scummvm/audio/alsa_opl.cpp
2016-10-09 15:02:02 +02:00

350 lines
8.9 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
/* OPL implementation for hardware OPL using ALSA Direct FM API.
*
* Caveats and limitations:
* - Pretends to be a softsynth (emitting silence).
* - Dual OPL2 mode requires OPL3 hardware.
* - Every register write leads to a series of register writes on the hardware,
* due to the lack of direct register access in the ALSA Direct FM API.
* - No timers
*/
#define FORBIDDEN_SYMBOL_ALLOW_ALL
#include "common/scummsys.h"
#include "common/debug.h"
#include "common/str.h"
#include "audio/fmopl.h"
#include <sys/ioctl.h>
#include <alsa/asoundlib.h>
#include <sound/asound_fm.h>
namespace OPL {
namespace ALSA {
class OPL : public ::OPL::RealOPL {
private:
enum {
kOpl2Voices = 9,
kVoices = 18,
kOpl2Operators = 18,
kOperators = 36
};
Config::OplType _type;
int _iface;
snd_hwdep_t *_opl;
snd_dm_fm_voice _oper[kOperators];
snd_dm_fm_note _voice[kVoices];
snd_dm_fm_params _params;
int index[2];
static const int voiceToOper0[kVoices];
static const int regOffsetToOper[0x20];
void writeOplReg(int c, int r, int v);
void clear();
public:
OPL(Config::OplType type);
~OPL();
bool init();
void reset();
void write(int a, int v);
byte read(int a);
void writeReg(int r, int v);
};
const int OPL::voiceToOper0[OPL::kVoices] =
{ 0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32 };
const int OPL::regOffsetToOper[0x20] =
{ 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1,
12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
OPL::OPL(Config::OplType type) : _type(type), _opl(nullptr), _iface(0) {
}
OPL::~OPL() {
stop();
if (_opl) {
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_RESET, nullptr);
snd_hwdep_close(_opl);
}
}
void OPL::clear() {
index[0] = index[1] = 0;
memset(_oper, 0, sizeof(_oper));
memset(_voice, 0, sizeof(_voice));
memset(&_params, 0, sizeof(_params));
for (int i = 0; i < kOperators; ++i) {
_oper[i].op = (i / 3) % 2;
_oper[i].voice = (i / 6) * 3 + (i % 3);
}
for (int i = 0; i < kVoices; ++i)
_voice[i].voice = i;
// For OPL3 hardware we need to set up the panning in OPL2 modes
if (_iface == SND_HWDEP_IFACE_OPL3) {
if (_type == Config::kDualOpl2) {
for (int i = 0; i < kOpl2Operators; ++i)
_oper[i].left = 1; // FIXME below
for (int i = kOpl2Operators; i < kOperators; ++i)
_oper[i].right = 1;
} else if (_type == Config::kOpl2) {
for (int i = 0; i < kOpl2Operators; ++i) {
_oper[i].left = 1;
_oper[i].right = 1;
}
}
}
}
bool OPL::init() {
clear();
int card = -1;
snd_ctl_t *ctl;
snd_hwdep_info_t *info;
snd_hwdep_info_alloca(&info);
int iface = SND_HWDEP_IFACE_OPL3;
if (_type == Config::kOpl2)
iface = SND_HWDEP_IFACE_OPL2;
// Look for OPL hwdep interface
while (!snd_card_next(&card) && card >= 0) {
int dev = -1;
Common::String name = Common::String::format("hw:%d", card);
if (snd_ctl_open(&ctl, name.c_str(), 0) < 0)
continue;
while (!snd_ctl_hwdep_next_device(ctl, &dev) && dev >= 0) {
name = Common::String::format("hw:%d,%d", card, dev);
if (snd_hwdep_open(&_opl, name.c_str(), SND_HWDEP_OPEN_WRITE) < 0)
continue;
if (!snd_hwdep_info(_opl, info)) {
int found = snd_hwdep_info_get_iface(info);
// OPL3 can be used for (Dual) OPL2 mode
if (found == iface || found == SND_HWDEP_IFACE_OPL3) {
snd_ctl_close(ctl);
_iface = found;
reset();
return true;
}
}
// Wrong interface, try next device
snd_hwdep_close(_opl);
_opl = nullptr;
}
snd_ctl_close(ctl);
}
return false;
}
void OPL::reset() {
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_RESET, nullptr);
if (_iface == SND_HWDEP_IFACE_OPL3)
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_MODE, (void *)SNDRV_DM_FM_MODE_OPL3);
clear();
// Sync up with the hardware
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_PARAMS, (void *)&_params);
for (uint i = 0; i < (_iface == SND_HWDEP_IFACE_OPL3 ? kVoices : kOpl2Voices); ++i)
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_PLAY_NOTE, (void *)&_voice[i]);
