } inChannels[0] = inChannel1; inChannels[1] = inChannel2; assert(numSamples == 0); // dint copy too many samples } // all Purpose-conversion - slowest of em all void FlacInputStream::convertBuffersGeneric(bufType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits) { assert(numSamples % numChannels == 0); // must be integral multiply of channels if (numBits < BUFTYPE_BITS) { const uint8 kPower = (uint8)(BUFTYPE_BITS - numBits); for (; numSamples > 0; numSamples -= numChannels) { for (uint i = 0; i < numChannels; ++i) *bufDestination++ = static_cast(*(inChannels[i]++)) << kPower; } } else if (numBits > BUFTYPE_BITS) { const uint8 kPower = (uint8)(numBits - BUFTYPE_BITS); for (; numSamples > 0; numSamples -= numChannels) { for (uint i = 0; i < numChannels; ++i) *bufDestination++ = static_cast(*(inChannels[i]++) >> kPower) ; } } else { for (; numSamples > 0; numSamples -= numChannels) { for (uint i = 0; i < numChannels; ++i) *bufDestination++ = static_cast(*(inChannels[i]++)); } } assert(numSamples == 0); // dint copy too many samples } inline ::FLAC__StreamDecoderWriteStatus FlacInputStream::callbackWrite(const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[]) { assert(frame->header.channels == _streaminfo.channels); assert(frame->header.sample_rate == _streaminfo.sample_rate); assert(frame->header.bits_per_sample == _streaminfo.bits_per_sample); assert(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER || _streaminfo.min_blocksize == _streaminfo.max_blocksize); assert(_preBuffer.bufFill == 0); // we dont append data uint nSamples = frame->header.blocksize; const uint kNumChannels = getChannels(); const uint8 kNumBits = (uint8)_streaminfo.bits_per_sample; assert(_requestedSamples % kNumChannels == 0); // must be integral multiply of channels const FLAC__uint64 firstSampleNumber = (frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER) ? frame->header.number.sample_number : (static_cast(frame->header.number.frame_number)) * _streaminfo.max_blocksize; if (_lastSample != 0 && firstSampleNumber + nSamples >= _lastSample) { nSamples = (uint)(firstSampleNumber >= _lastSample ? 0 : _lastSample - firstSampleNumber); _requestedSamples = MIN(_requestedSamples, nSamples * kNumChannels); _lastSampleWritten = true; } nSamples *= kNumChannels; const FLAC__int32 *inChannels[MAX_OUTPUT_CHANNELS] = { buffer[0] }; // one channel is a given... for (uint i = 1; i < kNumChannels; ++i) inChannels[i] = buffer[i]; // writing DIRECTLY to the Buffer ScummVM provided if (_requestedSamples > 0) { assert(_requestedSamples % kNumChannels == 0); // must be integral multiply of channels assert(_outBuffer != NULL); const uint copySamples = MIN(_requestedSamples,nSamples); (*_methodConvertBuffers)(_outBuffer, inChannels, copySamples, kNumChannels, kNumBits); _requestedSamples -= copySamples; nSamples -= copySamples; _outBuffer += copySamples; } // checking if Buffer fits if (_preBuffer.bufSize < nSamples) { if (!allocateBuffer(nSamples)) return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT; } // optional check if buffer is wasting too much memory ? (*_methodConvertBuffers)(_preBuffer.bufData, inChannels, nSamples, kNumChannels, kNumBits); _preBuffer.bufFill = nSamples; _preBuffer.bufReadPos = _preBuffer.bufData; return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE; } inline ::FLAC__SeekableStreamDecoderSeekStatus FlacInputStream::callbackSeek(FLAC__uint64 absoluteByteOffset) { FLAC__uint64 newPos = absoluteByteOffset + _fileInfo.fileStartPos; const bool result = (newPos < _fileInfo.fileEndPos); if (result) _fileInfo.filePos = static_cast(newPos); return result ? FLAC__SEEKABLE_STREAM_DECODER_SEEK_STATUS_OK : FLAC__SEEKABLE_STREAM_DECODER_SEEK_STATUS_ERROR; } inline ::FLAC__SeekableStreamDecoderTellStatus FlacInputStream::callbackTell(FLAC__uint64 *absoluteByteOffset) { /*if () return FLAC__SEEKABLE_STREAM_DECODER_TELL_STATUS_ERROR;*/ *absoluteByteOffset = static_cast(_fileInfo.filePos-_fileInfo.fileStartPos); return FLAC__SEEKABLE_STREAM_DECODER_TELL_STATUS_OK; } inline ::FLAC__SeekableStreamDecoderLengthStatus FlacInputStream::callbackLength(FLAC__uint64 *streamLength) { if (_fileInfo.fileStartPos > _fileInfo.fileEndPos) return FLAC__SEEKABLE_STREAM_DECODER_LENGTH_STATUS_ERROR; *streamLength = static_cast(_fileInfo.fileEndPos - _fileInfo.fileStartPos); return FLAC__SEEKABLE_STREAM_DECODER_LENGTH_STATUS_OK; } inline bool FlacInputStream::callbackEOF() { return _fileInfo.filePos >= _fileInfo.fileEndPos; } inline void FlacInputStream::callbackMetadata(const ::FLAC__StreamMetadata *metadata) { assert(isValid()); assert(metadata->type == FLAC__METADATA_TYPE_STREAMINFO); // others arent really interesting _streaminfo = metadata->data.stream_info; setBestConvertBufferMethod(); // should be set after getting stream-information. FLAC always parses the info first } inline void FlacInputStream::callbackError(::FLAC__StreamDecoderErrorStatus status) { // some of these are non-critical-Errors debug(1, "FlacInputStream: An error occured while