scummvm/video/smk_decoder.cpp
Max Horn 0ce2ca4e00 COMMON: Replace MKID_BE by MKTAG
MKID_BE relied on unspecified behavior of the C++ compiler,
and as such was always a bit unsafe. The new MKTAG macro
is slightly less elegant, but does no longer depend on the
behavior of the compiler.
Inspired by FFmpeg, which has an almost identical macro.
2011-04-12 16:53:15 +02:00

906 lines
22 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
// Based on http://wiki.multimedia.cx/index.php?title=Smacker
// and the FFmpeg Smacker decoder (libavcodec/smacker.c), revision 16143
// http://git.ffmpeg.org/?p=ffmpeg;a=blob;f=libavcodec/smacker.c;hb=b8437a00a2f14d4a437346455d624241d726128e
#include "video/smk_decoder.h"
#include "common/archive.h"
#include "common/endian.h"
#include "common/util.h"
#include "common/stream.h"
#include "common/system.h"
#include "audio/audiostream.h"
#include "audio/mixer.h"
#include "audio/decoders/raw.h"
namespace Video {
enum SmkBlockTypes {
SMK_BLOCK_MONO = 0,
SMK_BLOCK_FULL = 1,
SMK_BLOCK_SKIP = 2,
SMK_BLOCK_FILL = 3
};
/*
* class BitStream
* Little-endian bit stream provider.
*/
class BitStream {
public:
BitStream(byte *buf, uint32 length)
: _buf(buf), _end(buf+length), _bitCount(8) {
_curByte = *_buf++;
}
bool getBit();
byte getBits8();
byte peek8() const;
void skip(int n);
private:
byte *_buf;
byte *_end;
byte _curByte;
byte _bitCount;
};
bool BitStream::getBit() {
if (_bitCount == 0) {
assert(_buf < _end);
_curByte = *_buf++;
_bitCount = 8;
}
bool v = _curByte & 1;
_curByte >>= 1;
--_bitCount;
return v;
}
byte BitStream::getBits8() {
assert(_buf < _end);
byte v = (*_buf << _bitCount) | _curByte;
_curByte = *_buf++ >> (8 - _bitCount);
return v;
}
byte BitStream::peek8() const {
if (_buf == _end)
return _curByte;
assert(_buf < _end);
return (*_buf << _bitCount) | _curByte;
}
void BitStream::skip(int n) {
assert(n <= 8);
_curByte >>= n;
if (_bitCount >= n) {
_bitCount -= n;
} else {
assert(_buf < _end);
_bitCount = _bitCount + 8 - n;
_curByte = *_buf++ >> (8 - _bitCount);
}
}
/*
* class SmallHuffmanTree
* A Huffman-tree to hold 8-bit values.
*/
class SmallHuffmanTree {
public:
SmallHuffmanTree(BitStream &bs);
uint16 getCode(BitStream &bs);
private:
enum {
SMK_NODE = 0x8000
};
uint16 decodeTree(uint32 prefix, int length);
uint16 _treeSize;
uint16 _tree[511];
uint16 _prefixtree[256];
byte _prefixlength[256];
BitStream &_bs;
};
SmallHuffmanTree::SmallHuffmanTree(BitStream &bs)
: _treeSize(0), _bs(bs) {
uint32 bit = _bs.getBit();
assert(bit);
for (uint16 i = 0; i < 256; ++i)
_prefixtree[i] = _prefixlength[i] = 0;
decodeTree(0, 0);
bit = _bs.getBit();
assert(!bit);
}
uint16 SmallHuffmanTree::decodeTree(uint32 prefix, int length) {
if (!_bs.getBit()) { // Leaf
_tree[_treeSize] = _bs.getBits8();
if (length <= 8) {
for (int i = 0; i < 256; i += (1 << length)) {
_prefixtree[prefix | i] = _treeSize;
_prefixlength[prefix | i] = length;
}
}
++_treeSize;
return 1;
}
uint16 t = _treeSize++;
if (length == 8) {
_prefixtree[prefix] = t;
_prefixlength[prefix] = 8;
}
uint16 r1 = decodeTree(prefix, length + 1);
_tree[t] = (SMK_NODE | r1);
uint16 r2 = decodeTree(prefix | (1 << length), length + 1);
return r1+r2+1;
}
uint16 SmallHuffmanTree::getCode(BitStream &bs) {
byte peek = bs.peek8();
uint16 *p = &_tree[_prefixtree[peek]];
bs.skip(_prefixlength[peek]);
while (*p & SMK_NODE) {
if (bs.getBit())
p += *p & ~SMK_NODE;
p++;
}
return *p;
}
/*
* class BigHuffmanTree
* A Huffman-tree to hold 16-bit values.
