/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "gui/EventRecorder.h" #include "common/util.h" #include "common/textconsole.h" #include "audio/mixer_intern.h" #include "audio/rate.h" #include "audio/audiostream.h" #include "audio/timestamp.h" namespace Audio { #pragma mark - #pragma mark --- Channel classes --- #pragma mark - /** * Channel used by the default Mixer implementation. */ class Channel { public: Channel(Mixer *mixer, Mixer::SoundType type, AudioStream *stream, DisposeAfterUse::Flag autofreeStream, bool reverseStereo, int id, bool permanent); ~Channel(); /** * Mixes the channel's samples into the given buffer. * * @param data buffer where to mix the data * @param len number of sample *pairs*. So a value of * 10 means that the buffer contains twice 10 sample, each * 16 bits, for a total of 40 bytes. * @return number of sample pairs processed (which can still be silence!) */ int mix(int16 *data, uint len); /** * Queries whether the channel is still playing or not. */ bool isFinished() const { return _stream->endOfStream(); } /** * Queries whether the channel is a permanent channel. * A permanent channel is not affected by a Mixer::stopAll * call. */ bool isPermanent() const { return _permanent; } /** * Returns the id of the channel. */ int getId() const { return _id; } /** * Pauses or unpaused the channel in a recursive fashion. * * @param paused true, when the channel should be paused. * false when it should be unpaused. */ void pause(bool paused); /** * Queries whether the channel is currently paused. */ bool isPaused() const { return (_pauseLevel != 0); } /** * Sets the channel's own volume. * * @param volume new volume */ void setVolume(const byte volume); /** * Gets the channel's own volume. * * @return volume */ byte getVolume(); /** * Sets the channel's balance setting. * * @param balance new balance */ void setBalance(const int8 balance); /** * Gets the channel's balance setting. * * @return balance */ int8 getBalance(); /** * Notifies the channel that the global sound type * volume settings changed. */ void notifyGlobalVolChange() { updateChannelVolumes(); } /** * Queries how long the channel has been playing. */ Timestamp getElapsedTime(); /** * Replaces the channel's stream with a version that loops indefinitely. */ void loop(); /** * Queries the channel's sound type. */ Mixer::SoundType getType() const { return _type; } /** * Sets the channel's sound handle. * * @param handle new handle */ void setHandle(const SoundHandle handle) { _handle = handle; } /** * Queries the channel's sound handle. */ SoundHandle getHandle() const { return _handle; } private: const Mixer::SoundType _type; SoundHandle _handle; bool _permanent; int _pauseLevel; int _id; byte _volume; int8 _balance; void updateChannelVolumes(); st_volume_t _volL, _volR; Mixer *_mixer; uint32 _samplesConsumed; uint32 _samplesDecoded; uint32 _mixerTimeStamp; uint32 _pauseStartTime; uint32 _pauseTime; RateConverter *_converter; Common::DisposablePtr _stream; }; #pragma mark - #pragma mark --- Mixer --- #pragma mark - MixerImpl::MixerImpl(uint sampleRate) : _mutex(), _sampleRate(sampleRate), _mixerReady(false), _handleSeed(0), _soundTypeSettings() { assert(sampleRate > 0); for (int i = 0; i != NUM_CHANNELS; i++) _channels[i] = 0; } MixerImpl::~MixerImpl() { for (int i = 0; i != NUM_CHANNELS; i++) delete _channels[i]; } void MixerImpl::setReady(bool ready) { Common::StackLock lock(_mutex); _mixerReady = ready; } uint MixerImpl::getOutputRate() const { return _sampleRate; } void MixerImpl::insertChannel(SoundHandle *handle, Channel *chan) { int index = -1; for (int i = 0; i != NUM_CHANNELS; i++) { if (_channels[i] == 0) { index = i; break; } } if (index == -1) { warning("MixerImpl::out of mixer slots"); delete chan; return; } _channels[index] = chan; SoundHandle chanHandle; chanHandle._val = index + (_handleSeed * NUM_CHANNELS); chan->setHandle(chanHandle); _handleSeed++; if (handle) *handle = chanHandle; } void MixerImpl::playStream( SoundType type, SoundHandle *handle, AudioStream *stream, int id, byte volume, int8 balance, DisposeAfterUse::Flag autofreeStream, bool permanent, bool reverseStereo) { Common::StackLock lock(_mutex); if (stream == 0) { warning("stream is 0"); return; } assert(_mixerReady); // Prevent duplicate sounds if (id != -1) { for (int i = 0; i != NUM_CHANNELS; i++) if (_channels[i] != 0 && _channels[i]->getId() == id) { // Delete the stream if were asked to auto-dispose it. // Note: This could cause trouble if the client code does not // yet expect the stream to be gone. The primary example to // keep in mind here is QueuingAudioStream. // Thus, as a quick rule of thumb, you should never, ever, // try to play QueuingAudioStreams with a sound id. if (autofreeStream == DisposeAfterUse::YES) delete stream; return; } } #ifdef AUDIO_REVERSE_STEREO