scummvm/video/coktel_decoder.cpp

3023 lines
70 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "common/scummsys.h"
#include "common/rect.h"
#include "common/endian.h"
#include "common/stream.h"
#include "common/system.h"
#include "common/textconsole.h"
#include "common/types.h"
#include "common/util.h"
#include "video/coktel_decoder.h"
#include "image/codecs/indeo3.h"
#ifdef VIDEO_COKTELDECODER_H
#include "audio/audiostream.h"
#include "audio/decoders/raw.h"
#include "audio/decoders/adpcm_intern.h"
#include "common/memstream.h"
static const uint32 kVideoCodecIndeo3 = MKTAG('i','v','3','2');
namespace Video {
CoktelDecoder::State::State() : flags(0), speechId(0) {
}
CoktelDecoder::CoktelDecoder(Audio::Mixer *mixer, Audio::Mixer::SoundType soundType) :
_mixer(mixer), _soundType(soundType), _width(0), _height(0), _x(0), _y(0),
_defaultX(0), _defaultY(0), _features(0), _frameCount(0), _paletteDirty(false),
_isDouble(false), _ownSurface(true), _frameRate(12), _hasSound(false),
_soundEnabled(false), _soundStage(kSoundNone), _audioStream(0), _startTime(0),
_pauseStartTime(0), _isPaused(false) {
assert(_mixer);
memset(_palette, 0, 768);
}
CoktelDecoder::~CoktelDecoder() {
}
bool CoktelDecoder::evaluateSeekFrame(int32 &frame, int whence) const {
if (!isVideoLoaded())
// Nothing to do
return false;
// Find the frame to which to seek
if (whence == SEEK_CUR)
frame += _curFrame;
else if (whence == SEEK_END)
frame = _frameCount - frame - 1;
else if (whence == SEEK_SET)
frame--;
else
return false;
if ((frame < -1) || (frame >= ((int32) _frameCount)))
// Out of range
return false;
return true;
}
void CoktelDecoder::setSurfaceMemory(void *mem, uint16 width, uint16 height, uint8 bpp) {
freeSurface();
if (!hasVideo())
return;
// Sanity checks
assert((width > 0) && (height > 0));
assert(bpp == getPixelFormat().bytesPerPixel);
// Create a surface over this memory
// TODO: Check whether it is fine to assume we want the setup PixelFormat.
_surface.init(width, height, width * bpp, mem, getPixelFormat());
_ownSurface = false;
}
void CoktelDecoder::setSurfaceMemory() {
freeSurface();
createSurface();
_ownSurface = true;
}
const Graphics::Surface *CoktelDecoder::getSurface() const {
if (!isVideoLoaded())
return 0;
return &_surface;
}
bool CoktelDecoder::hasSurface() {
return _surface.getPixels();
}
void CoktelDecoder::createSurface() {
if (hasSurface())
return;
if (!hasVideo())
return;
if ((_width > 0) && (_height > 0))
_surface.create(_width, _height, getPixelFormat());
_ownSurface = true;
}
void CoktelDecoder::freeSurface() {
if (!_ownSurface) {
_surface.w = 0;
_surface.h = 0;
_surface.pitch = 0;
_surface.setPixels(0);
_surface.format = Graphics::PixelFormat();
} else
_surface.free();
_ownSurface = true;
}
void CoktelDecoder::setXY(uint16 x, uint16 y) {
_x = x;
_y = y;
}
void CoktelDecoder::setXY() {
setXY(_defaultX, _defaultY);
}
void CoktelDecoder::setDouble(bool isDouble) {
_isDouble = isDouble;
}