*/
class BigHuffmanTree {
public:
BigHuffmanTree(BitStream &bs, int allocSize);
~BigHuffmanTree();
void reset();
uint32 getCode(BitStream &bs);
private:
enum {
SMK_NODE = 0x80000000
};
uint32 decodeTree(uint32 prefix, int length);
uint32 _treeSize;
uint32 *_tree;
uint32 _last[3];
uint32 _prefixtree[256];
byte _prefixlength[256];
/* Used during construction */
BitStream &_bs;
uint32 _markers[3];
SmallHuffmanTree *_loBytes;
SmallHuffmanTree *_hiBytes;
};
BigHuffmanTree::BigHuffmanTree(BitStream &bs, int allocSize)
: _bs(bs) {
uint32 bit = _bs.getBit();
if (!bit) {
_tree = new uint32[1];
_tree[0] = 0;
_last[0] = _last[1] = _last[2] = 0;
return;
}
for (uint32 i = 0; i < 256; ++i)
_prefixtree[i] = _prefixlength[i] = 0;
_loBytes = new SmallHuffmanTree(_bs);
_hiBytes = new SmallHuffmanTree(_bs);
_markers[0] = _bs.getBits8();
_markers[0] |= (_bs.getBits8() << 8);
_markers[1] = _bs.getBits8();
_markers[1] |= (_bs.getBits8() << 8);
_markers[2] = _bs.getBits8();
_markers[2] |= (_bs.getBits8() << 8);
_last[0] = _last[1] = _last[2] = 0xffffffff;
_treeSize = 0;
_tree = new uint32[allocSize / 4];
decodeTree(0, 0);
bit = _bs.getBit();
assert(!bit);
for (uint32 i = 0; i < 3; ++i) {
if (_last[i] == 0xffffffff) {
_last[i] = _treeSize;
_tree[_treeSize++] = 0;
}
}
delete _loBytes;
delete _hiBytes;
}
BigHuffmanTree::~BigHuffmanTree()
{
delete[] _tree;
}
void BigHuffmanTree::reset() {
_tree[_last[0]] = _tree[_last[1]] = _tree[_last[2]] = 0;
}
uint32 BigHuffmanTree::decodeTree(uint32 prefix, int length) {
uint32 bit = _bs.getBit();
if (!bit) { // Leaf
uint32 lo = _loBytes->getCode(_bs);
uint32 hi = _hiBytes->getCode(_bs);
uint32 v = (hi << 8) | lo;
_tree[_treeSize] = v;
if (length <= 8) {
for (int i = 0; i < 256; i += (1 << length)) {
_prefixtree[prefix | i] = _treeSize;
_prefixlength[prefix | i] = length;
}
}
for (int i = 0; i < 3; ++i) {
if (_markers[i] == v) {
_last[i] = _treeSize;
_tree[_treeSize] = 0;
}
}
++_treeSize;
return 1;
}
uint32 t = _treeSize++;
if (length == 8) {
_prefixtree[prefix] = t;
_prefixlength[prefix] = 8;
}
uint32 r1 = decodeTree(prefix, length + 1);
_tree[t] = SMK_NODE | r1;
uint32 r2 = decodeTree(prefix | (1 << length), length + 1);
return r1+r2+1;
}
uint32 BigHuffmanTree::getCode(BitStream &bs) {
byte peek = bs.peek8();
uint32 *p = &_tree[_prefixtree[peek]];
bs.skip(_prefixlength[peek]);
while (*p & SMK_NODE) {
if (bs.getBit())
p += (*p) & ~SMK_NODE;
p++;
}
uint32 v = *p;
if (v != _tree[_last[0]]) {
_tree[_last[2]] = _tree[_last[1]];
_tree[_last[1]] = _tree[_last[0]];
_tree[_last[0]] = v;
}
return v;
}
SmackerDecoder::SmackerDecoder(Audio::Mixer *mixer, Audio::Mixer::SoundType soundType)
: _audioStarted(false), _audioStream(0), _mixer(mixer), _soundType(soundType) {
_surface = 0;
_fileStream = 0;
_dirtyPalette = false;
}
SmackerDecoder::~SmackerDecoder() {
close();
}
uint32 SmackerDecoder::getElapsedTime() const {
if (_audioStream && _audioStarted)
return _mixer->getSoundElapsedTime(_audioHandle);
return FixedRateVideoDecoder::getElapsedTime();
}
bool SmackerDecoder::loadStream(Common::SeekableReadStream *stream) {
close();
_fileStream = stream;
// Seek to the first frame
_header.signature = _fileStream->readUint32BE();
// No BINK support available
if (_header.signature == MKTAG('B','I','K','i')) {
delete _fileStream;
_fileStream = 0;
return false;
}
assert(_header.signature == MKTAG('S','M','K','2') || _header.signature == MKTAG('S','M','K','4'));
uint32 width = _fileStream->readUint32LE();
uint32 height = _fileStream->readUint32LE();
_frameCount = _fileStream->readUint32LE();
int32 frameRate = _fileStream->readSint32LE();
// framerate contains 2 digits after the comma, so 1497 is actually 14.97 fps
if (frameRate > 0)
_frameRate = Common::Rational(1000, frameRate);
else if (frameRate < 0)
_frameRate = Common::Rational(100000, -frameRate);
else
_frameRate = 1000;
// Flags are determined by which bit is set, which can be one of the following:
// 0 - set to 1 if file contains a ring frame.
