scummvm/common/hashmap.h
Max Horn 31ce5eb496 Revised HashMap implementation
svn-id: r34273
2008-09-02 11:34:12 +00:00

555 lines
15 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
// The hash map (associative array) implementation in this file is
// based on the PyDict implementation of CPython. The erase() method
// is based on example code in the Wikipedia article on Hash tables.
#ifndef COMMON_HASHMAP_H
#define COMMON_HASHMAP_H
#include "common/func.h"
#include "common/str.h"
#include "common/util.h"
#define USE_HASHMAP_MEMORY_POOL
#ifdef USE_HASHMAP_MEMORY_POOL
#include "common/memorypool.h"
// FIXME: we sadly can't assume standard C++ to be present
// on every system we support, so we should get rid of this.
// The solution should be to write a simple placement new
// on our own.
// Symbian does not have <new> but the new operator
#if !defined(__SYMBIAN32__)
#include <new>
#endif
#endif
namespace Common {
// Enable the following #define if you want to check how many collisions the
// code produces (many collisions indicate either a bad hash function, or a
// hash table that is too small).
//#define DEBUG_HASH_COLLISIONS
/**
* HashMap<Key,Val> maps objects of type Key to objects of type Val.
* For each used Key type, we need an "uint hashit(Key,uint)" function
* that computes a hash for the given Key object and returns it as an
* an integer from 0 to hashsize-1, and also an "equality functor".
* that returns true if if its two arguments are to be considered
* equal. Also, we assume that "=" works on Val objects for assignment.
*
* If aa is an HashMap<Key,Val>, then space is allocated each time aa[key] is
* referenced, for a new key. If the object is const, then an assertion is
* triggered instead. Hence if you are not sure whether a key is contained in
* the map, use contains() first to check for its presence.
*/
template<class Key, class Val, class HashFunc = Hash<Key>, class EqualFunc = EqualTo<Key> >
class HashMap {
private:
#if defined (PALMOS_MODE)
public:
#endif
typedef HashMap<Key, Val, HashFunc, EqualFunc> HM_t;
struct Node {
const Key _key;
Val _value;
Node(const Key &key) : _key(key), _value() {}
};
enum {
HASHMAP_PERTURB_SHIFT = 5,
HASHMAP_MIN_CAPACITY = 16,
// The quotient of the next two constants controls how much the
// internal storage of the hashmap may fill up before being
// increased automatically.
// Note: the quotient of these two must be between and different
// from 0 and 1.
HASHMAP_LOADFACTOR_NUMERATOR = 2,
HASHMAP_LOADFACTOR_DENOMINATOR = 3,
HASHMAP_MEMORYPOOL_SIZE = HASHMAP_MIN_CAPACITY * HASHMAP_LOADFACTOR_NUMERATOR / HASHMAP_LOADFACTOR_DENOMINATOR
};
#ifdef USE_HASHMAP_MEMORY_POOL
FixedSizeMemoryPool<sizeof(Node), HASHMAP_MEMORYPOOL_SIZE> _nodePool;
Node *allocNode(const Key &key) {
void* mem = _nodePool.malloc();
return new (mem) Node(key);
}
void freeNode(Node *node) {
node->~Node();
_nodePool.free(node);
}
#else
Node* allocNode(const Key &key) {
return new Node(key);
}
void freeNode(Node *node) {
delete node;
}
#endif
Node **_storage; // hashtable of size arrsize.
uint _mask; /**< Capacity of the HashMap minus one; must be a power of two of minus one */
uint _size;
HashFunc _hash;
EqualFunc _equal;
// Default value, returned by the const getVal.
const Val _defaultVal;
#ifdef DEBUG_HASH_COLLISIONS
mutable int _collisions, _lookups;
#endif
void assign(const HM_t &map);
int lookup(const Key &key) const;
int lookupAndCreateIfMissing(const Key &key);
void expandStorage(uint newCapacity);
template<class T> friend class IteratorImpl;
/**
* Simple HashMap iterator implementation.
