/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ // // Partially based on ffmpeg code. // // Copyright (c) 2001 Fabrice Bellard. // First version by Francois Revol revol@free.fr // Seek function by Gael Chardon gael.dev@4now.net // #include "video/qt_decoder.h" #include "video/qt_data.h" #include "audio/audiostream.h" #include "common/debug.h" #include "common/memstream.h" #include "common/system.h" #include "common/textconsole.h" #include "common/util.h" // Video codecs #include "image/codecs/codec.h" namespace Video { //////////////////////////////////////////// // QuickTimeDecoder //////////////////////////////////////////// QuickTimeDecoder::QuickTimeDecoder() { _scaledSurface = 0; _width = _height = 0; } QuickTimeDecoder::~QuickTimeDecoder() { close(); } bool QuickTimeDecoder::loadFile(const Common::Path &filename) { if (!Common::QuickTimeParser::parseFile(filename)) return false; init(); return true; } bool QuickTimeDecoder::loadStream(Common::SeekableReadStream *stream) { if (!Common::QuickTimeParser::parseStream(stream)) return false; init(); return true; } void QuickTimeDecoder::close() { VideoDecoder::close(); Common::QuickTimeParser::close(); if (_scaledSurface) { _scaledSurface->free(); delete _scaledSurface; _scaledSurface = 0; } } const Graphics::Surface *QuickTimeDecoder::decodeNextFrame() { const Graphics::Surface *frame = VideoDecoder::decodeNextFrame(); // Update audio buffers too // (needs to be done after we find the next track) updateAudioBuffer(); // We have to initialize the scaled surface if (frame && (_scaleFactorX != 1 || _scaleFactorY != 1)) { if (!_scaledSurface) { _scaledSurface = new Graphics::Surface(); _scaledSurface->create(_width, _height, getPixelFormat()); } scaleSurface(frame, _scaledSurface, _scaleFactorX, _scaleFactorY); return _scaledSurface; } return frame; } Common::QuickTimeParser::SampleDesc *QuickTimeDecoder::readSampleDesc(Common::QuickTimeParser::Track *track, uint32 format, uint32 descSize) { if (track->codecType == CODEC_TYPE_VIDEO) { debug(0, "Video Codec FourCC: \'%s\'", tag2str(format)); VideoSampleDesc *entry = new VideoSampleDesc(track, format); _fd->readUint16BE(); // version _fd->readUint16BE(); // revision level _fd->readUint32BE(); // vendor _fd->readUint32BE(); // temporal quality _fd->readUint32BE(); // spacial quality uint16 width = _fd->readUint16BE(); // width uint16 height = _fd->readUint16BE(); // height // The width is most likely invalid for entries after the first one // so only set the overall width if it is not zero here. if (width) track->width = width; if (height) track->height = height; _fd->readUint32BE(); // horiz resolution _fd->readUint32BE(); // vert resolution _fd->readUint32BE(); // data size, always 0 _fd->readUint16BE(); // frames per samples byte codecName[32]; _fd->read(codecName, 32); // codec name, pascal string (FIXME: true for mp4?) if (codecName[0] <= 31) { memcpy(entry->_codecName, &codecName[1], codecName[0]); entry->_codecName[codecName[0]] = 0; } entry->_bitsPerSample = _fd->readUint16BE(); // depth entry->_colorTableId = _fd->readUint16BE(); // colortable id // figure out the palette situation byte colorDepth = entry->_bitsPerSample & 0x1F; bool colorGreyscale = (entry->_bitsPerSample & 0x20) != 0; debug(0, "color depth: %d", colorDepth); // if the depth is 2, 4, or 8 bpp, file is palettized if (colorDepth == 2 || colorDepth == 4 || colorDepth == 8) { // Initialize the palette entry->_palette = new byte[256 * 3]; memset(entry->_palette, 0, 256 * 3); if (colorGreyscale) { debug(0, "Greyscale palette"); // compute the greyscale palette uint16 colorCount = 1 << colorDepth; int16 colorIndex = 255; byte colorDec = 256 / (colorCount - 1); for (byte j = 0; j < colorCount; j++) { entry->_palette[j * 3] = entry->_palette[j * 3 + 1] = entry->_palette[j * 3 + 2] = colorIndex; colorIndex -= colorDec; if (colorIndex < 0) colorIndex = 0; } } else if (entry->_colorTableId & 0x08) { // if flag bit 3 is set, use the default palette //uint16 colorCount = 1 << colorDepth; debug(0, "Predefined palette! %dbpp", colorDepth); if (colorDepth == 2) memcpy(entry->_palette, quickTimeDefaultPalette4, 4 * 3); else if (colorDepth == 4) memcpy(entry->_palette, quickTimeDefaultPalette16, 16 * 3); else if (colorDepth == 8) memcpy(entry->_palette, quickTimeDefaultPalette256, 256 * 3); } else { debug(0, "Palette from file"); // load the palette from the file uint32 colorStart = _fd->readUint32BE(); /* uint16 colorCount = */ _fd->readUint16BE(); uint16 colorEnd = _fd->readUint16BE(); for (uint32 j = colorStart; j <= colorEnd; j++) { // each R, G, or B component is 16 bits; // only use the top 8 bits; skip alpha bytes // up front _fd->readByte(); _fd->readByte(); entry->_palette[j * 3] = _fd->readByte(); _fd->readByte(); entry->_palette[j * 3 + 1] = _fd->readByte(); _fd->readByte(); entry->_palette[j * 3 + 2] = _fd->readByte(); _fd->readByte(); } } } return entry; } // Pass it on up return Audio::QuickTimeAudioDecoder::readSampleDesc(track, format, descSize); } void QuickTimeDecoder::init() { Audio::QuickTimeAudioDecoder::init(); // Initialize all the audio tracks for (uint32 i = 0; i < _audioTracks.size(); i++) addTrack(new AudioTrackHandler(this, _audioTracks[i])); // Initialize all the video tracks const Common::Array &tracks = Common::QuickTimeParser::_tracks; for (uint32 i = 0; i < tracks.size(); i++) { if (tracks[i]->codecType == CODEC_TYPE_VIDEO) { for (uint32 j = 0; j < tracks[i]->sampleDescs.size(); j++) ((VideoSampleDesc *)tracks[i]->sampleDescs[j])->initCodec(); addTrack(new VideoTrackHandler(this, tracks[i])); } } // Prepare the first video track VideoTrackHandler *nextVideoTrack = (VideoTrackHandler *)findNextVideoTrack(); if (nextVideoTrack) { if (_scaleFactorX != 1 || _scaleFactorY != 1) { // We have to take the scale into consideration when setting width/height _width = (nextVideoTrack->getScaledWidth() / _scaleFactorX).toInt(); _height = (nextVideoTrack->getScaledHeight() / _scaleFactorY).toInt(); } else { _width = nextVideoTrack->getWidth(); _height = nextVideoTrack->getHeight(); } } } void QuickTimeDecoder::updateAudioBuffer() { // Updates the audio buffers for all audio tracks for (TrackListIterator it = getTrackListBegin(); it != getTrackListEnd(); it++) if ((*it)->getTrackType() == VideoDecoder::Track::kTrackTypeAudio) ((AudioTrackHandler *)*it)->updateBuffer(); } void QuickTimeDecoder::scaleSurface(const Graphics::Surface *src, Graphics::Surface *dst, const Common::Rational &scaleFactorX, const Common::Rational &scaleFactorY) { assert(src && dst); for (int32 j = 0; j < dst->h; j++) for (int32 k = 0; k < dst->w; k++) memcpy(dst->getBasePtr(k, j), src->getBasePtr((k * scaleFactorX).toInt() , (j * scaleFactorY).toInt()), src->format.bytesPerPixel); } QuickTimeDecoder::VideoSampleDesc::VideoSampleDesc(Common::QuickTimeParser::Track *parentTrack, uint32 codecTag) : Common::QuickTimeParser::SampleDesc(parentTrack, codecTag) { memset(_codecName, 0, 32); _colorTableId = 0; _palette = 0; _videoCodec = 0; _bitsPerSample = 0; } QuickTimeDecoder::VideoSampleDesc::~VideoSampleDesc() { delete[] _palette; delete _videoCodec; } void QuickTimeDecoder::VideoSampleDesc::initCodec() { _videoCodec = Image::createQuickTimeCodec(_codecTag, _parentTrack->width, _parentTrack->height, _bitsPerSample & 0x1f); } QuickTimeDecoder::AudioTrackHandler::AudioTrackHandler(QuickTimeDecoder *decoder, QuickTimeAudioTrack *audioTrack) : SeekableAudioTrack(decoder->getSoundType()), _decoder(decoder), _audioTrack(audioTrack) { } void QuickTimeDecoder::AudioTrackHandler::updateBuffer() { if (_decoder->endOfVideoTracks()) // If we have no video left (or no video), there's nothing to base our buffer against _audioTrack->queueRemainingAudio(); else // Otherwise, queue enough to get us to the next frame plus another half second spare _audioTrack->queueAudio(Audio::Timestamp(_decoder->getTimeToNextFrame() + 500, 1000)); } Audio::SeekableAudioStream *QuickTimeDecoder::AudioTrackHandler::getSeekableAudioStream() const { return _audioTrack; } QuickTimeDecoder::VideoTrackHandler::VideoTrackHandler(QuickTimeDecoder *decoder, Common::QuickTimeParser::Track *parent) : _decoder(decoder), _parent(parent) { checkEditListBounds(); _curEdit = 0; enterNewEditList(false); _curFrame = -1; _durationOverride = -1; _scaledSurface = 0; _curPalette = 0; _dirtyPalette = false; _reversed = false; _forcedDitherPalette = 0; _ditherTable = 0; _ditherFrame = 0; } void QuickTimeDecoder::VideoTrackHandler::checkEditListBounds() { // Check all the edit list entries are within the bounds of the media // In the Spanish version of Riven, the last edit of the video ogk.mov // ends one frame after the end of the media. uint32 offset = 0; uint32 mediaDuration = _parent->mediaDuration * _decoder->_timeScale / _parent->timeScale; for (uint i = 0; i < _parent->editList.size(); i++) { EditListEntry &edit = _parent->editList[i]; if (edit.mediaTime < 0) { offset += edit.trackDuration; continue; // Ignore empty edits } if ((uint32) edit.mediaTime > mediaDuration) { // Check if the edit starts after the end of the media // If so, mark it as empty so it is ignored edit.mediaTime = -1; } else if (edit.mediaTime + edit.trackDuration > mediaDuration) { // Check if the edit ends after the end of the media // If so, clip it so it fits in the media edit.trackDuration = mediaDuration - edit.mediaTime; } edit.timeOffset = offset; offset += edit.trackDuration; } } QuickTimeDecoder::VideoTrackHandler::~VideoTrackHandler() { if (_scaledSurface) { _scaledSurface->free(); delete _scaledSurface; } delete[] _forcedDitherPalette; delete[] _ditherTable; if (_ditherFrame) { _ditherFrame->free(); delete _ditherFrame; } } bool QuickTimeDecoder::VideoTrackHandler::endOfTrack() const { // A track is over when we've finished going through all edits return _reversed ? (_curEdit == 0 && _curFrame < 0) : atLastEdit(); } bool QuickTimeDecoder::VideoTrackHandler::seek(const Audio::Timestamp &requestedTime) { uint32 convertedFrames = requestedTime.convertToFramerate(_decoder->_timeScale).totalNumberOfFrames(); for (_curEdit = 0; !atLastEdit(); _curEdit++) if (convertedFrames >= _parent->editList[_curEdit].timeOffset && convertedFrames < _parent->editList[_curEdit].timeOffset + _parent->editList[_curEdit].trackDuration) break; // If we did reach the end of the track, break out if (atLastEdit()) { // Call setReverse to set the position to the last frame of the last edit if (_reversed) setReverse(true); return true; } // If this track is in an empty edit, position us at the next non-empty // edit. There's nothing else to do after this. if (_parent->editList[_curEdit].mediaTime == -1) { while (!atLastEdit() && _parent->editList[_curEdit].mediaTime == -1) _curEdit++; if (!atLastEdit()) enterNewEditList(true); return true; } enterNewEditList(false); // One extra check for the end of a track if (atLastEdit()) { // Call setReverse to set the position to the last frame of the last edit if (_reversed) setReverse(true); return true; } // Now we're in the edit and need to figure out what frame we need Audio::Timestamp time = requestedTime.convertToFramerate(_parent->timeScale); while (getRateAdjustedFrameTime() < (uint32)time.totalNumberOfFrames()) { _curFrame++; if (_durationOverride >= 0) { _nextFrameStartTime += _durationOverride; _durationOverride = -1; } else { _nextFrameStartTime += getFrameDuration(); } } // Check if we went past, then adjust the frame times if (getRateAdjustedFrameTime() != (uint32)time.totalNumberOfFrames()) { _curFrame--; _durationOverride = getRateAdjustedFrameTime() - time.totalNumberOfFrames(); _nextFrameStartTime = time.totalNumberOfFrames(); } if (_reversed) { // Call setReverse again to update setReverse(true); } else { // Handle the keyframe here int32 destinationFrame = _curFrame + 1; assert(destinationFrame < (int32)_parent->frameCount); _curFrame = findKeyFrame(destinationFrame) - 1; while (_curFrame < destinationFrame - 1) bufferNextFrame(); } return true; } Audio::Timestamp QuickTimeDecoder::VideoTrackHandler::getDuration() const { return Audio::Timestamp(0, _parent->duration, _decoder->_timeScale); } uint16 QuickTimeDecoder::VideoTrackHandler::getWidth() const { return getScaledWidth().toInt(); } uint16 QuickTimeDecoder::VideoTrackHandler::getHeight() const { return getScaledHeight().toInt(); } Graphics::PixelFormat QuickTimeDecoder::VideoTrackHandler::getPixelFormat() const { if (_forcedDitherPalette) return Graphics::PixelFormat::createFormatCLUT8(); return ((VideoSampleDesc *)_parent->sampleDescs[0])->_videoCodec->getPixelFormat(); } int QuickTimeDecoder::VideoTrackHandler::getFrameCount() const { return _parent->frameCount; } uint32 QuickTimeDecoder::VideoTrackHandler::getNextFrameStartTime() const { if (endOfTrack()) return 0; Audio::Timestamp frameTime(0, getRateAdjustedFrameTime(), _parent->timeScale); // Check if the frame goes beyond the end of the edit. In that case, the next frame // should really be when we cross the edit boundary. if (_reversed) { Audio::Timestamp editStartTime(0, _parent->editList[_curEdit].timeOffset, _decoder->_timeScale); if (frameTime < editStartTime) return editStartTime.msecs(); } else { Audio::Timestamp nextEditStartTime(0, _parent->editList[_curEdit].timeOffset + _parent->editList[_curEdit].trackDuration, _decoder->_timeScale); if (frameTime > nextEditStartTime) return nextEditStartTime.msecs(); } // Not past an edit boundary, so the frame time is what should be used return frameTime.msecs(); } const Graphics::Surface *QuickTimeDecoder::VideoTrackHandler::decodeNextFrame() { if (endOfTrack()) return 0; if (_reversed) { // Subtract one to place us on the frame before the current displayed frame. _curFrame--; // We have one "dummy" frame at the end to so the last frame is displayed // for the right amount of time. if (_curFrame < 0) return 0; // Decode from the last key frame to the frame before the one we need. // TODO: Probably would be wise to do some caching int targetFrame = _curFrame; _curFrame = findKeyFrame(targetFrame) - 1; while (_curFrame != targetFrame - 1) bufferNextFrame(); } // Update the edit list, if applicable // FIXME: Add support for playing backwards videos with more than one edit // For now, stay on the first edit for reversed playback if (endOfCurEdit() && !_reversed) { _curEdit++; if (atLastEdit()) return 0; enterNewEditList(true); } const Graphics::Surface *frame = bufferNextFrame(); if (_reversed) { if (_durationOverride >= 0) { // Use our own duration overridden from a media seek _nextFrameStartTime -= _durationOverride; _durationOverride = -1; } else { // Just need to subtract the time _nextFrameStartTime -= getFrameDuration(); } } else { if (_durationOverride >= 0) { // Use our own duration overridden from a media seek _nextFrameStartTime += _durationOverride; _durationOverride = -1; } else { _nextFrameStartTime += getFrameDuration(); } } // Handle forced dithering if (frame && _forcedDitherPalette) frame = forceDither(*frame); if (frame && (_parent->scaleFactorX != 1 || _parent->scaleFactorY != 1)) { if (!