// 1 - set to 1 if file is Y-interlaced
// 2 - set to 1 if file is Y-doubled
// If bits 1 or 2 are set, the frame should be scaled to twice its height
// before it is displayed.
_header.flags = _fileStream->readUint32LE();
// TODO: should we do any extra processing for Smacker files with ring frames?
// TODO: should we do any extra processing for Y-doubled videos? Are they the
// same as Y-interlaced videos?
uint32 i;
for (i = 0; i < 7; ++i)
_header.audioSize[i] = _fileStream->readUint32LE();
_header.treesSize = _fileStream->readUint32LE();
_header.mMapSize = _fileStream->readUint32LE();
_header.mClrSize = _fileStream->readUint32LE();
_header.fullSize = _fileStream->readUint32LE();
_header.typeSize = _fileStream->readUint32LE();
for (i = 0; i < 7; ++i) {
// AudioRate - Frequency and format information for each sound track, up to 7 audio tracks.
// The 32 constituent bits have the following meaning:
// * bit 31 - indicates Huffman + DPCM compression
// * bit 30 - indicates that audio data is present for this track
// * bit 29 - 1 = 16-bit audio; 0 = 8-bit audio
// * bit 28 - 1 = stereo audio; 0 = mono audio
// * bit 27 - indicates Bink RDFT compression
// * bit 26 - indicates Bink DCT compression
// * bits 25-24 - unused
// * bits 23-0 - audio sample rate
uint32 audioInfo = _fileStream->readUint32LE();
_header.audioInfo[i].hasAudio = audioInfo & 0x40000000;
_header.audioInfo[i].is16Bits = audioInfo & 0x20000000;
_header.audioInfo[i].isStereo = audioInfo & 0x10000000;
_header.audioInfo[i].sampleRate = audioInfo & 0xFFFFFF;
if (audioInfo & 0x8000000)
_header.audioInfo[i].compression = kCompressionRDFT;
else if (audioInfo & 0x4000000)
_header.audioInfo[i].compression = kCompressionDCT;
else if (audioInfo & 0x80000000)
_header.audioInfo[i].compression = kCompressionDPCM;
else
_header.audioInfo[i].compression = kCompressionNone;
if (_header.audioInfo[i].hasAudio) {
if (_header.audioInfo[i].compression == kCompressionRDFT || _header.audioInfo[i].compression == kCompressionDCT)
warning("Unhandled Smacker v2 audio compression");
if (i == 0)
_audioStream = Audio::makeQueuingAudioStream(_header.audioInfo[0].sampleRate, _header.audioInfo[0].isStereo);
}
}
_header.dummy = _fileStream->readUint32LE();
_frameSizes = new uint32[_frameCount];
for (i = 0; i < _frameCount; ++i)
_frameSizes[i] = _fileStream->readUint32LE();
_frameTypes = new byte[_frameCount];
for (i = 0; i < _frameCount; ++i)
_frameTypes[i] = _fileStream->readByte();
byte *huffmanTrees = new byte[_header.treesSize];
_fileStream->read(huffmanTrees, _header.treesSize);
BitStream bs(huffmanTrees, _header.treesSize);
_MMapTree = new BigHuffmanTree(bs, _header.mMapSize);
_MClrTree = new BigHuffmanTree(bs, _header.mClrSize);
_FullTree = new BigHuffmanTree(bs, _header.fullSize);
_TypeTree = new BigHuffmanTree(bs, _header.typeSize);
delete[] huffmanTrees;
_surface = new Graphics::Surface();
// Height needs to be doubled if we have flags (Y-interlaced or Y-doubled)
_surface->create(width, height * (_header.flags ? 2 : 1), 1);
memset(_palette, 0, 3 * 256);
return true;
}
void SmackerDecoder::close() {
if (!_fileStream)
return;
if (_audioStream) {
if (_audioStarted) {
// The mixer will delete the stream.
