/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "common/coroutines.h" #include "common/algorithm.h" #include "common/debug.h" #include "common/hashmap.h" #include "common/hash-str.h" #include "common/system.h" #include "common/textconsole.h" namespace Common { /** Helper null context instance */ CoroContext nullContext = nullptr; DECLARE_SINGLETON(CoroutineScheduler); #ifdef COROUTINE_DEBUG namespace { /** Count of active coroutines */ static int s_coroCount = 0; typedef Common::HashMap CoroHashMap; static CoroHashMap *s_coroFuncs = 0; /** * Change the current coroutine status */ static void changeCoroStats(const char *func, int change) { if (!s_coroFuncs) s_coroFuncs = new CoroHashMap(); (*s_coroFuncs)[func] += change; } /** * Display the details of active coroutines */ static void displayCoroStats() { debug("%d active coros", s_coroCount); // Loop over s_coroFuncs and print info about active coros if (!s_coroFuncs) return; for (CoroHashMap::const_iterator it = s_coroFuncs->begin(); it != s_coroFuncs->end(); ++it) { if (it->_value != 0) debug(" %3d x %s", it->_value, it->_key.c_str()); } } } // End of anonymous namespace #endif CoroBaseContext::CoroBaseContext(const char *func) : _line(0), _sleep(0), _subctx(nullptr) { #ifdef COROUTINE_DEBUG _funcName = func; changeCoroStats(_funcName, +1); s_coroCount++; #endif } CoroBaseContext::~CoroBaseContext() { #ifdef COROUTINE_DEBUG s_coroCount--; changeCoroStats(_funcName, -1); debug("Deleting coro in %s at %p (subctx %p)", _funcName, (void *)this, (void *)_subctx); displayCoroStats(); #endif delete _subctx; } //--------------------- Scheduler Class ------------------------ CoroutineScheduler::CoroutineScheduler() { processList = nullptr; pFreeProcesses = nullptr; pCurrent = nullptr; #ifdef DEBUG // diagnostic process counters numProcs = 0; maxProcs = 0; #endif pRCfunction = nullptr; pidCounter = 0; active = new PROCESS; active->pPrevious = nullptr; active->pNext = nullptr; reset(); } CoroutineScheduler::~CoroutineScheduler() { // Kill all running processes (i.e. free memory allocated for their state). PROCESS *pProc = active->pNext; while (pProc != nullptr) { delete pProc->state; pProc->state = nullptr; pProc = pProc->pNext; } free(processList); processList = nullptr; delete active; active = nullptr; // Clear the event list Common::List::iterator i; for (i = _events.begin(); i != _events.end(); ++i) delete *i; } void CoroutineScheduler::reset() { #ifdef DEBUG // clear number of process in use numProcs = 0; #endif if (processList == nullptr) { // first time - allocate memory for process list processList = (PROCESS *)calloc(CORO_MAX_PROCESSES, sizeof(PROCESS)); // make sure memory allocated if (processList == nullptr) { error("Cannot allocate memory for process data"); } // fill with garbage memset(processList, 'S', CORO_MAX_PROCESSES * sizeof(PROCESS)); } // Kill all running processes (i.e. free memory allocated for their state). PROCESS *pProc = active->pNext; while (pProc != nullptr) { delete pProc->state; pProc->state = nullptr; Common::fill(&pProc->pidWaiting[0], &pProc->pidWaiting[CORO_MAX_PID_WAITING], 0); pProc = pProc->pNext; } // no active processes pCurrent = active->pNext = nullptr; // place first process on free list pFreeProcesses = processList; // link all other processes after first for (int i = 1; i <= CORO_NUM_PROCESS; i++) { processList[i - 1].pNext = (i == CORO_NUM_PROCESS) ? nullptr : processList + i; processList[i - 1].pPrevious = (i == 1) ? active : processList + (i - 2); } } #ifdef DEBUG void CoroutineScheduler::printStats() { debug("%i process of %i used", maxProcs, CORO_NUM_PROCESS); } #endif #ifdef DEBUG void CoroutineScheduler::checkStack() { Common::List pList; // Check both the active and free process lists for (int i = 0; i < 2; ++i) { PROCESS *p = (i == 0) ? active : pFreeProcesses; if (p != NULL) { // Make sure the linkages are correct while (p->pNext != NULL) { assert(p->pNext->pPrevious == p); pList.push_back(p); p = p->pNext; } pList.push_back(p); } } // Make sure all processes are accounted for for (int idx = 0; idx < CORO_NUM_PROCESS; idx++) { bool found = false; for (Common::List::iterator i = pList.begin(); i != pList.end(); ++i) { PROCESS *pTemp = *i; if (*i == &processList[idx]) { found = true; break; } } assert(found); } } #endif void CoroutineScheduler::schedule() { // start dispatching active process list PROCESS *pNext; PROCESS *pProc = active->pNext; while (pProc != nullptr) { pNext = pProc->pNext; if (--pProc->sleepTime <= 0) { // process is ready for dispatch, activate it pCurrent = pProc; pProc->coroAddr(pProc->state, pProc->param); if (!pProc->state || pProc->state->_sleep <= 0) { // Coroutine finished pCurrent = pCurrent->pPrevious; killProcess(pProc); } else { pProc->sleepTime = pProc->state->_sleep; } // pCurrent may have been changed pNext = pCurrent->pNext; pCurrent = nullptr; } pProc = pNext; } // Disable any events that were pulsed Common::List::iterator i; for (i = _events.begin(); i != _events.end(); ++i) { EVENT *evt = *i; if (evt->pulsing) { evt->pulsing = evt->signalled = false; } } } void CoroutineScheduler::rescheduleAll() { assert(pCurrent); // Unlink current process pCurrent->pPrevious->pNext = pCurrent->pNext; if (pCurrent->pNext) pCurrent->pNext->pPrevious = pCurrent->pPrevious; // Add process to the start of the active list pCurrent->pNext = active->pNext; active->pNext->pPrevious = pCurrent; active->pNext = pCurrent; pCurrent->pPrevious = active; } void CoroutineScheduler::reschedule(PPROCESS pReSchedProc) { // If not currently processing the schedule list, then no action is needed if (!pCurrent) return; if (!pReSchedProc) pReSchedProc = pCurrent; PPROCESS pEnd; // Find the last process in the list. // But if the target process is down the list from here, do nothing for (pEnd = pCurrent; pEnd->pNext != nullptr; pEnd = pEnd->pNext) { if (pEnd->pNext == pReSchedProc) return; } assert(pEnd->pNext == nullptr); // Could be in the middle of a KillProc()! // Dying process was last and this process was penultimate if (pReSchedProc->pNext == nullptr) return; // If we're moving the current process, move it back by one, so that the next // schedule() iteration moves to the now next one if (pCurrent == pReSchedProc) pCurrent = pCurrent->pPrevious; // Unlink the process, and add it at the end pReSchedProc->pPrevious->pNext = pReSchedProc->pNext; pReSchedProc->pNext->pPrevious = pReSchedProc->pPrevious; pEnd->pNext = pReSchedProc; pReSchedProc->pPrevious = pEnd; pReSchedProc->pNext = nullptr; } void CoroutineScheduler::giveWay(PPROCESS pReSchedProc) { // If not currently processing the schedule list, then no action is needed if (!pCurrent) return; if (!pReSchedProc) pReSchedProc = pCurrent; // If the process is already at the end of the queue, nothing has to be done if (!pReSchedProc->pNext) return; PPROCESS pEnd; // Find the last process in the list. for (pEnd = pCurrent; pEnd->pNext != nullptr; pEnd = pEnd->pNext) ; assert(pEnd->pNext == nullptr); // If we're moving the current process, move it back by one, so that the next // schedule() iteration moves to the now next one if (pCurrent == pReSchedProc) pCurrent = pCurrent->pPrevious; // Unlink the process, and add it at the end pReSchedProc->pPrevious->pNext = pReSchedProc->pNext; pReSchedProc->pNext->pPrevious = pReSchedProc->pPrevious; pEnd->pNext = pReSchedProc; pReSchedProc->pPrevious = pEnd; pReSchedProc->pNext = nullptr; } void CoroutineScheduler::waitForSingleObject(CORO_PARAM, int pid, uint32 duration, bool *expired) { if (!pCurrent) error("Called CoroutineScheduler::waitForSingleObject from the main process"); CORO_BEGIN_CONTEXT; uint32 endTime; PROCESS *pProcess; EVENT *pEvent; CORO_END_CONTEXT(_ctx); CORO_BEGIN_CODE(_ctx); // Signal the process Id this process is now waiting for pCurrent->pidWaiting[0] = pid; _ctx->endTime = (duration == CORO_INFINITE) ? CORO_INFINITE : g_system->getMillis() + duration; if (expired) // Presume it will expire *expired = true; // Outer loop for doing checks until expiry while (g_system->getMillis() <= _ctx->endTime) { // Check to see if a process or event with the given Id exists _ctx->pProcess = getProcess(pid); _ctx->pEvent = !