void CoktelDecoder::setFrameRate(Common::Rational frameRate) {
_frameRate = frameRate;
}
uint16 CoktelDecoder::getDefaultX() const {
return _defaultX;
}
uint16 CoktelDecoder::getDefaultY() const {
return _defaultY;
}
const Common::List<Common::Rect> &CoktelDecoder::getDirtyRects() const {
return _dirtyRects;
}
bool CoktelDecoder::hasPalette() const {
return (_features & kFeaturesPalette) != 0;
}
bool CoktelDecoder::hasVideo() const {
return true;
}
bool CoktelDecoder::hasSound() const {
return _hasSound;
}
bool CoktelDecoder::isSoundEnabled() const {
return _soundEnabled;
}
bool CoktelDecoder::isSoundPlaying() const {
return _audioStream && _mixer->isSoundHandleActive(_audioHandle);
}
void CoktelDecoder::enableSound() {
if (!hasSound() || isSoundEnabled())
return;
// Sanity check
if (_mixer->getOutputRate() == 0)
return;
// Only possible on the first frame
if (_curFrame > -1)
return;
_soundEnabled = true;
}
void CoktelDecoder::disableSound() {
if (_audioStream) {
if ((_soundStage == kSoundPlaying) || (_soundStage == kSoundFinished)) {
_audioStream->finish();
_mixer->stopHandle(_audioHandle);
}
delete _audioStream;
}
_soundEnabled = false;
_soundStage = kSoundNone;
_audioStream = 0;
}
void CoktelDecoder::finishSound() {
if (!_audioStream)
return;
_audioStream->finish();
_soundStage = kSoundFinished;
}
void CoktelDecoder::colorModeChanged() {
}
bool CoktelDecoder::getFrameCoords(int16 frame, int16 &x, int16 &y, int16 &width, int16 &height) {
return false;
}
bool CoktelDecoder::hasEmbeddedFiles() const {
return false;
}
bool CoktelDecoder::hasEmbeddedFile(const Common::String &fileName) const {
return false;
}
Common::SeekableReadStream *CoktelDecoder::getEmbeddedFile(const Common::String &fileName) const {
return 0;
}
int32 CoktelDecoder::getSubtitleIndex() const {
return -1;
}
bool CoktelDecoder::isPaletted() const {
return true;
}
int CoktelDecoder::getCurFrame() const {
return _curFrame;
}
void CoktelDecoder::close() {
disableSound();
freeSurface();
_x = 0;
_y = 0;
_defaultX = 0;
_defaultY = 0;
_features = 0;
_curFrame = -1;
_frameCount = 0;
_startTime = 0;
_hasSound = false;
_isPaused = false;
}
Audio::Mixer::SoundType CoktelDecoder::getSoundType() const {
return _soundType;
}
Audio::AudioStream *CoktelDecoder::getAudioStream() const {
return _audioStream;
}
uint16 CoktelDecoder::getWidth() const {
return _width;
}
uint16 CoktelDecoder::getHeight() const {
return _height;
}
uint32 CoktelDecoder::getFrameCount() const {
return _frameCount;
}
const byte *CoktelDecoder::getPalette() {
_paletteDirty = false;
return _palette;
}
bool CoktelDecoder::hasDirtyPalette() const {
return (_features & kFeaturesPalette) && _paletteDirty;
}
uint32 CoktelDecoder::deLZ77(byte *dest, const byte *src, uint32 srcSize, uint32 destSize) {
uint32 frameLength = READ_LE_UINT32(src);
if (frameLength > destSize) {
warning("CoktelDecoder::deLZ77(): Uncompressed size bigger than buffer size (%d > %d)", frameLength, destSize);
return 0;
}
assert(srcSize >= 4);