_mixer->stopHandle(_audioHandle);
_audioStarted = false;
} else {
delete _audioStream;
}
_audioStream = 0;
}
delete _fileStream;
_fileStream = 0;
_surface->free();
delete _surface;
_surface = 0;
delete _MMapTree;
delete _MClrTree;
delete _FullTree;
delete _TypeTree;
delete[] _frameSizes;
delete[] _frameTypes;
reset();
}
const Graphics::Surface *SmackerDecoder::decodeNextFrame() {
uint i;
uint32 chunkSize = 0;
uint32 dataSizeUnpacked = 0;
uint32 startPos = _fileStream->pos();
_curFrame++;
// Check if we got a frame with palette data, and
// call back the virtual setPalette function to set
// the current palette
if (_frameTypes[_curFrame] & 1) {
unpackPalette();
_dirtyPalette = true;
}
// Load audio tracks
for (i = 0; i < 7; ++i) {
if (!(_frameTypes[_curFrame] & (2 << i)))
continue;
chunkSize = _fileStream->readUint32LE();
chunkSize -= 4; // subtract the first 4 bytes (chunk size)
if (_header.audioInfo[i].compression == kCompressionNone) {
dataSizeUnpacked = chunkSize;
} else {
dataSizeUnpacked = _fileStream->readUint32LE();
chunkSize -= 4; // subtract the next 4 bytes (unpacked data size)
}
handleAudioTrack(i, chunkSize, dataSizeUnpacked);
}
uint32 frameSize = _frameSizes[_curFrame] & ~3;
// uint32 remainder = _frameSizes[_curFrame] & 3;
if (_fileStream->pos() - startPos > frameSize)
error("Smacker actual frame size exceeds recorded frame size");
uint32 frameDataSize = frameSize - (_fileStream->pos() - startPos);
_frameData = (byte *)malloc(frameDataSize);
_fileStream->read(_frameData, frameDataSize);
BitStream bs(_frameData, frameDataSize);
_MMapTree->reset();
_MClrTree->reset();
_FullTree->reset();
_TypeTree->reset();
// Height needs to be doubled if we have flags (Y-interlaced or Y-doubled)
uint doubleY = _header.flags ? 2 : 1;
uint bw = getWidth() / 4;
uint bh = getHeight() / doubleY / 4;
uint stride = getWidth();
uint block = 0, blocks = bw*bh;
byte *out;
uint type, run, j, mode;
uint32 p1, p2, clr, map;
byte hi, lo;
while (block < blocks) {
type = _TypeTree->getCode(bs);
run = getBlockRun((type >> 2) & 0x3f);
switch (type & 3) {
case SMK_BLOCK_MONO:
while (run-- && block < blocks) {
clr = _MClrTree->getCode(bs);
map = _MMapTree->getCode(bs);
out = (byte *)_surface->pixels + (block / bw) * (stride * 4 * doubleY) + (block % bw) * 4;
hi = clr >> 8;
lo = clr & 0xff;
for (i = 0; i < 4; i++) {
for (j = 0; j < doubleY; j++) {
out[0] = (map & 1) ? hi : lo;
out[1] = (map & 2) ? hi : lo;
out[2] = (map & 4) ? hi : lo;
out[3] = (map & 8) ? hi : lo;
out += stride;
}
map >>= 4;
}
++block;
}
break;
case SMK_BLOCK_FULL:
// Smacker v2 has one mode, Smacker v4 has three
if (_header.signature == MKTAG('S','M','K','2')) {
mode = 0;
} else {
// 00 - mode 0
// 10 - mode 1
// 01 - mode 2
mode = 0;
if (bs.getBit()) {
mode = 1;
} else if (bs.getBit()) {
mode = 2;
}
}
while (run-- && block < blocks) {
out = (byte *)_surface->pixels + (block / bw) * (stride * 4 * doubleY) + (block % bw) * 4;