_scaledSurface) { _scaledSurface = new Graphics::Surface(); _scaledSurface->create(getScaledWidth().toInt(), getScaledHeight().toInt(), getPixelFormat()); } _decoder->scaleSurface(frame, _scaledSurface, _parent->scaleFactorX, _parent->scaleFactorY); return _scaledSurface; } return frame; } const byte *QuickTimeDecoder::VideoTrackHandler::getPalette() const { _dirtyPalette = false; return _forcedDitherPalette ? _forcedDitherPalette : _curPalette; } bool QuickTimeDecoder::VideoTrackHandler::setReverse(bool reverse) { _reversed = reverse; if (_reversed) { if (_parent->editList.size() != 1) { // TODO: Myst's holo.mov needs this :( warning("Can only set reverse without edits"); return false; } if (atLastEdit()) { // If we're at the end of the video, go to the penultimate edit. // The current frame is set to one beyond the last frame here; // one "past" the currently displayed frame. _curEdit = _parent->editList.size() - 1; _curFrame = _parent->frameCount; _nextFrameStartTime = _parent->editList[_curEdit].trackDuration + _parent->editList[_curEdit].timeOffset; } else if (_durationOverride >= 0) { // We just had a media seek, so "pivot" around the frame that should // be displayed. _curFrame += 2; _nextFrameStartTime += _durationOverride; } else { // We need to put _curFrame to be the one after the one that should be displayed. // Since we're on the frame that should be displaying right now, add one. _curFrame++; } } else { // Update the edit list, if applicable if (!atLastEdit() && endOfCurEdit()) { _curEdit++; if (atLastEdit()) return true; } if (_durationOverride >= 0) { // We just had a media seek, so "pivot" around the frame that should // be displayed. _curFrame--; _nextFrameStartTime -= _durationOverride; } // We need to put _curFrame to be the one before the one that should be displayed. // Since we're on the frame that should be displaying right now, subtract one. // (As long as the current frame isn't -1, of course) if (_curFrame > 0) { // We then need to handle the keyframe situation int targetFrame = _curFrame - 1; _curFrame = findKeyFrame(targetFrame) - 1; while (_curFrame < targetFrame) bufferNextFrame(); } else if (_curFrame == 0) { // Make us start at the first frame (no keyframe needed) _curFrame--; } } return true; } Common::Rational QuickTimeDecoder::VideoTrackHandler::getScaledWidth() const { return Common::Rational(_parent->width) / _parent->scaleFactorX; } Common::Rational QuickTimeDecoder::VideoTrackHandler::getScaledHeight() const { return Common::Rational(_parent->height) / _parent->scaleFactorY; } Common::SeekableReadStream *QuickTimeDecoder::VideoTrackHandler::getNextFramePacket(uint32 &descId) { // First, we have to track down which chunk holds the sample and which sample in the chunk contains the frame we are looking for. int32 totalSampleCount = 0; int32 sampleInChunk = 0; int32 actualChunk = -1; uint32 sampleToChunkIndex = 0; for (uint32 i = 0; i < _parent->chunkCount; i++) { if (sampleToChunkIndex < _parent->sampleToChunkCount && i >= _parent->sampleToChunk[sampleToChunkIndex].first) sampleToChunkIndex++; totalSampleCount += _parent->sampleToChunk[sampleToChunkIndex - 1].count; if (totalSampleCount > _curFrame) { actualChunk = i; descId = _parent->sampleToChunk[sampleToChunkIndex - 1].id; sampleInChunk = _parent->sampleToChunk[sampleToChunkIndex - 1].count - totalSampleCount + _curFrame; break; } } if (actualChunk < 0) error("Could not find data for frame %d", _curFrame); // Next seek to that frame Common::SeekableReadStream *stream = _decoder->_fd; stream->seek(_parent->chunkOffsets[actualChunk]); // Then, if the chunk holds more than one frame, seek to where the frame we want is located for (int32 i = _curFrame - sampleInChunk; i < _curFrame; i++) { if (_parent->sampleSize != 0) stream->skip(_parent->sampleSize); else stream->skip(_parent->sampleSizes[i]); } // Finally, read in the raw data for the frame //debug("Frame Data[%d]: Offset = %d, Size = %d", _curFrame, stream->pos(), _parent->sampleSizes[_curFrame]); if (_parent->sampleSize != 0) return stream->readStream(_parent->sampleSize); return stream->readStream(_parent->sampleSizes[_curFrame]); } uint32 QuickTimeDecoder::VideoTrackHandler::getFrameDuration() { uint32 curFrameIndex = 0; for (int32 i = 0; i < _parent->timeToSampleCount; i++) { curFrameIndex += _parent->timeToSample[i].count; if ((uint32)_curFrame < curFrameIndex) { // Ok, now we have what duration this frame has. return _parent->timeToSample[i].duration; } } // This should never occur error("Cannot find duration for frame %d", _curFrame); return 0; } uint32 QuickTimeDecoder::VideoTrackHandler::findKeyFrame(uint32 frame) const { for (int i = _parent->keyframeCount - 1; i >= 0; i--) if (_parent->keyframes[i] <= frame) return _parent->keyframes[i]; // If none found, we'll assume the requested frame is a key frame return frame; } void QuickTimeDecoder::VideoTrackHandler::enterNewEditList(bool bufferFrames) { // Bypass all empty edit lists first while (!atLastEdit() && _parent->editList[_curEdit].mediaTime == -1) _curEdit++; if (atLastEdit()) return; uint32 mediaTime = _parent->editList[_curEdit].mediaTime; uint32 frameNum = 0; uint32 totalDuration = 0; _durationOverride = -1; // Track down where the mediaTime is in the media // This is basically time -> frame mapping // Note that this code uses first frame = 0 for (int32 i = 0; i < _parent->timeToSampleCount; i++) { uint32 duration = _parent->timeToSample[i].count * _parent->timeToSample[i].duration; if (totalDuration + duration >= mediaTime) { uint32 frameInc = (mediaTime - totalDuration) / _parent->timeToSample[i].duration; frameNum += frameInc; totalDuration += frameInc * _parent->timeToSample[i].duration; // If we didn't get to the exact media time, mark an override for // the time. if (totalDuration != mediaTime) _durationOverride = totalDuration + _parent->timeToSample[i].duration - mediaTime; break; } frameNum += _parent->timeToSample[i].count; totalDuration += duration; } if (bufferFrames) { // Track down the keyframe // Then decode until the frame before target _curFrame = findKeyFrame(frameNum) - 1; while (_curFrame < (int32)frameNum - 1) bufferNextFrame(); } else { // Since frameNum is the frame that needs to be displayed // we'll set _curFrame to be the "last frame displayed" _curFrame = frameNum - 1; } _nextFrameStartTime = getCurEditTimeOffset(); } const Graphics::Surface *QuickTimeDecoder::VideoTrackHandler::bufferNextFrame() { _curFrame++; // Get the next packet uint32 descId; Common::SeekableReadStream *frameData = getNextFramePacket(descId); if (!frameData || !descId || descId > _parent->sampleDescs.size()) { delete frameData; return 0; } // Find which video description entry we want VideoSampleDesc *entry = (VideoSampleDesc *)_parent->sampleDescs[descId - 1]; if (!entry->_videoCodec) { delete frameData; return 0; } const Graphics::Surface *frame = entry->_videoCodec->decodeFrame(*frameData); delete frameData; // Update the palette if (entry->_videoCodec->containsPalette()) { // The codec itself contains a palette if (entry->_videoCodec->hasDirtyPalette()) { _curPalette = entry->_videoCodec->getPalette(); _dirtyPalette = true; } } else { // Check if the video description has been updated byte *palette = entry->_palette; if (palette != _curPalette) { _curPalette = palette; _dirtyPalette = true; } } return frame; } uint32 QuickTimeDecoder::VideoTrackHandler::getRateAdjustedFrameTime() const { // Figure out what time the next frame is at taking the edit list rate into account Common::Rational offsetFromEdit = Common::Rational(_nextFrameStartTime - getCurEditTimeOffset()) / _parent->editList[_curEdit].mediaRate; uint32 convertedTime = offsetFromEdit.toInt(); if ((offsetFromEdit.getNumerator() % offsetFromEdit.getDenominator()) > (offsetFromEdit.getDenominator() / 2)) convertedTime++; return convertedTime + getCurEditTimeOffset(); } uint32 QuickTimeDecoder::VideoTrackHandler::getCurEditTimeOffset() const { // Need to convert to the track scale // We have to round the time off to the nearest in the scale, otherwise // bad things happen. QuickTime docs are pretty silent on all this stuff, // so this was found from