for (uint i = 0; i < (_iface == SND_HWDEP_IFACE_OPL3 ? kOperators : kOpl2Operators); ++i)
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_VOICE, (void *)&_oper[i]);
}
void OPL::write(int port, int val) {
val &= 0xff;
int chip = (port & 2) >> 1;
if (port & 1) {
switch(_type) {
case Config::kOpl2:
writeOplReg(0, index[0], val);
break;
case Config::kDualOpl2:
if (port & 8) {
writeOplReg(0, index[0], val);
writeOplReg(1, index[1], val);
} else
writeOplReg(chip, index[chip], val);
break;
case Config::kOpl3:
writeOplReg(chip, index[chip], val);
}
} else {
switch(_type) {
case Config::kOpl2:
index[0] = val;
break;
case Config::kDualOpl2:
if (port & 8) {
index[0] = val;
index[1] = val;
} else
index[chip] = val;
break;
case Config::kOpl3:
index[chip] = val;
}
}
}
byte OPL::read(int port) {
return 0;
}
void OPL::writeReg(int r, int v) {
switch (_type) {
case Config::kOpl2:
writeOplReg(0, r, v);
break;
case Config::kDualOpl2:
writeOplReg(0, r, v);
writeOplReg(1, r, v);
break;
case Config::kOpl3:
writeOplReg(r >= 0x100, r & 0xff, v);
}
}
void OPL::writeOplReg(int c, int r, int v) {
if (r == 0x04 && c == 1 && _type == Config::kOpl3) {
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_CONNECTION, reinterpret_cast<void *>(v & 0x3f));
} else if (r == 0x08 && c == 0) {
_params.kbd_split = (v >> 6) & 0x1;
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_PARAMS, (void *)&_params);
} else if (r == 0xbd && c == 0) {
_params.hihat = v & 0x1;
_params.cymbal = (v >> 1) & 0x1;
_params.tomtom = (v >> 2) & 0x1;
_params.snare = (v >> 3) & 0x1;
_params.bass = (v >> 4) & 0x1;
_params.rhythm = (v >> 5) & 0x1;
_params.vib_depth = (v >> 6) & 0x1;
_params.am_depth = (v >> 7) & 0x1;
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_PARAMS, (void *)&_params);
} else if (r < 0xa0 || r >= 0xe0) {
// Operator
int idx = regOffsetToOper[r & 0x1f];
if (idx == -1)
return;
if (c == 1)
idx += kOpl2Operators;
switch (r & 0xf0) {
case 0x20:
case 0x30:
_oper[idx].harmonic = v & 0xf;
_oper[idx].kbd_scale = (v >> 4) & 0x1;
_oper[idx].do_sustain = (v >> 5) & 0x1;
_oper[idx].vibrato = (v >> 6) & 0x1;
_oper[idx].am = (v >> 7) & 0x1;
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_VOICE, (void *)&_oper[idx]);
break;
case 0x40:
case 0x50:
_oper[idx].volume = ~v & 0x3f;
_oper[idx].scale_level = (v >> 6) & 0x3;
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_VOICE, (void *)&_oper[idx]);
break;
case 0x60:
case 0x70:
_oper[idx].decay = v & 0xf;
_oper[idx].attack = (v >> 4) & 0xf;
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_VOICE, (void *)&_oper[idx]);
break;
case 0x80:
case 0x90:
_oper[idx].release = v & 0xf;
_oper[idx].sustain = (v >> 4) & 0xf;
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_VOICE, (void *)&_oper[idx]);
break;
case 0xe0:
case 0xf0:
_oper[idx].waveform = v & (_type == Config::kOpl3 ? 0x7 : 0x3);
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_VOICE, (void *)&_oper[idx]);
}
} else {
// Voice
int idx = r & 0xf;
if (idx >= kOpl2Voices)
return;
if (c == 1)
idx += kOpl2Voices;
int opIdx = voiceToOper0[idx];
switch (r & 0xf0) {
case 0xa0:
_voice[idx].fnum = (_voice[idx].fnum & 0x300) | (v & 0xff);
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_PLAY_NOTE, (void *)&_voice[idx]);
break;
case 0xb0:
_voice[idx].fnum = ((v << 8) & 0x300) | (_voice[idx].fnum & 0xff);
_voice[idx].octave = (v >> 2) & 0x7;
_voice[idx].key_on = (v >> 5) & 0x1;
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_PLAY_NOTE, (void *)&_voice[idx]);
break;
case 0xc0:
_oper[opIdx].connection = _oper[opIdx + 3].connection = v & 0x1;
_oper[opIdx].feedback = _oper[opIdx + 3].feedback = (v >> 1) & 0x7;
if (_type == Config::kOpl3) {
_oper[opIdx].left = _oper[opIdx + 3].left = (v >> 4) & 0x1;
_oper[opIdx].right = _oper[opIdx + 3].right = (v >> 5) & 0x1;
}
snd_hwdep_ioctl(_opl, SNDRV_DM_FM_IOCTL_SET_VOICE, (void *)&_oper[opIdx]);
}
}
}
OPL *create(Config::OplType type) {
return new OPL(type);
}
} // End of namespace ALSA
} // End of namespace OPL