*/
template<class NodeType>
class IteratorImpl {
friend class HashMap;
template<class T> friend class IteratorImpl;
protected:
typedef const HashMap hashmap_t;
uint _idx;
hashmap_t *_hashmap;
protected:
IteratorImpl(uint idx, hashmap_t *hashmap) : _idx(idx), _hashmap(hashmap) {}
NodeType *deref() const {
assert(_hashmap != 0);
assert(_idx <= _hashmap->_mask);
Node *node = _hashmap->_storage[_idx];
assert(node != 0);
return node;
}
public:
IteratorImpl() : _idx(0), _hashmap(0) {}
template<class T>
IteratorImpl(const IteratorImpl<T> &c) : _idx(c._idx), _hashmap(c._hashmap) {}
NodeType &operator*() const { return *deref(); }
NodeType *operator->() const { return deref(); }
bool operator==(const IteratorImpl &iter) const { return _idx == iter._idx && _hashmap == iter._hashmap; }
bool operator!=(const IteratorImpl &iter) const { return !(*this == iter); }
IteratorImpl &operator++() {
assert(_hashmap);
do {
_idx++;
} while (_idx <= _hashmap->_mask && _hashmap->_storage[_idx] == 0);
if (_idx > _hashmap->_mask)
_idx = (uint)-1;
return *this;
}
IteratorImpl operator++(int) {
IteratorImpl old = *this;
operator ++();
return old;
}
};
public:
typedef IteratorImpl<Node> iterator;
typedef IteratorImpl<const Node> const_iterator;
HashMap();
HashMap(const HM_t &map);
~HashMap();
HM_t &operator=(const HM_t &map) {
if (this == &map)
return *this;
// Remove the previous content and ...
clear();
delete[] _storage;
// ... copy the new stuff.
assign(map);
return *this;
}
bool contains(const Key &key) const;
Val &operator[](const Key &key);
const Val &operator[](const Key &key) const;
Val &getVal(const Key &key);
const Val &getVal(const Key &key) const;
void setVal(const Key &key, const Val &val);
void clear(bool shrinkArray = 0);
void erase(const Key &key);
uint size() const { return _size; }
iterator begin() {
// Find and return the _key non-empty entry
for (uint ctr = 0; ctr <= _mask; ++ctr) {
if (_storage[ctr])
return iterator(ctr, this);
}
return end();
}
iterator end() {
return iterator((uint)-1, this);
}
const_iterator begin() const {
// Find and return the first non-empty entry
for (uint ctr = 0; ctr <= _mask; ++ctr) {
if (_storage[ctr])
return const_iterator(ctr, this);
}
return end();
}
const_iterator end() const {
return const_iterator((uint)-1, this);
}
iterator find(const Key &key) {
uint ctr = lookup(key);
if (_storage[ctr])
return iterator(ctr, this);
return end();
}
const_iterator find(const Key &key) const {
uint ctr = lookup(key);
if (_storage[ctr])
return const_iterator(ctr, this);
return end();
}
// TODO: insert() method?
bool empty() const {
return (_size == 0);
}
};
//-------------------------------------------------------
// HashMap functions
/**
* Base constructor, creates an empty hashmap.
*/
template<class Key, class Val, class HashFunc, class EqualFunc>
HashMap<Key, Val, HashFunc, EqualFunc>::HashMap() :
_defaultVal() {
_mask = HASHMAP_MIN_CAPACITY - 1;
_storage = new Node *[HASHMAP_MIN_CAPACITY];
assert(_storage != NULL);
memset(_storage, 0, HASHMAP_MIN_CAPACITY * sizeof(Node *));
_size = 0;
#ifdef DEBUG_HASH_COLLISIONS
_collisions = 0;
_lookups = 0;
#endif
}
/**
* Copy constructor, creates a full copy of the given hashmap.
