/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #ifndef COMMON_PTR_H #define COMMON_PTR_H #include "common/scummsys.h" #include "common/noncopyable.h" #include "common/safe-bool.h" #include "common/types.h" #ifdef USE_CXX11 /* For nullptr_t */ #include #endif namespace Common { /** * @defgroup common_ptr Pointers * @ingroup common * * @brief API and templates for pointers. * @{ */ class BasePtrDeletionInternal { public: virtual ~BasePtrDeletionInternal() {} }; template class BasePtrDeletionImpl : public BasePtrDeletionInternal { public: BasePtrDeletionImpl(T *ptr) : _ptr(ptr) {} ~BasePtrDeletionImpl() { STATIC_ASSERT(sizeof(T) > 0, SharedPtr_cannot_delete_incomplete_type); delete _ptr; } private: T *_ptr; }; template class BasePtrDeletionDeleterImpl : public BasePtrDeletionInternal { public: BasePtrDeletionDeleterImpl(T *ptr, DL d) : _ptr(ptr), _deleter(d) {} ~BasePtrDeletionDeleterImpl() { _deleter(_ptr); } private: T *_ptr; DL _deleter; }; /** * A base class for both SharedPtr and WeakPtr. * * This base class encapsulates the logic for the reference counter * used by both. */ template class BasePtr : public SafeBool > { #if !defined(__GNUC__) || GCC_ATLEAST(3, 0) template friend class BasePtr; #endif public: typedef int RefValue; typedef T ValueType; typedef T *PointerType; typedef T &ReferenceType; BasePtr() : _refCount(nullptr), _deletion(nullptr), _pointer(nullptr) { } #ifdef USE_CXX11 explicit BasePtr(std::nullptr_t) : _refCount(nullptr), _deletion(nullptr), _pointer(nullptr) { } #endif template explicit BasePtr(T2 *p) : _refCount(new RefValue(1)), _deletion(new BasePtrDeletionImpl(p)), _pointer(p) { } template BasePtr(T2 *p, DL d) : _refCount(new RefValue(1)), _deletion(new BasePtrDeletionDeleterImpl(p, d)), _pointer(p) { } BasePtr(const BasePtr &r) : _refCount(r._refCount), _deletion(r._deletion), _pointer(r._pointer) { if (_refCount) ++(*_refCount); } template BasePtr(const BasePtr &r) : _refCount(r._refCount), _deletion(r._deletion), _pointer(r._pointer) { if (_refCount) ++(*_refCount); } ~BasePtr() { decRef(); } /** * Implicit conversion operator to bool for convenience, to make * checks like "if (sharedPtr) ..." possible. */ bool operator_bool() const { return _pointer != nullptr; } /** * Returns the number of references to the assigned pointer. * This should just be used for debugging purposes. */ RefValue refCount() const { return _refCount ? *_refCount : 0; } /** * Returns whether the referenced object isn't valid */ bool expired() const { return !_refCount; } /** * Checks if the object is the only object refering * to the assigned pointer. This should just be used for * debugging purposes. */ bool unique() const { return refCount() == 1; } BasePtr &operator=(const BasePtr &r) { reset(r); return *this; } template BasePtr &operator=(const BasePtr &r) { reset(r); return *this; } /** * Resets the object to a NULL pointer. */ void reset() { decRef(); _deletion = nullptr; _refCount = nullptr; _pointer = nullptr; } /** * Resets the object to the specified pointer */ void reset(const BasePtr &r) { if (r._refCount) ++(*r._refCount); decRef(); _refCount = r._refCount; _deletion = r._deletion; _pointer = r._pointer; } /** * Resets the object to the specified pointer */ template void reset(const BasePtr &r) { if (r._refCount) ++(*r._refCount); decRef(); _refCount = r._refCount; _deletion = r._deletion; _pointer = r._pointer; } /** * Resets the object to the specified pointer */ void reset(T *ptr) { reset(BasePtr(ptr)); } protected: RefValue *_refCount; BasePtrDeletionInternal *_deletion; PointerType _pointer; protected: /** * Decrements the reference count to the stored pointer, and deletes it if * there are no longer any references to it */ void decRef() { if (_refCount) { --(*_refCount); if (!*_refCount) { delete _refCount; delete _deletion; _deletion = nullptr; _refCount = nullptr; _pointer = nullptr; } } } /** * Increments the reference count to the stored pointer */ void incRef() { if (_refCount) ++*_refCount; } }; template class WeakPtr; /** * A simple shared pointer implementation modelled after boost. * * This object keeps track of the assigned pointer and automatically * frees it when no more SharedPtr references to it exist. * * To achieve that the object implements an internal reference counting. * Thus you should try to avoid using the plain pointer after assigning * it to a SharedPtr object for the first time. If you still use the * plain pointer be sure you do not delete it on your own. You may also * not use the plain pointer to create a new SharedPtr object, since that * would result in a double deletion of the pointer sooner or later. * * Example creation: * Common::SharedPtr pointer(new int(1)); * would create a pointer to int. Later on usage via *pointer is the same * as for a normal pointer. If you need to access the plain pointer value * itself later on use the get method. The class also supplies a operator * ->, which does the same as the -> operator on a normal pointer. * * Be sure you are using new to initialize the pointer you want to manage. * If you do not use new for allocating, you have to supply a deleter as * second parameter when creating a SharedPtr object. The