scummvm/audio/rate.cpp
2022-11-18 17:17:00 +01:00

409 lines
11 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/*
* The code in this file is based on code with Copyright 1998 Fabrice Bellard
* Fabrice original code is part of SoX (http://sox.sourceforge.net).
* Max Horn adapted that code to the needs of ScummVM and rewrote it partial,
* in the process removing any use of floating point arithmetic. Various other
* improvements over the original code were made.
*/
#include "audio/audiostream.h"
#include "audio/rate.h"
#include "audio/mixer.h"
#include "common/frac.h"
#include "common/textconsole.h"
#include "common/util.h"
namespace Audio {
/**
* The size of the intermediate input cache. Bigger values may increase
* performance, but only until some point (depends largely on cache size,
* target processor and various other factors), at which it will decrease
* again.
*/
#define INTERMEDIATE_BUFFER_SIZE 512
/**
* The default fractional type in frac.h (with 16 fractional bits) limits
* the rate conversion code to 65536Hz audio: we need to able to handle
* 96kHz audio, so we use fewer fractional bits in this code.
*/
enum {
FRAC_BITS_LOW = 15,
FRAC_ONE_LOW = (1L << FRAC_BITS_LOW),
FRAC_HALF_LOW = (1L << (FRAC_BITS_LOW-1))
};
/**
* Audio rate converter based on simple resampling. Used when no
* interpolation is required.
*
* Limited to sampling frequency <= 65535 Hz.
*/
template<bool inStereo, bool outStereo, bool reverseStereo>
class SimpleRateConverter : public RateConverter {
protected:
st_sample_t inBuf[INTERMEDIATE_BUFFER_SIZE];
const st_sample_t *inPtr;
int inLen;
/** position of how far output is ahead of input */
/** Holds what would have been opos-ipos */
long opos;
/** fractional position increment in the output stream */
long opos_inc;
public:
SimpleRateConverter(st_rate_t inrate, st_rate_t outrate);
int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) override;
int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) override {
return ST_SUCCESS;
}
};
/*
* Prepare processing.
*/
template<bool inStereo, bool outStereo, bool reverseStereo>
SimpleRateConverter<inStereo, outStereo, reverseStereo>::SimpleRateConverter(st_rate_t inrate, st_rate_t outrate) {
if ((inrate % outrate) != 0) {
error("Input rate must be a multiple of output rate to use rate effect");
}
if (inrate >= 65536 || outrate >= 65536) {
error("rate effect can only handle rates < 65536");
}
opos = 1;
/* increment */
opos_inc = inrate / outrate;
inLen = 0;
}
/*
* Processed signed long samples from ibuf to obuf.
* Return number of sample pairs processed.
*/
template<bool inStereo, bool outStereo, bool reverseStereo>
int SimpleRateConverter<inStereo, outStereo, reverseStereo>::flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) {
st_sample_t *ostart, *oend;
ostart = obuf;
oend = obuf + osamp * (outStereo ? 2 : 1);
while (obuf < oend) {
// read enough input samples so that opos >= 0
do {
// Check if we have to refill the buffer
if (inLen == 0) {
inPtr = inBuf;
inLen = input.readBuffer(inBuf, ARRAYSIZE(inBuf));
if (inLen <= 0)
return (obuf - ostart) / (outStereo ? 2 : 1);
}
inLen -= (inStereo ? 2 : 1);
opos--;
if (opos >= 0) {
inPtr += (inStereo ? 2 : 1);
}
} while (opos >= 0);
st_sample_t in0, in1;
in0 = *inPtr++;
in1 = (inStereo ? *inPtr++ : in0);
// Increment output position
opos += opos_inc;
st_sample_t out0, out1;
out0 = (in0 * (int)vol_l) / Audio::Mixer::kMaxMixerVolume;
out1 = (in1 * (int)vol_r) / Audio::Mixer::kMaxMixerVolume;
if (outStereo) {
// output left channel
clampedAdd(obuf[reverseStereo ], out0);
// output right channel
clampedAdd(obuf[reverseStereo ^ 1], out1);
obuf += 2;
} else {
// output mono channel
clampedAdd(obuf[0], (out0 + out1) / 2);
obuf += 1;
}
}
return (obuf - ostart) / (outStereo ? 2 : 1);
}
/**
* Audio rate converter based on simple linear Interpolation.
