mirror of
https://github.com/libretro/scummvm.git
synced 2024-12-25 03:07:06 +00:00
463 lines
12 KiB
C++
463 lines
12 KiB
C++
/* ScummVM - Graphic Adventure Engine
|
|
*
|
|
* ScummVM is the legal property of its developers, whose names
|
|
* are too numerous to list here. Please refer to the COPYRIGHT
|
|
* file distributed with this source distribution.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
*/
|
|
|
|
#ifndef COMMON_ARRAY_H
|
|
#define COMMON_ARRAY_H
|
|
|
|
#include "common/scummsys.h"
|
|
#include "common/algorithm.h"
|
|
#include "common/textconsole.h" // For error()
|
|
#include "common/memory.h"
|
|
|
|
namespace Common {
|
|
|
|
/**
|
|
* This class implements a dynamically sized container, which
|
|
* can be accessed similar to a regular C++ array. Accessing
|
|
* elements is performed in constant time (like with plain arrays).
|
|
* In addition, one can append, insert and remove entries (this
|
|
* is the 'dynamic' part). Doing that in general takes time
|
|
* proportional to the number of elements in the array.
|
|
*
|
|
* The container class closest to this in the C++ standard library is
|
|
* std::vector. However, there are some differences.
|
|
*/
|
|
template<class T>
|
|
class Array {
|
|
public:
|
|
typedef T *iterator;
|
|
typedef const T *const_iterator;
|
|
|
|
typedef T value_type;
|
|
|
|
typedef uint size_type;
|
|
|
|
protected:
|
|
size_type _capacity;
|
|
size_type _size;
|
|
T *_storage;
|
|
|
|
public:
|
|
Array() : _capacity(0), _size(0), _storage(nullptr) {}
|
|
|
|
/**
|
|
* Constructs an array with `count` default-inserted instances of T. No
|
|
* copies are made.
|
|
*/
|
|
explicit Array(size_type count) : _size(count) {
|
|
allocCapacity(count);
|
|
for (size_type i = 0; i < count; ++i)
|
|
new ((void *)&_storage[i]) T();
|
|
}
|
|
|
|
/**
|
|
* Constructs an array with `count` copies of elements with value `value`.
|
|
*/
|
|
Array(size_type count, const T &value) : _size(count) {
|
|
allocCapacity(count);
|
|
uninitialized_fill_n(_storage, count, value);
|
|
}
|
|
|
|
Array(const Array<T> &array) : _capacity(array._size), _size(array._size), _storage(nullptr) {
|
|
if (array._storage) {
|
|
allocCapacity(_size);
|
|
uninitialized_copy(array._storage, array._storage + _size, _storage);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Construct an array by copying data from a regular array.
|
|
*/
|
|
template<class T2>
|
|
Array(const T2 *array, size_type n) {
|
|
_size = n;
|
|
allocCapacity(n);
|
|
uninitialized_copy(array, array + _size, _storage);
|
|
}
|
|
|
|
~Array() {
|
|
freeStorage(_storage, _size);
|
|
_storage = nullptr;
|
|
_capacity = _size = 0;
|
|
}
|
|
|
|
/** Appends element to the end of the array. */
|
|
void push_back(const T &element) {
|
|
if (_size + 1 <= _capacity)
|
|
new ((void *)&_storage[_size++]) T(element);
|
|
else
|
|
insert_aux(end(), &element, &element + 1);
|
|
}
|
|
|
|
void push_back(const Array<T> &array) {
|
|
if (_size + array.size() <= _capacity) {
|
|
uninitialized_copy(array.begin(), array.end(), end());
|
|
_size += array.size();
|
|
} else
|
|
insert_aux(end(), array.begin(), array.end());
|
|
}
|
|
|
|
/** Removes the last element of the array. */
|
|
void pop_back() {
|
|
assert(_size > 0);
|
|
_size--;
|
|
// We also need to destroy the last object properly here.
|
|
_storage[_size].~T();
|
|
}
|
|
|
|
/** Returns a pointer to the underlying memory serving as element storage. */
|
|
const T *data() const {
|
|
return _storage;
|
|
}
|
|
|
|
/** Returns a pointer to the underlying memory serving as element storage. */
|
|
T *data() {
|
|
return _storage;
|
|
}
|
|
|
|
/** Returns a reference to the first element of the array. */
|
|
T &front() {
|
|
assert(_size > 0);
|
|
return _storage[0];
|
|
}
|
|
|
|
/** Returns a reference to the first element of the array. */
|
|
const T &front() const {
|
|
assert(_size > 0);
|
|
return _storage[0];
|
|
}
|
|
|
|
/** Returns a reference to the last element of the array. */
|
|
T &back() {
|
|
assert(_size > 0);
|
|
return _storage[_size-1];
|
|
}
|
|
|
|
/** Returns a reference to the last element of the array. */
|
|
const T &back() const {
|
|
assert(_size > 0);
|
|
return _storage[_size-1];
|
|
}
|
|
|
|
|
|
void insert_at(size_type idx, const T &element) {
|
|
assert(idx <= _size);
|
|
insert_aux(_storage + idx, &element, &element + 1);
|
|
}
|
|
|
|
void insert_at(size_type idx, const Array<T> &array) {
|
|
assert(idx <= _size);
|
|
insert_aux(_storage + idx, array.begin(), array.end());
|
|
}
|
|
|
|
/**
|
|
* Inserts element before pos.