_ctx->pProcess ? getEvent(pid) : nullptr; // If there's no active process or event, presume it's a process that's finished, // so the waiting can immediately exit if ((_ctx->pProcess == nullptr) && (_ctx->pEvent == nullptr)) { if (expired) *expired = false; break; } // If a process was found, don't go into the if statement, and keep waiting. // Likewise if it's an event that's not yet signalled if ((_ctx->pEvent != nullptr) && _ctx->pEvent->signalled) { // Unless the event is flagged for manual reset, reset it now if (!_ctx->pEvent->manualReset) _ctx->pEvent->signalled = false; if (expired) *expired = false; break; } // Sleep until the next cycle CORO_SLEEP(1); } // Signal waiting is done Common::fill(&pCurrent->pidWaiting[0], &pCurrent->pidWaiting[CORO_MAX_PID_WAITING], 0); CORO_END_CODE; } void CoroutineScheduler::waitForMultipleObjects(CORO_PARAM, int nCount, uint32 *pidList, bool bWaitAll, uint32 duration, bool *expired) { if (!pCurrent) error("Called CoroutineScheduler::waitForMultipleObjects from the main process"); CORO_BEGIN_CONTEXT; uint32 endTime; bool signalled; bool pidSignalled; int i; PROCESS *pProcess; EVENT *pEvent; CORO_END_CONTEXT(_ctx); CORO_BEGIN_CODE(_ctx); // Signal the waiting events assert(nCount < CORO_MAX_PID_WAITING); Common::copy(pidList, pidList + nCount, pCurrent->pidWaiting); _ctx->endTime = (duration == CORO_INFINITE) ? CORO_INFINITE : g_system->getMillis() + duration; if (expired) // Presume that delay will expire *expired = true; // Outer loop for doing checks until expiry while (g_system->getMillis() <= _ctx->endTime) { _ctx->signalled = bWaitAll; for (_ctx->i = 0; _ctx->i < nCount; ++_ctx->i) { _ctx->pProcess = getProcess(pidList[_ctx->i]); _ctx->pEvent = !_ctx->pProcess ? getEvent(pidList[_ctx->i]) : nullptr; // Determine the signalled state _ctx->pidSignalled = (_ctx->pProcess) || !_ctx->pEvent ? false : _ctx->pEvent->signalled; if (bWaitAll && !_ctx->pidSignalled) _ctx->signalled = false; else if (!bWaitAll && _ctx->pidSignalled) _ctx->signalled = true; } // At this point, if the signalled variable is set, waiting is finished if (_ctx->signalled) { // Automatically reset any events not flagged for manual reset for (_ctx->i = 0; _ctx->i < nCount; ++_ctx->i) { _ctx->pEvent = getEvent(pidList[_ctx->i]); if (!_ctx->pEvent->manualReset) _ctx->pEvent->signalled = false; } if (expired) *expired = false; break; } // Sleep until the next cycle CORO_SLEEP(1); } // Signal waiting is done Common::fill(&pCurrent->pidWaiting[0], &pCurrent->pidWaiting[CORO_MAX_PID_WAITING], 0); CORO_END_CODE; } void CoroutineScheduler::sleep(CORO_PARAM, uint32 duration) { if (!pCurrent) error("Called CoroutineScheduler::sleep from the main process"); CORO_BEGIN_CONTEXT; uint32 endTime; PROCESS *pProcess; EVENT *pEvent; CORO_END_CONTEXT(_ctx); CORO_BEGIN_CODE(_ctx); _ctx->endTime = g_system->getMillis() + duration; // Outer loop for doing checks until expiry while (g_system->getMillis() < _ctx->endTime) { // Sleep until the next cycle CORO_SLEEP(1); } CORO_END_CODE; } PROCESS *CoroutineScheduler::createProcess(uint32 pid, CORO_ADDR coroAddr, const void *pParam, int sizeParam) { PROCESS *pProc; // get a free process pProc = pFreeProcesses; // trap no free process assert(pProc != nullptr); // Out of processes #ifdef DEBUG // one more process in use if (++numProcs > maxProcs) maxProcs = numProcs; #endif // get link to next free process pFreeProcesses = pProc->pNext; if (pFreeProcesses) pFreeProcesses->pPrevious = nullptr; if (pCurrent != nullptr) { // place new process before the next active process pProc->pNext = pCurrent->pNext; if (pProc->pNext) pProc->pNext->pPrevious = pProc; // make this new process the next active process pCurrent->pNext = pProc; pProc->pPrevious = pCurrent; } else { // no active processes, place process at head of list pProc->pNext = active->pNext; pProc->pPrevious = active; if (pProc->pNext) pProc->pNext->pPrevious = pProc; active->pNext = pProc; } // set coroutine entry point pProc->coroAddr = coroAddr; // clear coroutine state pProc->state = nullptr; // wake process up as soon as possible pProc->sleepTime = 1; // set new process id pProc->pid = pid; // set new process specific info if (sizeParam) { assert(sizeParam > 0 && sizeParam <= CORO_PARAM_SIZE); // set new process specific info memcpy(pProc->param, pParam, sizeParam); } // return