/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ // Based on eos' (I)FFT code which is in turn // Based upon the (I)FFT code in FFmpeg // Copyright (c) 2008 Loren Merritt // Copyright (c) 2002 Fabrice Bellard // Partly based on libdjbfft by D. J. Bernstein #include "math/fft.h" #include "math/cosinetables.h" #include "math/utils.h" #include "common/util.h" namespace Math { FFT::FFT(int bits, int inverse) : _bits(bits), _inverse(inverse) { assert((_bits >= 2) && (_bits <= 16)); int n = 1 << bits; int nPoints; _tmpBuf = new Complex[n]; _expTab = new Complex[n / 2]; _revTab = new uint16[n]; _splitRadix = 1; for (int i = 0; i < n; i++) _revTab[-splitRadixPermutation(i, n, _inverse) & (n - 1)] = i; for (int i = 0; i < ARRAYSIZE(_cosTables); i++) { if (i + 4 <= _bits) { nPoints = 1 << (i + 4); _cosTables[i] = new CosineTable(nPoints); } else _cosTables[i] = nullptr; } } FFT::~FFT() { for (int i = 0; i < ARRAYSIZE(_cosTables); i++) { delete _cosTables[i]; } delete[] _revTab; delete[] _expTab; delete[] _tmpBuf; } const uint16 *FFT::getRevTab() const { return _revTab; } void FFT::permute(Complex *z) { int np = 1 << _bits; if (_tmpBuf) { for (int j = 0; j < np; j++) _tmpBuf[_revTab[j]] = z[j]; memcpy(z, _tmpBuf, np * sizeof(Complex)); return; } // Reverse for (int j = 0; j < np; j++) { int k = _revTab[j]; if (k < j) SWAP(z[k], z[j]); } } int FFT::splitRadixPermutation(int i, int n, int inverse) { if (n <= 2) return i & 1; int m = n >> 1; if (!(i & m)) return splitRadixPermutation(i, m, inverse) * 2; m >>= 1; if (inverse == !(i & m)) return splitRadixPermutation(i, m, inverse) * 4 + 1; return splitRadixPermutation(i, m, inverse) * 4 - 1; } #define sqrthalf (float)M_SQRT1_2 #define BF(x, y, a, b) { \ x = a - b; \ y = a + b; \ } #define BUTTERFLIES(a0, a1, a2, a3) { \ BF(t3, t5, t5, t1); \ BF(a2.re, a0.re, a0.re, t5); \ BF(a3.im, a1.im, a1.im, t3); \ BF(t4, t6, t2, t6); \ BF(a3.re, a1.re, a1.re, t4); \ BF(a2.im, a0.im, a0.im, t6); \ } // force loading all the inputs before storing any. // this is slightly slower for small data, but avoids store->load aliasing // for addresses separated by large powers of 2. #define BUTTERFLIES_BIG(a0, a1, a2, a3) { \ float r0 = a0.re, i0 = a0.im, r1 = a1.re, i1 = a1.im; \ BF(t3, t5, t5, t1); \ BF(a2.re, a0.re, r0, t5); \ BF(a3.im, a1.im, i1, t3); \ BF(t4, t6, t2, t6); \ BF(a3.re, a1.re, r1, t4); \ BF(a2.im, a0.im, i0, t6); \ } #define TRANSFORM(a0, a1, a2, a3, wre, wim) { \ t1 = a2.re * wre + a2.im * wim; \ t2 = a2.im * wre - a2.re * wim; \ t5 = a3.re * wre - a3.im * wim; \ t6 = a3.im * wre + a3.re * wim; \ BUTTERFLIES(a0, a1, a2, a3) \ } #define TRANSFORM_ZERO(a0, a1, a2, a3) { \ t1 = a2.re; \ t2 = a2.im; \ t5 = a3.re; \ t6 = a3.im; \ BUTTERFLIES(a0, a1, a2, a3) \ } /* z[0...8n-1], w[1...2n-1] */ #define PASS(name) \ static void name(Complex *z, const float *wre, unsigned int n) { \ float t1, t2, t3, t4, t5, t6; \ int o1 = 2 * n; \ int o2 = 4 * n; \ int o3 = 6 * n; \ const float *wim = wre + o1; \ n--; \ \ TRANSFORM_ZERO(z[0], z[o1], z[o2], z[o3]); \ TRANSFORM(z[1], z[o1 + 1], z[o2 + 1], z[o3 + 1], wre[1], wim[-1]); \ do { \ z += 2; \ wre += 2; \ wim -= 2; \ TRANSFORM(z[0], z[o1], z[o2], z[o3], wre[0], wim[0]);\ TRANSFORM(z[1], z[o1 + 1], z[o2 + 1], z[o3 + 1], wre[1], wim[-1]);\ } while(--n);\ } PASS(pass) #undef BUTTERFLIES #define BUTTERFLIES BUTTERFLIES_BIG PASS(pass_big) void FFT::fft4(Complex *z) { float t1, t2, t3, t4, t5, t6, t7, t8; BF(t3, t1, z[0].re, z[1].re); BF(t8, t6, z[3].re, z[2].re); BF(z[2].re, z[0].re, t1, t6); BF(t4, t2, z[0].im, z[1].im); BF(t7, t5, z[2].im, z[3].im); BF(z[3].im, z[1].im, t4, t8); BF(z[3].re, z[1].re, t3, t7); BF(z[2].im, z[0].im, t2, t5); } void FFT::fft8(Complex *z) { float t1, t2, t3, t4, t5, t6, t7, t8; fft4(z); BF(t1, z[5].re, z[4].re, -z[5].re); BF(t2, z[5].im, z[4].im, -z[5].im); BF(t3, z[7].re, z[6].re, -z[7].re); BF(t4, z[7].im, z[6].im, -z[7].im); BF(t8, t1, t3, t1); BF(t7, t2, t2, t4); BF(z[4].re, z[0].re, z[0].re, t1); BF(z[4].im, z[0].im, z[0].im, t2); BF(z[6].re, z[2].re, z[2].re, t7); BF(z[6].im, z[2].im, z[2].im, t8); TRANSFORM(z[1], z[3], z[5], z[7], sqrthalf, sqrthalf); } void FFT::fft16(Complex *z) { float t1, t2, t3, t4, t5, t6; fft8(z); fft4(z + 8); fft4(z + 12); assert(_cosTables[0]); const float * const cosTable = _cosTables[0]->getTable(); TRANSFORM_ZERO(z[0], z[4], z[8], z[12]); TRANSFORM(z[2], z[6], z[10], z[14], sqrthalf, sqrthalf); TRANSFORM(z[1], z[5], z[9], z[13], cosTable[1],cosTable[3]); TRANSFORM(z[3], z[7], z[11], z[15], cosTable[3], cosTable[1]); } void FFT::fft(int n, int logn, Complex *z) { switch (logn) { case 2: fft4(z); break; case 3: fft8(z); break; case 4: fft16(z); break; default: fft((n / 2), logn - 1, z); fft((n / 4), logn - 2, z + (n / 4) * 2); fft((n / 4), logn - 2, z + (n / 4) * 3); assert(_cosTables[logn - 4]); if (n > 1024) pass_big(z, _cosTables[logn - 4]->getTable(), (n / 4) / 2); else pass(z, _cosTables[logn - 4]->getTable(), (n / 4) / 2); } } void FFT::calc(Complex *z) { fft(1 << _bits, _bits, z); } } // End of namespace Math