/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include "common/ptr.h"
#include "common/stream.h"
#include "common/system.h"
#include "common/textconsole.h"
#include "graphics/wincursor.h"
namespace Graphics {
/** A Windows cursor. */
class WinCursor : public Cursor {
public:
WinCursor(uint16 hotspotX, uint16 hotspotY);
~WinCursor();
/** Return the cursor's width. */
uint16 getWidth() const override;
/** Return the cursor's height. */
uint16 getHeight() const override;
/** Return the cursor's hotspot's x coordinate. */
uint16 getHotspotX() const override;
/** Return the cursor's hotspot's y coordinate. */
uint16 getHotspotY() const override;
/** Return the cursor's transparent key. */
byte getKeyColor() const override;
const byte *getSurface() const override { return _surface; }
const byte *getMask() const override { return _mask; }
const byte *getPalette() const override { return _palette; }
byte getPaletteStartIndex() const override { return 0; }
uint16 getPaletteCount() const override { return 256; }
/** Read the cursor's data out of a stream. */
bool readFromStream(Common::SeekableReadStream &stream);
private:
WinCursor() = delete;
byte *_surface;
byte *_mask;
byte _palette[256 * 3];
uint16 _width; ///< The cursor's width.
uint16 _height; ///< The cursor's height.
uint16 _hotspotX; ///< The cursor's hotspot's x coordinate.
uint16 _hotspotY; ///< The cursor's hotspot's y coordinate.
byte _keyColor; ///< The cursor's transparent key
/** Clear the cursor. */
void clear();
};
WinCursor::WinCursor(uint16 hotspotX, uint16 hotspotY) {
_width = 0;
_height = 0;
_hotspotX = hotspotX;
_hotspotY = hotspotY;
_surface = nullptr;
_mask = nullptr;
_keyColor = 0;
memset(_palette, 0, 256 * 3);
}
WinCursor::~WinCursor() {
clear();
}
uint16 WinCursor::getWidth() const {
return _width;
}
uint16 WinCursor::getHeight() const {
return _height;
}
uint16 WinCursor::getHotspotX() const {
return _hotspotX;
}
uint16 WinCursor::getHotspotY() const {
return _hotspotY;
}
byte WinCursor::getKeyColor() const {
return _keyColor;
}
bool WinCursor::readFromStream(Common::SeekableReadStream &stream) {
clear();
const bool supportOpacity = g_system->hasFeature(OSystem::kFeatureCursorMask);
const bool supportInvert = g_system->hasFeature(OSystem::kFeatureCursorMaskInvert);
// Check header size
if (stream.readUint32LE() != 40)
return false;
// Check dimensions
_width = stream.readUint32LE();
_height = stream.readUint32LE() / 2;
if (_width & 3) {
// Cursors should always be a power of 2
// Of course, it wouldn't be hard to handle but if we have no examples...
warning("Non-divisible-by-4 width cursor found");
return false;
}
// Color planes
if (stream.readUint16LE() != 1)
return false;
// Only 1bpp, 4bpp and 8bpp supported
uint16 bitsPerPixel = stream.readUint16LE();
if (bitsPerPixel != 1 && bitsPerPixel != 4 && bitsPerPixel != 8)
return false;
// Compression
if (stream.readUint32LE() != 0)
return false;
// Image size + X resolution + Y resolution
stream.skip(12);
uint32 numColors = stream.readUint32LE();
// If the color count is 0, then it uses up the maximum amount
if (numColors == 0)
numColors = 1 << bitsPerPixel;
// Skip number of important colors
stream.skip(4);
// Reading the palette
for (uint32 i = 0 ; i < numColors; i++) {
_palette[i * 3 + 2] = stream.readByte();
_palette[i * 3 + 1] = stream.readByte();
_palette[i * 3 ] = stream.readByte();
stream.readByte();
}
// Reading the bitmap data
uint32 dataSize = stream.size() - stream.pos();
byte *initialSource = new byte[dataSize];
stream.read(initialSource, dataSize);
// Parse the XOR map
const byte *src = initialSource;
_surface = new byte[_width * _height];
if (supportOpacity)
_mask = new byte[_width * _height];
byte *dest = _surface + _width * (_height - 1);
uint32 imagePitch = _width * bitsPerPixel / 8;
for (uint32 i = 0; i < _height; i++) {
byte *rowDest = dest;
if (bitsPerPixel == 1) {
// 1bpp
for (uint16 j = 0; j < (_width / 8); j++) {
byte p = src[j];
for (int k = 0; k < 8; k++, rowDest++, p <<= 1) {
if ((p & 0x80) == 0x80)
*rowDest = 1;
else
*rowDest = 0;
}
}
} else if (bitsPerPixel == 4) {
// 4bpp
for (uint16 j = 0; j < (_width / 2); j++) {
byte p = src[j];
*rowDest++ = p >> 4;
*rowDest++ = p & 0x0f;
}
} else {
// 8bpp
memcpy(rowDest, src, _width);
}
dest -= _width;
src += imagePitch;
}
// Calculate our key color
if (numColors < 256) {
// If we're not using the maximum colors in a byte, we can fit it in
_keyColor = numColors;
} else {
// HACK: Try to find a color that's not being used so it can become
// our keycolor. It's quite impossible to fit 257 entries into 256...
for (uint32 i = 0; i < 256; i++) {
for (int j = 0; j < _width * _height; j++) {
// TODO: Also check to see if the space is transparent
if (_surface[j] == i)
break;
if (j == _width * _height - 1) {
_keyColor = i;
i = 256;
break;
}
}
}
}
// Now go through and apply the AND map to get the transparency
uint32 andWidth = (_width + 7) / 8;
src += andWidth * (_height - 1);
for (uint32 y = 0; y < _height; y++) {
for (uint32 x = 0; x < _width; x++) {
byte &surfaceByte = _surface[y * _width + x];
if (src[x / 8] & (1 << (7 - x % 8))) {
const byte *paletteEntry = &_palette[surfaceByte * 3];
// Per WDDM spec, white with 1 in the AND mask is inverted, any other color with 1 is transparent.