reverseStereo = !reverseStereo; #endif // Create the channel Channel *chan = new Channel(this, type, stream, autofreeStream, reverseStereo, id, permanent); chan->setVolume(volume); chan->setBalance(balance); insertChannel(handle, chan); } int MixerImpl::mixCallback(byte *samples, uint len) { assert(samples); Common::StackLock lock(_mutex); int16 *buf = (int16 *)samples; // we store stereo, 16-bit samples assert(len % 4 == 0); len >>= 2; // Since the mixer callback has been called, the mixer must be ready... _mixerReady = true; // zero the buf memset(buf, 0, 2 * len * sizeof(int16)); // mix all channels int res = 0, tmp; for (int i = 0; i != NUM_CHANNELS; i++) if (_channels[i]) { if (_channels[i]->isFinished()) { delete _channels[i]; _channels[i] = 0; } else if (!_channels[i]->isPaused()) { tmp = _channels[i]->mix(buf, len); if (tmp > res) res = tmp; } } return res; } void MixerImpl::stopAll() { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) { if (_channels[i] != 0 && !_channels[i]->isPermanent()) { delete _channels[i]; _channels[i] = 0; } } } void MixerImpl::stopID(int id) { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) { if (_channels[i] != 0 && _channels[i]->getId() == id) { delete _channels[i]; _channels[i] = 0; } } } void MixerImpl::stopHandle(SoundHandle handle) { Common::StackLock lock(_mutex); // Simply ignore stop requests for handles of sounds that already terminated const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->getHandle()._val != handle._val) return; delete _channels[index]; _channels[index] = 0; } void MixerImpl::muteSoundType(SoundType type, bool mute) { assert(0 <= (int)type && (int)type < ARRAYSIZE(_soundTypeSettings)); _soundTypeSettings[type].mute = mute; for (int i = 0; i != NUM_CHANNELS; ++i) { if (_channels[i] && _channels[i]->getType() == type) _channels[i]->notifyGlobalVolChange(); } } bool MixerImpl::isSoundTypeMuted(SoundType type) const { assert(0 <= (int)type && (int)type < ARRAYSIZE(_soundTypeSettings)); return _soundTypeSettings[type].mute; } void MixerImpl::setChannelVolume(SoundHandle handle, byte volume) { Common::StackLock lock(_mutex); const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->getHandle()._val != handle._val) return; _channels[index]->setVolume(volume); } byte MixerImpl::getChannelVolume(SoundHandle handle) { const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->getHandle()._val != handle._val) return 0; return _channels[index]->getVolume(); } void MixerImpl::setChannelBalance(SoundHandle handle, int8 balance) { Common::StackLock lock(_mutex); const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->getHandle()._val != handle._val) return; _channels[index]->setBalance(balance); } int8 MixerImpl::getChannelBalance(SoundHandle handle) { const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->getHandle()._val != handle._val) return 0; return _channels[index]->getBalance(); } uint32 MixerImpl::getSoundElapsedTime(SoundHandle handle) { return getElapsedTime(handle).msecs(); } Timestamp MixerImpl::getElapsedTime(SoundHandle handle) { Common::StackLock lock(_mutex); const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->getHandle()._val != handle._val) return Timestamp(0, _sampleRate); return _channels[index]->getElapsedTime(); } void MixerImpl::loopChannel(SoundHandle handle) { Common::StackLock lock(_mutex); const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->getHandle()._val != handle._val) return; _channels[index]->loop(); } void MixerImpl::pauseAll(bool paused) { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) { if (_channels[i] != 0) { _channels[i]->pause(paused); } } } void MixerImpl::pauseID(int id, bool paused) { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) { if (_channels[i] != 0 && _channels[i]->getId() == id) { _channels[i]->pause(paused); return; } } } void MixerImpl::pauseHandle(SoundHandle handle, bool paused) { Common::StackLock lock(_mutex); // Simply ignore (un)pause requests for sounds that already terminated const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->getHandle()._val != handle._val) return; _channels[index]->pause(paused); } bool MixerImpl::isSoundIDActive(int id) { Common::StackLock lock(_mutex); #ifdef ENABLE_EVENTRECORDER g_eventRec.updateSubsystems(); #endif for (int i = 0; i != NUM_CHANNELS; i++) if (_channels[i] && _channels[i]->getId() == id) return true; return false; } int MixerImpl::getSoundID(SoundHandle handle) { Common::StackLock lock(_mutex); const int index = handle._val % NUM_CHANNELS; if (_channels[index] && _channels[index]->getHandle()._val == handle._val) return _channels[index]->getId(); return 0; } bool MixerImpl::isSoundHandleActive(SoundHandle handle) { Common::StackLock lock(_mutex); #ifdef ENABLE_EVENTRECORDER g_eventRec.updateSubsystems(); #endif const int index = handle._val % NUM_CHANNELS; return _channels[index] && _channels[index]->getHandle()._val == handle._val; } bool MixerImpl::hasActiveChannelOfType(SoundType type) { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) if (_channels[i] && _channels[i]->getType() == type) return true; return false; } void MixerImpl::setVolumeForSoundType(SoundType type, int volume) { assert(0 <= (int)type && (int)type < ARRAYSIZE(_soundTypeSettings)); // Check range volume = CLIP(volume, 0, kMaxMixerVolume); // TODO: Maybe we should do logarithmic (not linear) volume // scaling? See also Player_V2::setMasterVolume Common::StackLock lock(_mutex); _soundTypeSettings[type].volume = volume; for (int i = 0; i != NUM_CHANNELS; ++i) { if (_channels[i] && _channels[i]->getType() == type) _channels[i]->notifyGlobalVolChange(); } } int MixerImpl::getVolumeForSoundType(SoundType type) const { assert(0 <= (int)type && (int)type < ARRAYSIZE(_soundTypeSettings)); return _soundTypeSettings[type].volume; } #pragma mark - #pragma mark --- Channel implementations --- #pragma mark - Channel::Channel(Mixer *mixer, Mixer::SoundType type, AudioStream *stream, DisposeAfterUse::Flag autofreeStream, bool reverseStereo, int id, bool permanent) : _type(type), _mixer(mixer), _id(id), _permanent(permanent), _volume(Mixer::kMaxChannelVolume), _balance(0), _pauseLevel(0), _samplesConsumed(0), _samplesDecoded(0), _mixerTimeStamp(0), _pauseStartTime(0), _pauseTime(0), _converter(0), _volL(0), _volR(0), _stream(stream, autofreeStream) { assert(mixer); assert(stream); // Get a rate converter instance _converter = makeRateConverter(_stream->getRate(), mixer->getOutputRate(), _stream->isStereo(), reverseStereo); } Channel::~Channel() { delete _converter; } void Channel::setVolume(const byte volume) { _volume = volume; updateChannelVolumes(); } byte Channel::getVolume() { return _volume; } void Channel::setBalance(const int8 balance) { _balance = balance; updateChannelVolumes(); } int8 Channel::getBalance() { return _balance; } void Channel::updateChannelVolumes() { // From the channel balance/volume and the global volume, we compute // the effective volume for the left and right channel. Note the // slightly odd divisor: the 255 reflects the fact that the maximal // value for _volume is 255, while the 127 is there because the // balance value ranges from -127 to 127. The mixer (music/sound) // volume is in the range 0 - kMaxMixerVolume. // Hence, the vol_l/vol_r values will be in that range, too if (!_mixer->isSoundTypeMuted(_type)) { int vol = _mixer->getVolumeForSoundType(_type) * _volume; if (_balance == 0) { _volL = vol / Mixer::kMaxChannelVolume; _volR = vol / Mixer::kMaxChannelVolume; } else if (_balance < 0) { _volL = vol / Mixer::kMaxChannelVolume; _volR = ((127 + _balance) * vol) / (Mixer::kMaxChannelVolume * 127); } else { _volL = ((127 - _balance) * vol) / (Mixer::kMaxChannelVolume * 127); _volR = vol / Mixer::kMaxChannelVolume; } } else { _volL = _volR = 0; } } void Channel::pause(bool paused) { //assert((paused && _pauseLevel >= 0) || (!paused && _pauseLevel)); if (paused) { _pauseLevel++; if (_pauseLevel == 1) _pauseStartTime = g_system->getMillis(true); } else if (_pauseLevel > 0) { _pauseLevel--; if (!_pauseLevel) { _pauseTime = (g_system->getMillis(true) - _pauseStartTime); _pauseStartTime = 0; } } } Timestamp Channel::getElapsedTime() { const uint32 rate = _mixer->getOutputRate(); uint32 delta = 0; Audio::Timestamp ts(0, rate); if (_mixerTimeStamp == 0) return ts; if (isPaused()) delta = _pauseStartTime - _mixerTimeStamp; else delta = g_system->getMillis(true) - _mixerTimeStamp - _pauseTime; // Convert the number of samples into a time duration. ts = ts.addFrames(_samplesConsumed); ts = ts.addMsecs(delta); // In theory it would seem like a good idea to limit the approximation // so that it never exceeds the theoretical upper bound set by // _samplesDecoded. Meanwhile, back in the real world, doing so makes // the Broken Sword cutscenes noticeably jerkier. I guess the mixer // isn't invoked at the regular intervals that I first imagined. return ts; } void Channel::loop() { assert(_stream); Audio::RewindableAudioStream *rewindableStream = dynamic_cast(_stream.get()); if (rewindableStream) { DisposeAfterUse::Flag dispose = _stream.getDispose(); _stream.disownPtr(); Audio::LoopingAudioStream *loopingStream = new Audio::LoopingAudioStream(rewindableStream, 0, dispose, false); _stream.reset(loopingStream, DisposeAfterUse::YES); } } int Channel::mix(int16 *data, uint len) { assert(_stream); int res = 0; if (_stream->endOfData()) { // TODO: call drain method } else { assert(_converter); _samplesConsumed = _samplesDecoded; _mixerTimeStamp = g_system->getMillis(true); _pauseTime = 0; res = _converter->flow(*_stream, data, len, _volL, _volR); _samplesDecoded += res; } return res; } } // End of namespace Audio