created process return pProc; } uint32 CoroutineScheduler::createProcess(CORO_ADDR coroAddr, const void *pParam, int sizeParam) { PROCESS *pProc = createProcess(++pidCounter, coroAddr, pParam, sizeParam); return pProc->pid; } uint32 CoroutineScheduler::createProcess(CORO_ADDR coroAddr, const void *pParam) { return createProcess(coroAddr, &pParam, sizeof(void *)); } void CoroutineScheduler::killProcess(PROCESS *pKillProc) { // make sure a valid process pointer assert(pKillProc >= processList && pKillProc <= processList + CORO_NUM_PROCESS - 1); // can not kill the current process using killProcess ! assert(pCurrent != pKillProc); #ifdef DEBUG // one less process in use --numProcs; assert(numProcs >= 0); #endif // Free process' resources if (pRCfunction != nullptr) (pRCfunction)(pKillProc); delete pKillProc->state; pKillProc->state = nullptr; // Take the process out of the active chain list pKillProc->pPrevious->pNext = pKillProc->pNext; if (pKillProc->pNext) pKillProc->pNext->pPrevious = pKillProc->pPrevious; // link first free process after pProc pKillProc->pNext = pFreeProcesses; if (pFreeProcesses) pKillProc->pNext->pPrevious = pKillProc; pKillProc->pPrevious = nullptr; // make pKillProc the first free process pFreeProcesses = pKillProc; } PROCESS *CoroutineScheduler::getCurrentProcess() { return pCurrent; } int CoroutineScheduler::getCurrentPID() const { PROCESS *pProc = pCurrent; // make sure a valid process pointer assert(pProc >= processList && pProc <= processList + CORO_NUM_PROCESS - 1); // return processes PID return pProc->pid; } int CoroutineScheduler::killMatchingProcess(uint32 pidKill, int pidMask) { int numKilled = 0; PROCESS *pProc, *pPrev; // process list pointers for (pProc = active->pNext, pPrev = active; pProc != nullptr; pPrev = pProc, pProc = pProc->pNext) { if ((pProc->pid & (uint32)pidMask) == pidKill) { // found a matching process // dont kill the current process if (pProc != pCurrent) { // kill this process numKilled++; // Free the process' resources if (pRCfunction != nullptr) (pRCfunction)(pProc); delete pProc->state; pProc->state = nullptr; // make prev point to next to unlink pProc pPrev->pNext = pProc->pNext; if (pProc->pNext) pPrev->pNext->pPrevious = pPrev; // link first free process after pProc pProc->pNext = pFreeProcesses; pProc->pPrevious = nullptr; pFreeProcesses->pPrevious = pProc; // make pProc the first free process pFreeProcesses = pProc; // set to a process on the active list pProc = pPrev; } } } #ifdef DEBUG // adjust process in use numProcs -= numKilled; assert(numProcs >= 0); #endif // return number of processes killed return numKilled; } void CoroutineScheduler::setResourceCallback(VFPTRPP pFunc) { pRCfunction = pFunc; } PROCESS *CoroutineScheduler::getProcess(uint32 pid) { PROCESS *pProc = active->pNext; while ((pProc != nullptr) && (pProc->pid != pid)) pProc = pProc->pNext; return pProc; } EVENT *CoroutineScheduler::getEvent(uint32 pid) { Common::List::iterator i; for (i = _events.begin(); i != _events.end(); ++i) { EVENT *evt = *i; if (evt->pid == pid) return evt; } return nullptr; } uint32 CoroutineScheduler::createEvent(bool bManualReset, bool bInitialState) { EVENT *evt = new EVENT(); evt->pid = ++pidCounter; evt->manualReset = bManualReset; evt->signalled = bInitialState; evt->pulsing = false; _events.push_back(evt); return evt->pid; } void CoroutineScheduler::closeEvent(uint32 pidEvent) { EVENT *evt = getEvent(pidEvent); if (evt) { _events.remove(evt); delete evt; } } void CoroutineScheduler::setEvent(uint32 pidEvent) { EVENT *evt = getEvent(pidEvent); if (evt) evt->signalled = true; } void CoroutineScheduler::resetEvent(uint32 pidEvent) { EVENT *evt = getEvent(pidEvent); if (evt) evt->signalled = false; } void CoroutineScheduler::pulseEvent(uint32 pidEvent) { EVENT *evt = getEvent(pidEvent); if (!evt) return; // Set the event as signalled and pulsing evt->signalled = true; evt->pulsing = true; // If there's an active process, and it's not the first in the queue, then reschedule all // the other prcoesses in the queue to run again this frame if (pCurrent && pCurrent != active->pNext) rescheduleAll(); } } // end of namespace Common