deleter has to * implement operator() which takes the pointer it should free as argument. * * Note that you have to specify the type itself not the pointer type as * template parameter. * * When creating a SharedPtr object from a normal pointer you need a real * definition of the type you want SharedPtr to manage, a simple forward * definition is not enough. * * The class has implicit upcast support, so if you got a class B derived * from class A, you can assign a pointer to B without any problems to a * SharedPtr object with template parameter A. The very same applies to * assignment of a SharedPtr object to a SharedPtr object. * * There are also operators != and == to compare two SharedPtr objects * with compatible pointers. Comparison between a SharedPtr object and * a plain pointer is only possible via SharedPtr::get. */ template class SharedPtr : public BasePtr { public: typedef T *PointerType; typedef T &ReferenceType; SharedPtr() : BasePtr() { } #ifdef USE_CXX11 SharedPtr(std::nullptr_t) : BasePtr() { } #endif template explicit SharedPtr(T2 *p) : BasePtr(p) { } template SharedPtr(T2 *p, DL d) : BasePtr(p, d) { } SharedPtr(const SharedPtr &r) : BasePtr(r) { } SharedPtr(const WeakPtr &r) : BasePtr(r) { } template SharedPtr(const SharedPtr &r) : BasePtr(r) { } SharedPtr &operator=(const SharedPtr &r) { BasePtr::operator=(r); return *this; } template SharedPtr &operator=(const SharedPtr &r) { BasePtr::operator=(r); return *this; } T &operator*() const { assert(this->_pointer); return *this->_pointer; } T *operator->() const { assert(this->_pointer); return this->_pointer; } /** * Returns the plain pointer value. Be sure you know what you * do if you are continuing to use that pointer. * * @return the pointer the SharedPtr object manages */ PointerType get() const { return this->_pointer; } template bool operator==(const SharedPtr &r) const { return this->_pointer == r.get(); } template bool operator!=(const SharedPtr &r) const { return this->_pointer != r.get(); } }; /** * Implements a smart pointer that holds a non-owning ("weak") refrence to * a pointer. It needs to be converted to a SharedPtr to access it. */ template class WeakPtr : public BasePtr { public: WeakPtr() : BasePtr() { } #ifdef USE_CXX11 WeakPtr(std::nullptr_t) : BasePtr() { } #endif template explicit WeakPtr(T2 *p) : BasePtr(p) { } WeakPtr(const BasePtr &r) : BasePtr(r) { } template WeakPtr(const BasePtr &r) : BasePtr(r) { } /** * Creates a SharedPtr that manages the referenced object */ SharedPtr lock() const { return SharedPtr(*this); } }; template struct DefaultDeleter { inline void operator()(T *object) { STATIC_ASSERT(sizeof(T) > 0, cannot_delete_incomplete_type); delete object; } }; template > class ScopedPtr : private NonCopyable, public SafeBool > { public: typedef T ValueType; typedef T *PointerType; typedef T &ReferenceType; explicit ScopedPtr(PointerType o = nullptr) : _pointer(o) {} ReferenceType operator*() const { return *_pointer; } PointerType operator->() const { return _pointer; } /** * Implicit conversion operator to bool for convenience, to make * checks like "if (scopedPtr) ..." possible. */ bool operator_bool() const { return _pointer != nullptr; } ~ScopedPtr() { DL()(_pointer); } /** * Resets the pointer with the new value. Old object will be destroyed */ void reset(PointerType o = nullptr) { DL()(_pointer); _pointer = o; } /** * Returns the plain pointer value. * * @return the pointer the ScopedPtr manages */ PointerType get() const { return _pointer; } /** * Returns the plain pointer value and releases ScopedPtr. * After release() call you need to delete object yourself * * @return the pointer the ScopedPtr manages */ PointerType release() { PointerType r = _pointer; _pointer = nullptr; return r; } private: PointerType _pointer; }; template > class DisposablePtr : private NonCopyable, public SafeBool > { public: typedef T ValueType; typedef T *PointerType; typedef T &ReferenceType; explicit DisposablePtr(PointerType o, DisposeAfterUse::Flag dispose) : _pointer(o), _dispose(dispose) {} ~DisposablePtr() { if (_dispose) DL()(_pointer); } ReferenceType operator*() const { return *_pointer; } PointerType operator->() const { return _pointer; } /** * Implicit conversion operator to bool for convenience, to make * checks like "if (scopedPtr) ..." possible. */ bool operator_bool() const { return _pointer != nullptr; } /** * Resets the pointer with the new value. Old object will be destroyed */ void reset(PointerType o, DisposeAfterUse::Flag dispose) { if (_dispose) DL()(_pointer); _pointer = o; _dispose = dispose; } /** * Clears the pointer. Old object will be destroyed */ void reset() { reset(nullptr, DisposeAfterUse::NO); } /** * Clears the pointer without destroying the old object. */ void disownPtr() { _pointer = nullptr; _dispose = DisposeAfterUse::NO; } /** * Returns the plain pointer value. * * @return the pointer the DisposablePtr manages */ PointerType get() const { return _pointer; } /** * Returns the pointer's dispose flag. */ DisposeAfterUse::Flag getDispose() const { return _dispose; } private: PointerType _pointer; DisposeAfterUse::Flag _dispose; }; /** @} */ } // End of namespace Common #endif