*
* The use of fractional increment allows us to use no buffer. It
* avoid the problems at the end of the buffer we had with the old
* method which stored a possibly big buffer of size
* lcm(in_rate,out_rate).
*
* Limited to sampling frequency <= 65535 Hz.
*/
template<bool inStereo, bool outStereo, bool reverseStereo>
class LinearRateConverter : public RateConverter {
protected:
st_sample_t inBuf[INTERMEDIATE_BUFFER_SIZE];
const st_sample_t *inPtr;
int inLen;
/** fractional position of the output stream in input stream unit */
frac_t opos;
/** fractional position increment in the output stream */
frac_t opos_inc;
/** last sample(s) in the input stream (left/right channel) */
st_sample_t ilast0, ilast1;
/** current sample(s) in the input stream (left/right channel) */
st_sample_t icur0, icur1;
public:
LinearRateConverter(st_rate_t inrate, st_rate_t outrate);
int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) override;
int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) override {
return ST_SUCCESS;
}
};
/*
* Prepare processing.
*/
template<bool inStereo, bool outStereo, bool reverseStereo>
LinearRateConverter<inStereo, outStereo, reverseStereo>::LinearRateConverter(st_rate_t inrate, st_rate_t outrate) {
if (inrate >= 131072 || outrate >= 131072) {
error("rate effect can only handle rates < 131072");
}
opos = FRAC_ONE_LOW;
// Compute the linear interpolation increment.
// This will overflow if inrate >= 2^17, and underflow if outrate >= 2^17.
// Also, if the quotient of the two rate becomes too small / too big, that
// would cause problems, but since we rarely scale from 1 to 65536 Hz or vice
// versa, I think we can live with that limitation ;-).
opos_inc = (inrate << FRAC_BITS_LOW) / outrate;
ilast0 = ilast1 = 0;
icur0 = icur1 = 0;
inLen = 0;
}
/*
* Processed signed long samples from ibuf to obuf.
* Return number of sample pairs processed.
*/
template<bool inStereo, bool outStereo, bool reverseStereo>
int LinearRateConverter<inStereo, outStereo, reverseStereo>::flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) {
st_sample_t *ostart, *oend;
ostart = obuf;
oend = obuf + osamp * (outStereo ? 2 : 1);
while (obuf < oend) {
// read enough input samples so that opos < 0
while ((frac_t)FRAC_ONE_LOW <= opos) {
// Check if we have to refill the buffer
if (inLen == 0) {
inPtr = inBuf;
inLen = input.readBuffer(inBuf, ARRAYSIZE(inBuf));
if (inLen <= 0)
return (obuf - ostart) / (outStereo ? 2 : 1);
}
inLen -= (inStereo ? 2 : 1);
ilast0 = icur0;
icur0 = *inPtr++;
if (inStereo) {
ilast1 = icur1;
icur1 = *inPtr++;
}
opos -= FRAC_ONE_LOW;
}
// Loop as long as the outpos trails behind, and as long as there is
// still space in the output buffer.
while (opos < (frac_t)FRAC_ONE_LOW && obuf < oend) {
// interpolate
st_sample_t in0, in1;
in0 = (st_sample_t)(ilast0 + (((icur0 - ilast0) * opos + FRAC_HALF_LOW) >> FRAC_BITS_LOW));
in1 = (inStereo ?