switch (mode) {
case 0:
for (i = 0; i < 4; ++i) {
p1 = _FullTree->getCode(bs);
p2 = _FullTree->getCode(bs);
for (j = 0; j < doubleY; ++j) {
out[2] = p1 & 0xff;
out[3] = p1 >> 8;
out[0] = p2 & 0xff;
out[1] = p2 >> 8;
out += stride;
}
}
break;
case 1:
p1 = _FullTree->getCode(bs);
out[0] = out[1] = p1 & 0xFF;
out[2] = out[3] = p1 >> 8;
out += stride;
out[0] = out[1] = p1 & 0xFF;
out[2] = out[3] = p1 >> 8;
out += stride;
p2 = _FullTree->getCode(bs);
out[0] = out[1] = p2 & 0xFF;
out[2] = out[3] = p2 >> 8;
out += stride;
out[0] = out[1] = p2 & 0xFF;
out[2] = out[3] = p2 >> 8;
out += stride;
break;
case 2:
for (i = 0; i < 2; i++) {
// We first get p2 and then p1
// Check ffmpeg thread "[PATCH] Smacker video decoder bug fix"
// http://article.gmane.org/gmane.comp.video.ffmpeg.devel/78768
p2 = _FullTree->getCode(bs);
p1 = _FullTree->getCode(bs);
for (j = 0; j < doubleY; ++j) {
out[0] = p1 & 0xff;
out[1] = p1 >> 8;
out[2] = p2 & 0xff;
out[3] = p2 >> 8;
out += stride;
}
for (j = 0; j < doubleY; ++j) {
out[0] = p1 & 0xff;
out[1] = p1 >> 8;
out[2] = p2 & 0xff;
out[3] = p2 >> 8;
out += stride;
}
}
break;
}
++block;
}
break;
case SMK_BLOCK_SKIP:
while (run-- && block < blocks)
block++;
break;
case SMK_BLOCK_FILL:
uint32 col;
mode = type >> 8;
while (run-- && block < blocks) {
out = (byte *)_surface->pixels + (block / bw) * (stride * 4 * doubleY) + (block % bw) * 4;
col = mode * 0x01010101;
for (i = 0; i < 4 * doubleY; ++i) {
out[0] = out[1] = out[2] = out[3] = col;
out += stride;
}
++block;
}
break;
}
}
_fileStream->seek(startPos + frameSize);
free(_frameData);
if (_curFrame == 0)
_startTime = g_system->getMillis();
return _surface;
}
void SmackerDecoder::handleAudioTrack(byte track, uint32 chunkSize, uint32 unpackedSize) {
if (_header.audioInfo[track].hasAudio && chunkSize > 0 && track == 0) {
// If it's track 0, play the audio data
byte *soundBuffer = (byte *)malloc(chunkSize);
_fileStream->read(soundBuffer, chunkSize);
if (_header.audioInfo[track].compression == kCompressionRDFT || _header.audioInfo[track].compression == kCompressionDCT) {
// TODO: Compressed audio (Bink RDFT/DCT encoded)
free(soundBuffer);
return;
} else if (_header.audioInfo[track].compression == kCompressionDPCM) {
// Compressed audio (Huffman DPCM encoded)
queueCompressedBuffer(soundBuffer, chunkSize, unpackedSize, track);
free(soundBuffer);
} else {
// Uncompressed audio (PCM)
byte flags = 0;
if (_header.audioInfo[track].is16Bits)
flags = flags | Audio::FLAG_16BITS;
if (_header.audioInfo[track].isStereo)
flags = flags | Audio::FLAG_STEREO;
_audioStream->queueBuffer(soundBuffer, chunkSize, DisposeAfterUse::YES, flags);
// The sound buffer will be deleted by QueuingAudioStream
}
if (!_audioStarted) {
_mixer->playStream(_soundType, &_audioHandle, _audioStream, -1, 255);
_audioStarted = true;
}
} else {
// Ignore the rest of the audio tracks, if they exist
// TODO: Are there any Smacker videos with more than one audio stream?