// Riven depends on this behavior for proper cursor transparency, since it uses cursors where the
// transparent pixels have a non-zero non-black color.
const bool isTransparent = (paletteEntry[0] != 255 || paletteEntry[1] != 255 || paletteEntry[2] != 255);
if (_mask) {
byte &maskByte = _mask[y * _width + x];
if (isTransparent) {
maskByte = 0;
} else {
// Inverted, if the backend supports invert then emit an inverted pixel, otherwise opaque
maskByte = supportInvert ? kCursorMaskInvert : kCursorMaskOpaque;
}
} else {
// Don't support mask or invert, leave this as opaque if it's XOR so it's visible
if (isTransparent)
surfaceByte = _keyColor;
}
} else {
// Opaque pixel
if (_mask)
_mask[y * _width + x] = kCursorMaskOpaque;
}
}
src -= andWidth;
}
delete[] initialSource;
return true;
}
void WinCursor::clear() {
delete[] _surface; _surface = nullptr;
delete[] _mask; _mask = nullptr;
}
WinCursorGroup::WinCursorGroup() {
}
WinCursorGroup::~WinCursorGroup() {
for (uint32 i = 0; i < cursors.size(); i++)
delete cursors[i].cursor;
}
WinCursorGroup *WinCursorGroup::createCursorGroup(Common::WinResources *exe, const Common::WinResourceID &id) {
Common::ScopedPtr stream(exe->getResource(Common::kWinGroupCursor, id));
if (!stream || stream->size() <= 6)
return 0;
stream->skip(4);
uint32 cursorCount = stream->readUint16LE();
if ((uint32)stream->size() < (6 + cursorCount * 14))
return 0;
WinCursorGroup *group = new WinCursorGroup();
group->cursors.reserve(cursorCount);
for (uint32 i = 0; i < cursorCount; i++) {
stream->readUint16LE(); // width
stream->readUint16LE(); // height
stream->readUint16LE(); // x hotspot
stream->readUint16LE(); // y hotspot
stream->readUint32LE(); // data size
uint32 cursorId = stream->readUint16LE();
Common::ScopedPtr cursorStream(exe->getResource(Common::kWinCursor, cursorId));
if (!cursorStream) {
delete group;
return 0;
}
uint16 hotspotX = cursorStream->readUint16LE();
uint16 hotspotY = cursorStream->readUint16LE();
Cursor *cursor = loadWindowsCursorFromDIB(*cursorStream, hotspotX, hotspotY);
if (!cursor) {
delete group;
return nullptr;
}
CursorItem item;
item.id = cursorId;
item.cursor = cursor;
group->cursors.push_back(item);
}
return group;
}
/**
* The default Windows cursor
*/
class DefaultWinCursor : public Cursor {
public:
DefaultWinCursor() {}
~DefaultWinCursor() {}
uint16 getWidth() const override { return 12; }
uint16 getHeight() const override { return 20; }
uint16 getHotspotX() const override { return 0; }
uint16 getHotspotY() const override { return 0; }
byte getKeyColor() const override { return 0; }
const byte *getSurface() const override {
static const byte defaultCursor[] = {
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0,
1, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0,
1, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0,
1, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0,
1, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0,
1, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0,
1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0,
1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1,
1, 2, 2, 2, 1, 2, 2, 1, 0, 0, 0, 0,
1, 2, 2, 1, 1, 2, 2, 1, 0, 0, 0, 0,
1, 2, 1, 0, 1, 1, 2, 2, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0,
0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0,
0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0
};
return defaultCursor;
}
const byte *getPalette() const override {
static const byte bwPalette[] = {
0x00, 0x00, 0x00, // Black
0xFF, 0xFF, 0xFF // White
};
return bwPalette;
}
byte getPaletteStartIndex() const override { return 1; }
uint16 getPaletteCount() const override { return 2; }
};
Cursor *makeDefaultWinCursor() {
return new DefaultWinCursor();
}
/**
* The Windows busy cursor
*/
class BusyWinCursor : public Cursor {
public:
BusyWinCursor() {}
~BusyWinCursor() {}
uint16 getWidth() const override { return 15; }
uint16 getHeight() const override { return 27; }
uint16 getHotspotX() const override { return 7; }
uint16 getHotspotY() const override { return 13; }
byte getKeyColor() const override { return 0; }
const byte *getSurface() const override {
static const byte busyCursor[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0,
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0,
0, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 0,
0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0,
0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 0,
0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 0, 0,
0, 0, 0, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 0, 0,
0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1, 0, 0, 0, 0,
0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0,
0, 0, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 0, 0,
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0,
0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 0,
0, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 0,
0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 0,
0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
return busyCursor;
}
const byte *getPalette() const override {
static const byte bwPalette[] = {
0x00, 0x00, 0x00, // Black
0xFF, 0xFF, 0xFF // White
};
return bwPalette;
}
byte getPaletteStartIndex() const override { return 1; }
uint16 getPaletteCount() const override { return 2; }
};
Cursor *makeBusyWinCursor() {
return new BusyWinCursor();
}
Cursor *loadWindowsCursorFromDIB(Common::SeekableReadStream &stream, uint16 hotspotX, uint16 hotspotY) {
WinCursor *cursor = new WinCursor(hotspotX, hotspotY);
if (!cursor->readFromStream(stream)) {
delete cursor;
return nullptr;
}
return cursor;
}
} // End of namespace Graphics