mirror of
https://github.com/libretro/scummvm.git
synced 2025-01-07 02:12:14 +00:00
69ee268e7f
svn-id: r9575
249 lines
6.8 KiB
C++
249 lines
6.8 KiB
C++
/* ScummVM - Scumm Interpreter
|
|
* Copyright (C) 2001-2003 The ScummVM project
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* $Header$
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* The code in this file is based on code with Copyright 1998 Fabrice Bellard
|
|
* Fabrice original code is part of SoX (http://sox.sourceforge.net).
|
|
* Max Horn adapted that code to the needs of ScummVM and rewrote it partial,
|
|
* in the process removing any use of floating point arithmetic. Various other
|
|
* improvments over the original code were made.
|
|
*/
|
|
|
|
#include "stdafx.h"
|
|
#include "sound/rate.h"
|
|
#include "sound/audiostream.h"
|
|
|
|
/**
|
|
* The precision of the fractional computations used by the rate converter.
|
|
* Normally you should never have to modify this value.
|
|
*/
|
|
#define FRAC_BITS 16
|
|
|
|
/**
|
|
* The size of the intermediate input cache. Bigger values may increase
|
|
* performance, but only until some point (depends largely on cache size,
|
|
* target processor and various other factors), at which it will decrease
|
|
* again.
|
|
*/
|
|
#define INTERMEDIATE_BUFFER_SIZE 512
|
|
|
|
|
|
/**
|
|
* Audio rate converter based on simple linear Interpolation.
|
|
*
|
|
* The use of fractional increment allows us to use no buffer. It
|
|
* avoid the problems at the end of the buffer we had with the old
|
|
* method which stored a possibly big buffer of size
|
|
* lcm(in_rate,out_rate).
|
|
*
|
|
* Limited to sampling frequency <= 65535 Hz.
|
|
*/
|
|
|
|
template<bool stereo, bool reverseStereo>
|
|
class LinearRateConverter : public RateConverter {
|
|
protected:
|
|
st_sample_t inBuf[INTERMEDIATE_BUFFER_SIZE];
|
|
const st_sample_t *inPtr;
|
|
int inLen;
|
|
|
|
/** fractional position of the output stream in input stream unit */
|
|
unsigned long opos, opos_frac;
|
|
|
|
/** fractional position increment in the output stream */
|
|
unsigned long opos_inc, opos_inc_frac;
|
|
|
|
/** position in the input stream (integer) */
|
|
unsigned long ipos;
|
|
|
|
/** last sample(s) in the input stream (left/right channel) */
|
|
st_sample_t ilast[2];
|
|
/** current sample(s) in the input stream (left/right channel) */
|
|
st_sample_t icur[2];
|
|
|
|
public:
|
|
LinearRateConverter(st_rate_t inrate, st_rate_t outrate);
|
|
int flow(AudioInputStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol);
|
|
int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
|
|
return (ST_SUCCESS);
|
|
}
|
|
};
|
|
|
|
|
|
/*
|
|
* Prepare processing.
|
|
*/
|
|
template<bool stereo, bool reverseStereo>
|
|
LinearRateConverter<stereo, reverseStereo>::LinearRateConverter(st_rate_t inrate, st_rate_t outrate) {
|
|
unsigned long incr;
|
|
|
|
if (inrate == outrate) {
|
|
error("Input and Output rates must be different to use rate effect");
|
|
}
|
|
|
|
if (inrate >= 65536 || outrate >= 65536) {
|
|
error("rate effect can only handle rates < 65536");
|
|
}
|
|
|
|
opos_frac = 0;
|
|
opos = 1;
|
|
|
|
/* increment */
|
|
incr = (inrate << FRAC_BITS) / outrate;
|
|
|
|
opos_inc_frac = incr & ((1UL << FRAC_BITS) - 1);
|
|
opos_inc = incr >> FRAC_BITS;
|
|
|
|
ipos = 0;
|
|
|
|
ilast[0] = ilast[1] = 0;
|
|
icur[0] = icur[1] = 0;
|
|
|
|
inLen = 0;
|
|
}
|
|
|
|
/*
|
|
* Processed signed long samples from ibuf to obuf.
|
|
* Return number of samples processed.