// If yes, we should play the rest of the audio streams as well
if (chunkSize > 0)
_fileStream->skip(chunkSize);
}
}
void SmackerDecoder::queueCompressedBuffer(byte *buffer, uint32 bufferSize,
uint32 unpackedSize, int streamNum) {
BitStream audioBS(buffer, bufferSize);
bool dataPresent = audioBS.getBit();
if (!dataPresent)
return;
bool isStereo = audioBS.getBit();
assert(isStereo == _header.audioInfo[streamNum].isStereo);
bool is16Bits = audioBS.getBit();
assert(is16Bits == _header.audioInfo[streamNum].is16Bits);
int numBytes = 1 * (isStereo ? 2 : 1) * (is16Bits ? 2 : 1);
byte *unpackedBuffer = (byte *)malloc(unpackedSize);
byte *curPointer = unpackedBuffer;
uint32 curPos = 0;
SmallHuffmanTree *audioTrees[4];
for (int k = 0; k < numBytes; k++)
audioTrees[k] = new SmallHuffmanTree(audioBS);
// Base values, stored as big endian
int32 bases[2];
if (isStereo) {
if (is16Bits) {
byte hi = audioBS.getBits8();
byte lo = audioBS.getBits8();
bases[1] = (int16) ((hi << 8) | lo);
} else {
bases[1] = audioBS.getBits8();
}
}
if (is16Bits) {
byte hi = audioBS.getBits8();
byte lo = audioBS.getBits8();
bases[0] = (int16) ((hi << 8) | lo);
} else {
bases[0] = audioBS.getBits8();
}
// The bases are the first samples, too
for (int i = 0; i < (isStereo ? 2 : 1); i++, curPointer += (is16Bits ? 2 : 1), curPos += (is16Bits ? 2 : 1)) {
if (is16Bits)
WRITE_BE_UINT16(curPointer, bases[i]);
else
*curPointer = (bases[i] & 0xFF) ^ 0x80;
}
// Next follow the deltas, which are added to the corresponding base values and
// are stored as little endian
// We store the unpacked bytes in big endian format
while (curPos < unpackedSize) {
// If the sample is stereo, the data is stored for the left and right channel, respectively
// (the exact opposite to the base values)
if (!is16Bits) {
for (int k = 0; k < (isStereo ? 2 : 1); k++) {
bases[k] += (int8) ((int16) audioTrees[k]->getCode(audioBS));
*curPointer++ = CLIP<int>(bases[k], 0, 255) ^ 0x80;
curPos++;
}
} else {
for (int k = 0; k < (isStereo ? 2 : 1); k++) {
byte lo = audioTrees[k * 2]->getCode(audioBS);
byte hi = audioTrees[k * 2 + 1]->getCode(audioBS);
bases[k] += (int16) (lo | (hi << 8));
WRITE_BE_UINT16(curPointer, bases[k]);
curPointer += 2;
curPos += 2;
}
}
}
for (int k = 0; k < numBytes; k++)
delete audioTrees[k];
byte flags = 0;
if (_header.audioInfo[0].is16Bits)
flags = flags | Audio::FLAG_16BITS;
if (_header.audioInfo[0].isStereo)
flags = flags | Audio::FLAG_STEREO;
_audioStream->queueBuffer(unpackedBuffer, unpackedSize, DisposeAfterUse::YES, flags);
// unpackedBuffer will be deleted by QueuingAudioStream
}
void SmackerDecoder::unpackPalette() {
uint startPos = _fileStream->pos();
uint32 len = 4 * _fileStream->readByte();
byte *chunk = (byte *)malloc(len);
_fileStream->read(chunk, len);
byte *p = chunk;
byte oldPalette[3*256];
memcpy(oldPalette, _palette, 3 * 256);
byte *pal = _palette;
int sz = 0;
byte b0;
while (sz < 256) {
b0 = *p++;
if (b0 & 0x80) { // if top bit is 1 (0x80 = 10000000)
sz += (b0 & 0x7f) + 1; // get lower 7 bits + 1 (0x7f = 01111111)
pal += 3 * ((b0 & 0x7f) + 1);
} else if (b0 & 0x40) { // if top 2 bits are 01 (0x40 = 01000000)
byte c = (b0 & 0x3f) + 1; // get lower 6 bits + 1 (0x3f = 00111111)
uint s = 3 * *p++;
sz += c;
while (c--) {
*pal++ = oldPalette[s + 0];
*pal++ = oldPalette[s + 1];
*pal++ = oldPalette[s + 2];
s += 3;
}
} else { // top 2 bits are 00
sz++;
// get the lower 6 bits for each component (0x3f = 00111111)
byte b = b0 & 0x3f;
byte g = (*p++) & 0x3f;
byte r = (*p++) & 0x3f;
assert(g < 0xc0 && b < 0xc0);
// upscale to full 8-bit color values by multiplying by 4
*pal++ = b * 4;
*pal++ = g * 4;
*pal++ = r * 4;
}
}
_fileStream->seek(startPos + len);
free(chunk);
}
} // End of namespace Video