|
|
*/
|
|
void insert(iterator pos, const T &element) {
|
|
insert_aux(pos, &element, &element + 1);
|
|
}
|
|
|
|
T remove_at(size_type idx) {
|
|
assert(idx < _size);
|
|
T tmp = _storage[idx];
|
|
copy(_storage + idx + 1, _storage + _size, _storage + idx);
|
|
_size--;
|
|
// We also need to destroy the last object properly here.
|
|
_storage[_size].~T();
|
|
return tmp;
|
|
}
|
|
|
|
// TODO: insert, remove, ...
|
|
|
|
T &operator[](size_type idx) {
|
|
assert(idx < _size);
|
|
return _storage[idx];
|
|
}
|
|
|
|
const T &operator[](size_type idx) const {
|
|
assert(idx < _size);
|
|
return _storage[idx];
|
|
}
|
|
|
|
Array<T> &operator=(const Array<T> &array) {
|
|
if (this == &array)
|
|
return *this;
|
|
|
|
freeStorage(_storage, _size);
|
|
_size = array._size;
|
|
allocCapacity(_size);
|
|
uninitialized_copy(array._storage, array._storage + _size, _storage);
|
|
|
|
return *this;
|
|
}
|
|
|
|
size_type size() const {
|
|
return _size;
|
|
}
|
|
|
|
void clear() {
|
|
freeStorage(_storage, _size);
|
|
_storage = nullptr;
|
|
_size = 0;
|
|
_capacity = 0;
|
|
}
|
|
|
|
iterator erase(iterator pos) {
|
|
copy(pos + 1, _storage + _size, pos);
|
|
_size--;
|
|
// We also need to destroy the last object properly here.
|
|
_storage[_size].~T();
|
|
return pos;
|
|
}
|
|
|
|
bool empty() const {
|
|
return (_size == 0);
|
|
}
|
|
|
|
bool operator==(const Array<T> &other) const {
|
|
if (this == &other)
|
|
return true;
|
|
if (_size != other._size)
|
|
return false;
|
|
for (size_type i = 0; i < _size; ++i) {
|
|
if (_storage[i] != other._storage[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool operator!=(const Array<T> &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
iterator begin() {
|
|
return _storage;
|
|
}
|
|
|
|
iterator end() {
|
|
return _storage + _size;
|
|
}
|
|
|
|
const_iterator begin() const {
|
|
return _storage;
|
|
}
|
|
|
|
const_iterator end() const {
|
|
return _storage + _size;
|
|
}
|
|
|
|
void reserve(size_type newCapacity) {
|
|
if (newCapacity <= _capacity)
|
|
return;
|
|
|
|
T *oldStorage = _storage;
|
|
allocCapacity(newCapacity);
|
|
|
|
if (oldStorage) {
|
|
// Copy old data
|
|
uninitialized_copy(oldStorage, oldStorage + _size, _storage);
|
|
freeStorage(oldStorage, _size);
|
|
}
|
|
}
|
|
|
|
void resize(size_type newSize) {
|
|
reserve(newSize);
|
|
for (size_type i = _size; i < newSize; ++i)
|
|
new ((void *)&_storage[i]) T();
|
|
_size = newSize;
|
|
}
|
|
|
|
void assign(const_iterator first, const_iterator last) {
|
|
resize(distance(first, last)); // FIXME: ineffective?
|
|
T *dst = _storage;
|
|
while (first != last)
|
|
*dst++ = *first++;
|
|
}
|
|
|
|
protected:
|
|
static size_type roundUpCapacity(size_type capacity) {
|
|
// Round up capacity to the next power of 2;
|
|
// we use a minimal capacity of 8.
|
|
size_type capa = 8;
|
|
while (capa < capacity)
|
|
capa <<= 1;
|
|
return capa;
|
|
}
|
|
|
|
void allocCapacity(size_type capacity) {
|
|
_capacity = capacity;
|
|
if (capacity) {
|
|
_storage = (T *)malloc(sizeof(T) * capacity);
|
|
if (!_storage)
|
|
::error("Common::Array: failure to allocate %u bytes", capacity * (size_type)sizeof(T));
|
|
} else {
|
|
_storage = nullptr;
|
|
}
|
|
}
|
|
|
|
void freeStorage(T *storage, const size_type elements) {
|
|
for (size_type i = 0; i < elements; ++i)
|
|
storage[i].~T();
|
|
free(storage);
|
|
}
|
|
|
|
/**
|
|
* Insert a range of elements coming from this or another array.