(st_sample_t)(ilast1 + (((icur1 - ilast1) * opos + FRAC_HALF_LOW) >> FRAC_BITS_LOW)) :
in0);
st_sample_t out0, out1;
out0 = (in0 * (int)vol_l) / Audio::Mixer::kMaxMixerVolume;
out1 = (in1 * (int)vol_r) / Audio::Mixer::kMaxMixerVolume;
if (outStereo) {
// output left channel
clampedAdd(obuf[reverseStereo ], out0);
// output right channel
clampedAdd(obuf[reverseStereo ^ 1], out1);
obuf += 2;
} else {
// output mono channel
clampedAdd(obuf[0], (out0 + out1) / 2);
obuf += 1;
}
// Increment output position
opos += opos_inc;
}
}
return (obuf - ostart) / (outStereo ? 2 : 1);
}
#pragma mark -
/**
* Simple audio rate converter for the case that the inrate equals the outrate.
*/
template<bool inStereo, bool outStereo, bool reverseStereo>
class CopyRateConverter : public RateConverter {
st_sample_t *_buffer;
st_size_t _bufferSize;
public:
CopyRateConverter() : _buffer(nullptr), _bufferSize(0) {}
~CopyRateConverter() {
free(_buffer);
}
int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) override {
assert(input.isStereo() == inStereo);
st_sample_t *ptr;
st_size_t len;
st_sample_t *ostart = obuf;
if (inStereo)
osamp *= 2;
// Reallocate temp buffer, if necessary
if (osamp > _bufferSize) {
free(_buffer);
_buffer = (st_sample_t *)malloc(osamp * sizeof(st_sample_t));
_bufferSize = osamp;
}
if (!_buffer)
error("[CopyRateConverter::flow] Cannot allocate memory for temp buffer");
// Read up to 'osamp' samples into our temporary buffer
len = input.readBuffer(_buffer, osamp);
// Mix the data into the output buffer
ptr = _buffer;
for (; len > 0; len -= (inStereo ? 2 : 1)) {
st_sample_t in0, in1;
in0 = *ptr++;
in1 = (inStereo ? *ptr++ : in0);
st_sample_t out0, out1;
out0 = (in0 * (int)vol_l) / Audio::Mixer::kMaxMixerVolume;
out1 = (in1 * (int)vol_r) / Audio::Mixer::kMaxMixerVolume;
if (outStereo) {
// output left channel
clampedAdd(obuf[reverseStereo ], out0);
// output right channel
clampedAdd(obuf[reverseStereo ^ 1], out1);
obuf += 2;
} else {
// output mono channel
clampedAdd(obuf[0], (out0 + out1) / 2);
obuf += 1;
}
}
return (obuf - ostart) / (outStereo ? 2 : 1);
}
int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) override {
return ST_SUCCESS;
}
};
#pragma mark -
template<bool inStereo, bool outStereo, bool reverseStereo>
RateConverter *makeRateConverter(st_rate_t inrate, st_rate_t outrate) {
if (inrate != outrate) {
if ((inrate % outrate) == 0 && (inrate < 65536)) {
return new SimpleRateConverter<inStereo, outStereo, reverseStereo>(inrate, outrate);
} else {
return new LinearRateConverter<inStereo, outStereo, reverseStereo>(inrate, outrate);
}
} else {
return new CopyRateConverter<inStereo, outStereo, reverseStereo>();
}
}
/**
* Create and return a RateConverter object for the specified input and output rates.
*/
RateConverter *makeRateConverter(st_rate_t inrate, st_rate_t outrate, bool instereo, bool outstereo, bool reverseStereo) {
if (instereo) {
if (outstereo) {
if (reverseStereo)
return makeRateConverter<true, true, true>(inrate, outrate);
else
return makeRateConverter<true, true, false>(inrate, outrate);
} else
return makeRateConverter<true, false, false>(inrate, outrate);
} else {
if (outstereo) {
return makeRateConverter<false, true, false>(inrate, outrate);
} else
return makeRateConverter<false, false, false>(inrate, outrate);
}
}
} // End of namespace Audio