* We must provide a custom copy constructor as we use pointers
* to heap buffers for the internal storage.
*/
template<class Key, class Val, class HashFunc, class EqualFunc>
HashMap<Key, Val, HashFunc, EqualFunc>::HashMap(const HM_t &map) :
_defaultVal() {
assign(map);
}
/**
* Destructor, frees all used memory.
*/
template<class Key, class Val, class HashFunc, class EqualFunc>
HashMap<Key, Val, HashFunc, EqualFunc>::~HashMap() {
for (uint ctr = 0; ctr <= _mask; ++ctr)
if (_storage[ctr] != NULL)
freeNode(_storage[ctr]);
delete[] _storage;
#ifdef DEBUG_HASH_COLLISIONS
extern void updateHashCollisionStats(int, int, int, int);
updateHashCollisionStats(_collisions, _lookups, _mask+1, _size);
#endif
}
/**
* Internal method for assigning the content of another HashMap
* to this one.
*
* @note We do *not* deallocate the previous storage here -- the caller is
* responsible for doing that!
*/
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::assign(const HM_t &map) {
_mask = map._mask;
_storage = new Node *[_mask+1];
assert(_storage != NULL);
memset(_storage, 0, (_mask+1) * sizeof(Node *));
// Simply clone the map given to us, one by one.
_size = 0;
for (uint ctr = 0; ctr <= _mask; ++ctr) {
if (map._storage[ctr] != NULL) {
_storage[ctr] = allocNode(map._storage[ctr]->_key);
_storage[ctr]->_value = map._storage[ctr]->_value;
_size++;
}
}
// Perform a sanity check (to help track down hashmap corruption)
assert(_size == map._size);
}
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::clear(bool shrinkArray) {
for (uint ctr = 0; ctr <= _mask; ++ctr) {
if (_storage[ctr] != NULL) {
freeNode(_storage[ctr]);
_storage[ctr] = NULL;
}
}
#ifdef USE_HASHMAP_MEMORY_POOL
_nodePool.freeUnusedPages();
#endif
if (shrinkArray && _mask >= HASHMAP_MIN_CAPACITY) {
delete[] _storage;
_mask = HASHMAP_MIN_CAPACITY;
_storage = new Node *[HASHMAP_MIN_CAPACITY];
assert(_storage != NULL);
memset(_storage, 0, HASHMAP_MIN_CAPACITY * sizeof(Node *));
}
_size = 0;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::expandStorage(uint newCapacity) {
assert(newCapacity > _mask+1);
const uint old_size = _size;
const uint old_mask = _mask;
Node **old_storage = _storage;
// allocate a new array
_size = 0;
_mask = newCapacity - 1;
_storage = new Node *[newCapacity];
assert(_storage != NULL);
memset(_storage, 0, newCapacity * sizeof(Node *));
// rehash all the old elements
for (uint ctr = 0; ctr <= old_mask; ++ctr) {
if (old_storage[ctr] == NULL)
continue;
// Insert the element from the old table into the new table.
// Since we know that no key exists twice in the old table, we
// can do this slightly better than by calling lookup, since we
// don't have to call _equal().
const uint hash = _hash(old_storage[ctr]->_key);
uint idx = hash & _mask;
for (uint perturb = hash; _storage[idx] != NULL; perturb >>= HASHMAP_PERTURB_SHIFT) {
idx = (5 * idx + perturb + 1) & _mask;
}
_storage[idx] = old_storage[ctr];
_size++;
}
// Perform a sanity check: Old number of elements should match the new one!