decoding. DecoderState is: %s", FLAC__StreamDecoderErrorStatusString[status]); } /* Static Callback Wrappers */ ::FLAC__SeekableStreamDecoderReadStatus FlacInputStream::callWrapRead(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__byte buffer[], uint *bytes, void *clientData) { assert(0 != clientData); FlacInputStream *instance = reinterpret_cast(clientData); assert(0 != instance); return instance->callbackRead(buffer, bytes); } ::FLAC__SeekableStreamDecoderSeekStatus FlacInputStream::callWrapSeek(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 absoluteByteOffset, void *clientData) { assert(0 != clientData); FlacInputStream *instance = reinterpret_cast(clientData); assert(0 != instance); return instance->callbackSeek(absoluteByteOffset); } ::FLAC__SeekableStreamDecoderTellStatus FlacInputStream::callWrapTell(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *absoluteByteOffset, void *clientData) { assert(0 != clientData); FlacInputStream *instance = reinterpret_cast(clientData); assert(0 != instance); return instance->callbackTell(absoluteByteOffset); } ::FLAC__SeekableStreamDecoderLengthStatus FlacInputStream::callWrapLength(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *streamLength, void *clientData) { assert(0 != clientData); FlacInputStream *instance = reinterpret_cast(clientData); assert(0 != instance); return instance->callbackLength(streamLength); } FLAC__bool FlacInputStream::callWrapEOF(const ::FLAC__SeekableStreamDecoder *decoder, void *clientData) { assert(0 != clientData); FlacInputStream *instance = reinterpret_cast(clientData); assert(0 != instance); return instance->callbackEOF(); } ::FLAC__StreamDecoderWriteStatus FlacInputStream::callWrapWrite(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *clientData) { assert(0 != clientData); FlacInputStream *instance = reinterpret_cast(clientData); assert(0 != instance); return instance->callbackWrite(frame, buffer); } void FlacInputStream::callWrapMetadata(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__StreamMetadata *metadata, void *clientData) { assert(0 != clientData); FlacInputStream *instance = reinterpret_cast(clientData); assert(0 != instance); instance->callbackMetadata(metadata); } void FlacInputStream::callWrapError(const ::FLAC__SeekableStreamDecoder *decoder, ::FLAC__StreamDecoderErrorStatus status, void *clientData) { assert(0 != clientData); FlacInputStream *instance = reinterpret_cast(clientData); assert(0 != instance); instance->callbackError(status); } #pragma mark - #pragma mark --- Flac Audio CD emulation --- #pragma mark - class FlacTrackInfo : public DigitalTrackInfo { private: File *_file; FlacInputStream *_firstStream; // avoid having to open the Stream twice the first time public: FlacTrackInfo(File *file); ~FlacTrackInfo(); bool error() { return _file == NULL; } void play(SoundMixer *mixer, PlayingSoundHandle *handle, int startFrame, int duration); }; FlacTrackInfo::FlacTrackInfo(File *file) : _file(NULL), _firstStream(NULL) { FlacInputStream *tempStream = new FlacInputStream(file); /* first time the file will be tested, but not used */ if (tempStream->init()) { _firstStream = tempStream; _file = file; } else delete tempStream; } void FlacTrackInfo::play(SoundMixer *mixer, PlayingSoundHandle *handle, int startFrame, int duration) { if (error()) { debug(1, "FlacTrackInfo::play: invalid state, method should not been called"); } FlacInputStream *flac; if (_firstStream != NULL) { flac = _firstStream; _firstStream = NULL; } else { flac = new FlacInputStream(_file); flac->init(); } if (flac->isStreamDecoderReady()) { const FLAC__StreamMetadata_StreamInfo &info = flac->getStreamInfo(); if (duration) flac->setLastSample(static_cast(startFrame + duration) * (info.sample_rate / 75)); else flac->setLastSample(0); if (flac->seekAbsolute(static_cast(startFrame) * (info.sample_rate / 75))) { mixer->playInputStream(SoundMixer::kMusicSoundType, handle, flac); return; } // startSample is beyond the existing Samples debug(1, "FlacTrackInfo: Audiostream %s could not seek to frame %d (ca %d secs)", _file->name(), startFrame, startFrame/75); flac->finish(); } delete flac; } FlacTrackInfo::~FlacTrackInfo() { delete _firstStream; delete _file; } DigitalTrackInfo* getFlacTrack(int track) { assert(track >=1); char track_name[32]; File *file = new File(); sprintf(track_name, "track%d.flac", track); file->open(track_name); if (file->isOpen()) { FlacTrackInfo *trackInfo = new FlacTrackInfo(file); if (!trackInfo->error()) return trackInfo; delete trackInfo; } sprintf(track_name, "track%d.fla", track); file->open(track_name); if (file->isOpen()) { FlacTrackInfo *trackInfo = new FlacTrackInfo(file); if (!trackInfo->error()) return trackInfo; delete trackInfo; } delete file; return NULL; } AudioStream *makeFlacStream(File *file, uint32 length) { assert(file != NULL); uint32 start = file->pos(); FlacInputStream *flac = new FlacInputStream(file, start, start + length); if (flac->init()) return flac; delete flac; return NULL; } #endif // #ifdef USE_FLAC