|
|
*/
|
|
template<bool stereo, bool reverseStereo>
|
|
int LinearRateConverter<stereo, reverseStereo>::flow(AudioInputStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol)
|
|
{
|
|
st_sample_t *ostart, *oend;
|
|
st_sample_t out[2], tmpOut;
|
|
|
|
const int numChannels = stereo ? 2 : 1;
|
|
int i;
|
|
|
|
ostart = obuf;
|
|
oend = obuf + osamp * 2;
|
|
|
|
while (obuf < oend) {
|
|
|
|
// read enough input samples so that ipos > opos
|
|
while (ipos <= opos) {
|
|
// Check if we have to refill the buffer
|
|
if (inLen == 0) {
|
|
inPtr = inBuf;
|
|
inLen = input.readBuffer(inBuf, ARRAYSIZE(inBuf));
|
|
if (inLen <= 0)
|
|
goto the_end;
|
|
}
|
|
for (i = 0; i < numChannels; i++) {
|
|
ilast[i] = icur[i];
|
|
icur[i] = *inPtr++;
|
|
inLen--;
|
|
}
|
|
ipos++;
|
|
}
|
|
|
|
// Loop as long as the outpos trails behind, and as long as there is
|
|
// still space in the output buffer.
|
|
while (ipos > opos) {
|
|
|
|
// interpolate
|
|
tmpOut = (st_sample_t)(ilast[0] + (((icur[0] - ilast[0]) * opos_frac + (1UL << (FRAC_BITS-1))) >> FRAC_BITS));
|
|
// adjust volume
|
|
out[0] = out[1] = (st_sample_t)((tmpOut * vol) >> 8);
|
|
|
|
if (stereo) {
|
|
// interpolate
|
|
tmpOut = (st_sample_t)(ilast[1] + (((icur[1] - ilast[1]) * opos_frac + (1UL << (FRAC_BITS-1))) >> FRAC_BITS));
|
|
// adjust volume
|
|
out[reverseStereo ? 0 : 1] = (st_sample_t)((tmpOut * vol) >> 8);
|
|
}
|
|
|
|
// output left channel
|
|
clampedAdd(*obuf++, out[0]);
|
|
|
|
// output right channel
|
|
clampedAdd(*obuf++, out[1]);
|
|
|
|
// Increment output position
|
|
unsigned long tmp = opos_frac + opos_inc_frac;
|
|
opos += opos_inc + (tmp >> FRAC_BITS);
|
|
opos_frac = tmp & ((1UL << FRAC_BITS) - 1);
|
|
|
|
// Abort if we reached the end of the output buffer
|
|
if (obuf >= oend)
|
|
goto the_end;
|
|
}
|
|
}
|
|
|
|
the_end:
|
|
return (ST_SUCCESS);
|
|
}
|
|
|
|
|
|
#pragma mark -
|
|
|
|
|
|
/**
|
|
* Simple audio rate converter for the case that the inrate equals the outrate.
|
|
*/
|
|
template<bool stereo, bool reverseStereo>
|
|
class CopyRateConverter : public RateConverter {
|
|
public:
|
|
virtual int flow(AudioInputStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
|
|
int16 tmp[2];
|
|
st_size_t len = osamp;
|
|
assert(input.isStereo() == stereo);
|
|
while (!input.eos() && len--) {
|
|
tmp[0] = tmp[1] = (input.read() * vol) >> 8;
|
|
if (stereo)
|
|
tmp[reverseStereo ? 0 : 1] = (input.read() * vol) >> 8;
|
|
clampedAdd(*obuf++, tmp[0]);
|
|
clampedAdd(*obuf++, tmp[1]);
|
|
}
|
|
return (ST_SUCCESS);
|
|
}
|
|
virtual int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
|
|
return (ST_SUCCESS);
|
|
}
|
|
};
|
|
|
|
|
|
#pragma mark -
|
|
|
|
|
|
/**
|
|
* Create and return a RateConverter object for the specified input and output rates.
|
|
*/
|
|
RateConverter *makeRateConverter(st_rate_t inrate, st_rate_t outrate, bool stereo, bool reverseStereo) {
|
|
if (inrate != outrate) {
|
|
if (stereo) {
|
|
if (reverseStereo)
|
|
return new LinearRateConverter<true, true>(inrate, outrate);
|
|
else
|
|
return new LinearRateConverter<true, false>(inrate, outrate);
|
|
} else
|
|
return new LinearRateConverter<false, false>(inrate, outrate);
|
|
//return new ResampleRateConverter(inrate, outrate, 1);
|
|
} else {
|
|
if (stereo) {
|
|
if (reverseStereo)
|
|
return new CopyRateConverter<true, true>();
|
|
else
|
|
return new CopyRateConverter<true, false>();
|
|
} else
|
|
return new CopyRateConverter<false, false>();
|
|
}
|
|
}
|