// This check will fail if some previous operation corrupted this hashmap.
assert(_size == old_size);
delete[] old_storage;
return;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
int HashMap<Key, Val, HashFunc, EqualFunc>::lookup(const Key &key) const {
const uint hash = _hash(key);
uint ctr = hash & _mask;
for (uint perturb = hash; ; perturb >>= HASHMAP_PERTURB_SHIFT) {
if (_storage[ctr] == NULL || _equal(_storage[ctr]->_key, key))
break;
ctr = (5 * ctr + perturb + 1) & _mask;
#ifdef DEBUG_HASH_COLLISIONS
_collisions++;
#endif
}
#ifdef DEBUG_HASH_COLLISIONS
_lookups++;
fprintf(stderr, "collisions %d, lookups %d, ratio %f in HashMap %p; size %d num elements %d\n",
_collisions, _lookups, ((double) _collisions / (double)_lookups),
(const void *)this, _mask+1, _size);
#endif
return ctr;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
int HashMap<Key, Val, HashFunc, EqualFunc>::lookupAndCreateIfMissing(const Key &key) {
uint ctr = lookup(key);
if (_storage[ctr] == NULL) {
_storage[ctr] = allocNode(key);
_size++;
// Keep the load factor below a certain threshold.
uint capacity = _mask + 1;
if (_size * HASHMAP_LOADFACTOR_DENOMINATOR > capacity * HASHMAP_LOADFACTOR_NUMERATOR) {
capacity = capacity < 500 ? (capacity * 4) : (capacity * 2);
expandStorage(capacity);
ctr = lookup(key);
}
}
return ctr;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
bool HashMap<Key, Val, HashFunc, EqualFunc>::contains(const Key &key) const {
uint ctr = lookup(key);
return (_storage[ctr] != NULL);
}
template<class Key, class Val, class HashFunc, class EqualFunc>
Val &HashMap<Key, Val, HashFunc, EqualFunc>::operator[](const Key &key) {
return getVal(key);
}
template<class Key, class Val, class HashFunc, class EqualFunc>
const Val &HashMap<Key, Val, HashFunc, EqualFunc>::operator[](const Key &key) const {
return getVal(key);
}
template<class Key, class Val, class HashFunc, class EqualFunc>
Val &HashMap<Key, Val, HashFunc, EqualFunc>::getVal(const Key &key) {
uint ctr = lookupAndCreateIfMissing(key);
assert(_storage[ctr] != NULL);
return _storage[ctr]->_value;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
const Val &HashMap<Key, Val, HashFunc, EqualFunc>::getVal(const Key &key) const {
uint ctr = lookup(key);
if (_storage[ctr] != NULL)
return _storage[ctr]->_value;
else
return _defaultVal;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::setVal(const Key &key, const Val &val) {
uint ctr = lookupAndCreateIfMissing(key);
assert(_storage[ctr] != NULL);
_storage[ctr]->_value = val;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::erase(const Key &key) {
// This is based on code in the Wikipedia article on Hash tables.
const uint hash = _hash(key);
uint i = hash & _mask;
uint perturb;
for (perturb = hash; ; perturb >>= HASHMAP_PERTURB_SHIFT) {
if (_storage[i] == NULL || _equal(_storage[i]->_key, key))
break;
i = (5 * i + perturb + 1) & _mask;
}
if (_storage[i] == NULL)
return; // key wasn't present, so no work has to be done
// If we remove a key, we must check all subsequent keys and possibly
// reinsert them.
uint j = i;
freeNode(_storage[i]);
_storage[i] = NULL;
for (perturb = hash; ; perturb >>= HASHMAP_PERTURB_SHIFT) {
// Look at the next table slot
j = (5 * j + perturb + 1) & _mask;
// If the next slot is empty, we are done
if (_storage[j] == NULL)
break;
// Compute the slot where the content of the next slot should normally be,
// assuming an empty table, and check whether we have to move it.
uint k = _hash(_storage[j]->_key) & _mask;
if ((j > i && (k <= i || k > j)) ||
(j < i && (k <= i && k > j)) ) {
_storage[i] = _storage[j];
i = j;
}
}
_storage[i] = NULL;
_size--;
return;
}
} // End of namespace Common
#endif