uint32 realSize = frameLength;
src += 4;
srcSize -= 4;
uint16 bufPos1;
bool mode;
if ((READ_LE_UINT16(src) == 0x1234) && (READ_LE_UINT16(src + 2) == 0x5678)) {
assert(srcSize >= 4);
src += 4;
srcSize -= 4;
bufPos1 = 273;
mode = 1; // 123Ch (cmp al, 12h)
} else {
bufPos1 = 4078;
mode = 0; // 275h (jnz +2)
}
byte buf[4370];
memset(buf, 32, bufPos1);
uint8 chunkCount = 1;
uint8 chunkBitField = 0;
while (frameLength > 0) {
chunkCount--;
if (chunkCount == 0) {
chunkCount = 8;
chunkBitField = *src++;
}
if (chunkBitField % 2) {
assert(srcSize >= 1);
chunkBitField >>= 1;
buf[bufPos1] = *src;
*dest++ = *src++;
bufPos1 = (bufPos1 + 1) % 4096;
frameLength--;
srcSize--;
continue;
}
chunkBitField >>= 1;
assert(srcSize >= 2);
uint16 tmp = READ_LE_UINT16(src);
uint16 chunkLength = ((tmp & 0xF00) >> 8) + 3;
src += 2;
srcSize -= 2;
if ((mode && ((chunkLength & 0xFF) == 0x12)) ||
(!mode && (chunkLength == 0))) {
assert(srcSize >= 1);
chunkLength = *src++ + 0x12;
srcSize--;
}
uint16 bufPos2 = (tmp & 0xFF) + ((tmp >> 4) & 0x0F00);
if (((tmp + chunkLength) >= 4096) ||
((chunkLength + bufPos1) >= 4096)) {
for (int i = 0; i < chunkLength; i++, dest++) {
*dest = buf[bufPos2];
buf[bufPos1] = buf[bufPos2];
bufPos1 = (bufPos1 + 1) % 4096;
bufPos2 = (bufPos2 + 1) % 4096;
}
} else if (((tmp + chunkLength) < bufPos1) ||
((chunkLength + bufPos1) < bufPos2)) {
memcpy(dest, buf + bufPos2, chunkLength);
memmove(buf + bufPos1, buf + bufPos2, chunkLength);
dest += chunkLength;
bufPos1 += chunkLength;
bufPos2 += chunkLength;
} else {
for (int i = 0; i < chunkLength; i++, dest++, bufPos1++, bufPos2++) {
*dest = buf[bufPos2];
buf[bufPos1] = buf[bufPos2];
}
}
frameLength -= chunkLength;
}
return realSize;
}
void CoktelDecoder::deRLE(byte *&destPtr, const byte *&srcPtr, int16 destLen, int16 srcLen) {
srcPtr++;
if (srcLen & 1) {
byte data = *srcPtr++;
if (destLen > 0) {
*destPtr++ = data;
destLen--;
}
}
srcLen >>= 1;
while (srcLen > 0) {
uint8 tmp = *srcPtr++;
if (tmp & 0x80) { // Verbatim copy
tmp &= 0x7F;
int16 copyCount = MAX<int16>(0, MIN<int16>(destLen, tmp * 2));
memcpy(destPtr, srcPtr, copyCount);
srcPtr += tmp * 2;
destPtr += copyCount;
destLen -= copyCount;
} else { // 2 bytes tmp times
for (int i = 0; (i < tmp) && (destLen > 0); i++) {
for (int j = 0; j < 2; j++) {
if (destLen <= 0)
break;
*destPtr++ = srcPtr[j];
destLen--;
}
}
srcPtr += 2;
}
srcLen -= tmp;
}
}
// A whole, completely filled block
void CoktelDecoder::renderBlockWhole(Graphics::Surface &dstSurf, const byte *src, Common::Rect &rect) {
Common::Rect srcRect = rect;
rect.clip(dstSurf.w, dstSurf.h);
byte *dst = (byte *)dstSurf.getBasePtr(rect.left, rect.top);
for (int i = 0; i < rect.height(); i++) {
memcpy(dst, src, rect.width() * dstSurf.format.bytesPerPixel);
src += srcRect.width() * dstSurf.format.bytesPerPixel;
dst += dstSurf.pitch;
}
}
void CoktelDecoder::renderBlockWholeDouble(Graphics::Surface &dstSurf, const byte *src, Common::Rect &rect) {
Common::Rect srcRect = rect;