|
|
* Unlike std::vector::insert, this method does not accept
|
|
* arbitrary iterators, mainly because our iterator system is
|
|
* seriously limited and does not distinguish between input iterators,
|
|
* output iterators, forward iterators or random access iterators.
|
|
*
|
|
* So, we simply restrict to Array iterators. Extending this to arbitrary
|
|
* random access iterators would be trivial.
|
|
*
|
|
* Moreover, this method does not handle all cases of inserting a subrange
|
|
* of an array into itself; this is why it is private for now.
|
|
*/
|
|
iterator insert_aux(iterator pos, const_iterator first, const_iterator last) {
|
|
assert(_storage <= pos && pos <= _storage + _size);
|
|
assert(first <= last);
|
|
const size_type n = last - first;
|
|
if (n) {
|
|
const size_type idx = pos - _storage;
|
|
if (_size + n > _capacity || (_storage <= first && first <= _storage + _size)) {
|
|
T *const oldStorage = _storage;
|
|
|
|
// If there is not enough space, allocate more.
|
|
// Likewise, if this is a self-insert, we allocate new
|
|
// storage to avoid conflicts.
|
|
allocCapacity(roundUpCapacity(_size + n));
|
|
|
|
// Copy the data from the old storage till the position where
|
|
// we insert new data
|
|
uninitialized_copy(oldStorage, oldStorage + idx, _storage);
|
|
// Copy the data we insert
|
|
uninitialized_copy(first, last, _storage + idx);
|
|
// Afterwards copy the old data from the position where we
|
|
// insert.
|
|
uninitialized_copy(oldStorage + idx, oldStorage + _size, _storage + idx + n);
|
|
|
|
freeStorage(oldStorage, _size);
|
|
} else if (idx + n <= _size) {
|
|
// Make room for the new elements by shifting back
|
|
// existing ones.
|
|
// 1. Move a part of the data to the uninitialized area
|
|
uninitialized_copy(_storage + _size - n, _storage + _size, _storage + _size);
|
|
// 2. Move a part of the data to the initialized area
|
|
copy_backward(pos, _storage + _size - n, _storage + _size);
|
|
|
|
// Insert the new elements.
|
|
copy(first, last, pos);
|
|
} else {
|
|
// Copy the old data from the position till the end to the new
|
|
// place.
|
|
uninitialized_copy(pos, _storage + _size, _storage + idx + n);
|
|
|
|
// Copy a part of the new data to the position inside the
|
|
// initialized space.
|
|
copy(first, first + (_size - idx), pos);
|
|
|
|
// Copy a part of the new data to the position inside the
|
|
// uninitialized space.
|
|
uninitialized_copy(first + (_size - idx), last, _storage + _size);
|
|
}
|
|
|
|
// Finally, update the internal state
|
|
_size += n;
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
};
|
|
|
|
/**
|
|
* Double linked list with sorted nodes.
|
|
*/
|
|
template<class T>
|
|
class SortedArray : public Array<T> {
|
|
public:
|
|
typedef T *iterator;
|
|
typedef uint size_type;
|
|
|
|
SortedArray(int (*comparator)(const void *, const void *)) {
|
|
_comparator = comparator;
|
|
}
|
|
|
|
/**
|
|
* Inserts element at the sorted position.
|
|
*/
|
|
void insert(const T &element) {
|
|
if (!this->_size) {
|
|
this->insert_aux(this->_storage, &element, &element + 1);
|
|
return;
|
|
}
|
|
|
|
T *where = bsearchMin(element);
|
|
|
|
if (where > this->_storage + this->_size)
|
|
Array<T>::push_back(element);
|
|
else
|
|
Array<T>::insert(where, element);
|
|
}
|
|
|
|
private:
|
|
T &operator[](size_type idx);
|
|
|
|
void insert_at(size_type idx, const T &element);
|
|
|
|
void insert_at(size_type idx, const Array<T> &array);
|
|
|
|
void insert(iterator pos, const T &element);
|
|
|
|
void push_back(const T &element);
|
|
|
|
void push_back(const Array<T> &array);
|
|
|
|
// Based on code Copyright (C) 2008-2009 Ksplice, Inc.
|
|
// Author: Tim Abbott <tabbott@ksplice.com>
|
|
// Licensed under GPLv2+
|
|
T *bsearchMin(void *key) {
|
|
uint start_ = 0, end_ = this->_size;
|
|
int result;
|
|
|
|
while (start_ < end_) {
|
|
uint mid = start_ + (end_ - start_) / 2;
|
|
|
|
result = this->_comparator(key, this->_storage[mid]);
|
|
if (result < 0)
|
|
end_ = mid;
|
|
else if (result > 0)
|
|
start_ = mid + 1;
|
|
else
|
|
return &this->_storage[mid];
|
|
}
|
|
|
|
return &this->_storage[start_];
|
|
}
|
|
|
|
int (*_comparator)(const void *, const void *);
|
|
};
|
|
|
|
} // End of namespace Common
|
|
|
|
#endif
|