samples. It doesn't help that this is really // the only open source implementation of QuickTime edits. uint32 mult = _parent->editList[_curEdit].timeOffset * _parent->timeScale; uint32 result = mult / _decoder->_timeScale; if ((mult % _decoder->_timeScale) > (_decoder->_timeScale / 2)) result++; return result; } uint32 QuickTimeDecoder::VideoTrackHandler::getCurEditTrackDuration() const { // Need to convert to the track scale return _parent->editList[_curEdit].trackDuration * _parent->timeScale / _decoder->_timeScale; } bool QuickTimeDecoder::VideoTrackHandler::atLastEdit() const { return _curEdit == _parent->editList.size(); } bool QuickTimeDecoder::VideoTrackHandler::endOfCurEdit() const { // We're at the end of the edit once the next frame's time would // bring us past the end of the edit. return getRateAdjustedFrameTime() >= getCurEditTimeOffset() + getCurEditTrackDuration(); } bool QuickTimeDecoder::VideoTrackHandler::canDither() const { for (uint i = 0; i < _parent->sampleDescs.size(); i++) { VideoSampleDesc *desc = (VideoSampleDesc *)_parent->sampleDescs[i]; if (!desc || !desc->_videoCodec) return false; } return true; } void QuickTimeDecoder::VideoTrackHandler::setDither(const byte *palette) { assert(canDither()); for (uint i = 0; i < _parent->sampleDescs.size(); i++) { VideoSampleDesc *desc = (VideoSampleDesc *)_parent->sampleDescs[i]; if (desc->_videoCodec->canDither(Image::Codec::kDitherTypeQT)) { // Codec dither desc->_videoCodec->setDither(Image::Codec::kDitherTypeQT, palette); } else { // Forced dither _forcedDitherPalette = new byte[256 * 3]; memcpy(_forcedDitherPalette, palette, 256 * 3); _ditherTable = Image::Codec::createQuickTimeDitherTable(_forcedDitherPalette, 256); _dirtyPalette = true; } } } namespace { // Return a pixel in RGB554 uint16 makeDitherColor(byte r, byte g, byte b) { return ((r & 0xF8) << 6) | ((g & 0xF8) << 1) | (b >> 4); } // Default template to convert a dither color template inline uint16 readDitherColor(PixelInt srcColor, const Graphics::PixelFormat& format, const byte *palette) { byte r, g, b; format.colorToRGB(srcColor, r, g, b); return makeDitherColor(r, g, b); } // Specialized version for 8bpp template<> inline uint16 readDitherColor(byte srcColor, const Graphics::PixelFormat& format, const byte *palette) { return makeDitherColor(palette[srcColor * 3], palette[srcColor * 3 + 1], palette[srcColor * 3 + 2]); } template void ditherFrame(const Graphics::Surface &src, Graphics::Surface &dst, const byte *ditherTable, const byte *palette = 0) { static const uint16 colorTableOffsets[] = { 0x0000, 0xC000, 0x4000, 0x8000 }; for (int y = 0; y < dst.h; y++) { const PixelInt *srcPtr = (const PixelInt *)src.getBasePtr(0, y); byte *dstPtr = (byte *)dst.getBasePtr(0, y); uint16 colorTableOffset = colorTableOffsets[y & 3]; for (int x = 0; x < dst.w; x++) { uint16 color = readDitherColor(*srcPtr++, src.format, palette); *dstPtr++ = ditherTable[colorTableOffset + color]; colorTableOffset += 0x4000; } } } } // End of anonymous namespace const Graphics::Surface *QuickTimeDecoder::VideoTrackHandler::forceDither(const Graphics::Surface &frame) { if (frame.format.bytesPerPixel == 1) { // This should always be true, but this is for sanity if (!_curPalette) return &frame; // If the palettes match, bail out if (memcmp(_forcedDitherPalette, _curPalette, 256 * 3) == 0) return &frame; } // Need to create a new one if (!_ditherFrame) { _ditherFrame = new Graphics::Surface(); _ditherFrame->create(frame.w, frame.h, Graphics::PixelFormat::createFormatCLUT8()); } if (frame.format.bytesPerPixel == 1) ditherFrame(frame, *_ditherFrame, _ditherTable, _curPalette); else if (frame.format.bytesPerPixel == 2) ditherFrame(frame, *_ditherFrame, _ditherTable); else if (frame.format.bytesPerPixel == 4) ditherFrame(frame, *_ditherFrame, _ditherTable); return _ditherFrame; } } // End of namespace Video