rect.clip(dstSurf.w / 2, dstSurf.h / 2);
byte *dst = (byte *)dstSurf.getBasePtr(2 * rect.left, 2 * rect.top);
byte bpp = dstSurf.format.bytesPerPixel;
for (int i = 0; i < rect.height(); i++) {
// Each pixel on the source row is written twice to the destination row
for (int j = 0; j < rect.width(); j++) {
memcpy(dst + 2 * j * bpp, src + j * bpp, bpp);
memcpy(dst + (2 * j + 1) * bpp, src + j * bpp, bpp);
}
dst += dstSurf.pitch;
// Then, the whole row is written again to the destination
memcpy(dst, dst - dstSurf.pitch, 2 * rect.width() * bpp);
dst += dstSurf.pitch;
src += srcRect.width() * bpp;
}
}
// A quarter-wide whole, completely filled block
void CoktelDecoder::renderBlockWhole4X(Graphics::Surface &dstSurf, const byte *src, Common::Rect &rect) {
Common::Rect srcRect = rect;
rect.clip(dstSurf.w, dstSurf.h);
byte *dst = (byte *)dstSurf.getBasePtr(rect.left, rect.top);
for (int i = 0; i < rect.height(); i++) {
byte *dstRow = dst;
const byte *srcRow = src;
int16 count = rect.width();
while (count >= 0) {
memset(dstRow, *srcRow, MIN<int16>(count, 4));
count -= 4;
dstRow += 4;
srcRow += 1;
}
src += srcRect.width() / 4;
dst += dstSurf.pitch;
}
}
// A half-high whole, completely filled block
void CoktelDecoder::renderBlockWhole2Y(Graphics::Surface &dstSurf, const byte *src, Common::Rect &rect) {
Common::Rect srcRect = rect;
rect.clip(dstSurf.w, dstSurf.h);
int16 height = rect.height();
byte *dst = (byte *)dstSurf.getBasePtr(rect.left, rect.top);
while (height > 1) {
memcpy(dst , src, rect.width());
memcpy(dst + dstSurf.pitch, src, rect.width());
height -= 2;
src += srcRect.width();
dst += 2 * dstSurf.pitch;
}
if (height == 1)
memcpy(dst, src, rect.width());
}
// A sparse block
void CoktelDecoder::renderBlockSparse(Graphics::Surface &dstSurf, const byte *src, Common::Rect &rect) {
Common::Rect srcRect = rect;
rect.clip(dstSurf.w, dstSurf.h);
byte *dst = (byte *)dstSurf.getBasePtr(rect.left, rect.top);
for (int i = 0; i < rect.height(); i++) {
byte *dstRow = dst;
int16 pixWritten = 0;
while (pixWritten < srcRect.width()) {
int16 pixCount = *src++;
if (pixCount & 0x80) { // Data
int16 copyCount;
pixCount = MIN<int16>((pixCount & 0x7F) + 1, srcRect.width() - pixWritten);
copyCount = CLIP<int16>(rect.width() - pixWritten, 0, pixCount);
memcpy(dstRow, src, copyCount);
pixWritten += pixCount;
dstRow += pixCount;
src += pixCount;
} else { // "Hole"
pixWritten += pixCount + 1;
dstRow += pixCount + 1;
}
}
dst += dstSurf.pitch;
}
}
void CoktelDecoder::renderBlockSparseDouble(Graphics::Surface &dstSurf, const byte *src, Common::Rect &rect) {
Common::Rect srcRect = rect;
rect.clip(dstSurf.w / 2, dstSurf.h / 2);
byte *dst = (byte *)dstSurf.getBasePtr(2 * rect.left, 2 * rect.top);
for (int i = 0; i < rect.height(); i++) {
byte *dstRow = dst;
int16 pixWritten = 0;
// Each pixel on the source row is written twice to the destination row
while (pixWritten < srcRect.width()) {
int16 pixCount = *src++;
if (pixCount & 0x80) { // Data
