/* ResidualVM - A 3D game interpreter * * ResidualVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ // Quaternion-math borrowed from plib http://plib.sourceforge.net/index.html // Which is covered by LGPL2 // And has this additional copyright note: /* Quaternion routines are Copyright (C) 1999 Kevin B. Thompson Modified by Sylvan W. Clebsch Largely rewritten by "Negative0" */ #include "common/streamdebug.h" #include "math/quat.h" namespace Math { Quaternion Quaternion::slerpQuat(const Quaternion& to, const float t) { Quaternion dst; float co, scale0, scale1; bool flip = false ; /* SWC - Interpolate between to quaternions */ co = this->dotProduct(to); if (co < 0.0f) { co = -co; flip = true; } if ( co < 1.0f - (float) 1e-6 ) { float o = (float) acos ( co ); float so = 1.0f / (float) sin ( o ); scale0 = (float) sin ( (1.0f - t) * o ) * so; scale1 = (float) sin ( t * o ) * so; } else { scale0 = 1.0f - t; scale1 = t; } if (flip) { scale1 = -scale1 ; } dst.x() = scale0 * this->x() + scale1 * to.x() ; dst.y() = scale0 * this->y() + scale1 * to.y() ; dst.z() = scale0 * this->z() + scale1 * to.z() ; dst.w() = scale0 * this->w() + scale1 * to.w() ; return dst; } void Quaternion::toMatrix(Matrix4 &dst) const { float two_xx = x() * (x() + x()); float two_xy = x() * (y() + y()); float two_xz = x() * (z() + z()); float two_wx = w() * (x() + x()); float two_wy = w() * (y() + y()); float two_wz = w() * (z() + z()); float two_yy = y() * (y() + y()); float two_yz = y() * (z() + z()); float two_zz = z() * (z() + z()); float newMat[16] = { 1.0f-(two_yy+two_zz), two_xy-two_wz, two_xz+two_wy, 0.0f, two_xy+two_wz, 1.0f-(two_xx+two_zz), two_yz-two_wx, 0.0f, two_xz-two_wy, two_yz+two_wx, 1.0f-(two_xx+two_yy), 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; dst.setData(newMat); } Matrix4 Quaternion::toMatrix() const { Matrix4 dst; toMatrix(dst); return dst; } Quaternion Quaternion::fromEuler(const Angle &yaw, const Angle &pitch, const Angle &roll) { float cr, cp, cy, sr, sp, sy, cpcy, spsy; cy = (yaw / 2).getCosine(); cp = (pitch / 2).getCosine(); cr = (roll / 2).getCosine(); sy = (yaw / 2).getSine(); sp = (pitch / 2).getSine(); sr = (roll / 2).getSine(); cpcy = cp * cy; spsy = sp * sy; return Quaternion( cr * sp * cy + sr * cp * sy, cr * cp * sy - sr * sp * cy, sr * cpcy - cr * spsy, cr * cpcy + sr * spsy); } Quaternion Quaternion::operator*(const Quaternion &o) const { return Quaternion( w() * o.x() + x() * o.w() + y() * o.z() - z() * o.y(), w() * o.y() - x() * o.z() + y() * o.w() + z() * o.x(), w() * o.z() + x() * o.y() - y() * o.x() + z() * o.w(), w() * o.w() - x() * o.x() - y() * o.y() - z() * o.z() ); } }