int16 copyCount;
pixCount = MIN<int16>((pixCount & 0x7F) + 1, srcRect.width() - pixWritten);
copyCount = CLIP<int16>(rect.width() - pixWritten, 0, pixCount);
for (int j = 0; j < copyCount; j++) {
dstRow[2 * j] = src[j];
dstRow[2 * j + 1] = src[j];
}
pixWritten += pixCount;
dstRow += 2 * pixCount;
src += pixCount;
} else { // "Hole"
pixWritten += pixCount + 1;
dstRow += 2 * (pixCount + 1); // The hole size is doubled in the destination
}
}
dst += dstSurf.pitch;
// Then, the whole row is written again to the destination
memcpy(dst, dst - dstSurf.pitch, 2 * rect.width());
dst += dstSurf.pitch;
}
}
// A half-high sparse block
void CoktelDecoder::renderBlockSparse2Y(Graphics::Surface &dstSurf, const byte *src, Common::Rect &rect) {
warning("renderBlockSparse2Y");
Common::Rect srcRect = rect;
rect.clip(dstSurf.w, dstSurf.h);
byte *dst = (byte *)dstSurf.getBasePtr(rect.left, rect.top);
for (int i = 0; i < rect.height(); i += 2) {
byte *dstRow = dst;
int16 pixWritten = 0;
while (pixWritten < srcRect.width()) {
int16 pixCount = *src++;
if (pixCount & 0x80) { // Data
pixCount = MIN<int16>((pixCount & 0x7F) + 1, srcRect.width() - pixWritten);
memcpy(dstRow , src, pixCount);
memcpy(dstRow + dstSurf.pitch, src, pixCount);
pixWritten += pixCount;
dstRow += pixCount;
src += pixCount;
} else { // "Hole"
pixWritten += pixCount + 1;
dstRow += pixCount + 1;
}
}
dst += dstSurf.pitch;
}
}
void CoktelDecoder::renderBlockRLE(Graphics::Surface &dstSurf, const byte *src, Common::Rect &rect) {
Common::Rect srcRect = rect;
rect.clip(dstSurf.w, dstSurf.h);
byte *dst = (byte *)dstSurf.getBasePtr(rect.left, rect.top);
for (int i = 0; i < rect.height(); i++) {
byte *dstRow = dst;
int16 pixWritten = 0;
while (pixWritten < srcRect.width()) {
int16 pixCount = *src++;
if (pixCount & 0x80) {
int16 copyCount;
pixCount = MIN<int16>((pixCount & 0x7F) + 1, srcRect.width() - pixWritten);
copyCount = CLIP<int16>(rect.width() - pixWritten, 0, pixCount);
if (*src != 0xFF) { // Normal copy
memcpy(dstRow, src, copyCount);
dstRow += copyCount;
src += pixCount;
} else
deRLE(dstRow, src, copyCount, pixCount);
pixWritten += pixCount;
} else { // "Hole"
int16 copyCount = CLIP<int16>(rect.width() - pixWritten, 0, pixCount + 1);
dstRow += copyCount;
pixWritten += pixCount + 1;
}
}
dst += dstSurf.pitch;
}
}
Common::Rational CoktelDecoder::getFrameRate() const {
return _frameRate;
}
uint32 CoktelDecoder::getTimeToNextFrame() const {
if (endOfVideo() || _curFrame < 0)
return 0;
uint32 elapsedTime = g_system->getMillis() - _startTime;
uint32 nextFrameStartTime = (Common::Rational((_curFrame + 1) * 1000) / getFrameRate()).toInt();
if (nextFrameStartTime <= elapsedTime)
return 0;
return nextFrameStartTime - elapsedTime;
}
int32 CoktelDecoder::getExpectedFrameFromCurrentTime() const {
if (endOfVideo() || _curFrame < 0)
return -1;
int32 elapsedTime = g_system->getMillis() - _startTime;
if (elapsedTime < 0)
return -1;
return (Common::Rational(elapsedTime * getFrameRate()) / 1000).toInt();
}
uint32 CoktelDecoder::getStaticTimeToNextFrame() const {
return (1000 / _frameRate).toInt();
}
void CoktelDecoder::pauseVideo(bool pause) {
if (_isPaused != pause) {
if (_isPaused) {
// Add the time we were paused to the initial starting time
_startTime += g_system->getMillis() - _pauseStartTime;
} else {
// Store the time we paused for use later
_pauseStartTime = g_system->getMillis();
}
_isPaused = pause;
}
}
inline void CoktelDecoder::unsignedToSigned(byte *buffer, int length) {
while (length-- > 0) *buffer++ ^= 0x80;
}
bool CoktelDecoder::endOfVideo() const {
return !isVideoLoaded() || (getCurFrame() >= (int32)getFrameCount() - 1);
}
PreIMDDecoder::PreIMDDecoder(uint16 width, uint16 height,
Audio::Mixer *mixer, Audio::Mixer::SoundType soundType) : CoktelDecoder(mixer, soundType),
_stream(0), _videoBuffer(0), _videoBufferSize(0) {
_width = width;
_height = height;
}
PreIMDDecoder::~PreIMDDecoder() {
close();
}
bool PreIMDDecoder::reloadStream(Common::SeekableReadStream *stream) {
if (!_stream)
return false;
if (!stream->seek(_stream->pos())) {
close();
return false;
}
delete _stream;
_stream = stream;
return true;
}
bool PreIMDDecoder::seek(int32 frame, int whence, bool restart) {
if (!evaluateSeekFrame(frame, whence))
return false;
if (frame == _curFrame)
// Nothing to do
return true;
// Run through the frames
_curFrame = -1;
_stream->seek(2);
while (_curFrame != frame) {
uint16 frameSize = _stream->readUint16LE();
_stream->skip(frameSize + 2);
_curFrame++;
}
return true;
}
bool PreIMDDecoder::loadStream(Common::SeekableReadStream *stream) {
// Since PreIMDs don't have any width and height values stored,
// we need them to be specified in the constructor
assert((_width > 0) && (_height > 0));
close();
_stream = stream;
_stream->seek(0);
_frameCount = _stream->readUint16LE();
_videoBufferSize = _width * _height;
_videoBuffer = new byte[_videoBufferSize]();
return true;
}
void PreIMDDecoder::close() {
CoktelDecoder::close();
delete _stream;
delete[] _videoBuffer;
_stream = 0;
_videoBuffer = 0;
_videoBufferSize = 0;
}
bool PreIMDDecoder::isVideoLoaded() const {
return _stream != 0;
}
const Graphics::Surface *PreIMDDecoder::decodeNextFrame() {
if (!isVideoLoaded() || endOfVideo())
return 0;
createSurface();
processFrame();
renderFrame();
if (_curFrame == 0)
_startTime = g_system->getMillis();
return &_surface;
}
void PreIMDDecoder::processFrame() {
_curFrame++;
uint16 frameSize = _stream->readUint16LE();
if (_stream->eos() || (frameSize == 0))
return;
uint32 nextFramePos = _stream->pos() + frameSize + 2;
byte cmd;
cmd = _stream->readByte();
frameSize--;
if (cmd == 0) {
// Palette. Ignored by Fascination, though.
// NOTE: If we ever find another game using this format,
// palettes may need to be evaluated.
_stream->skip(768);
frameSize -= 769;
cmd = _stream->readByte();
}
if (cmd != 2) {
// Partial frame data
uint32 fSize = frameSize;
uint32 vidSize = _videoBufferSize;
byte *vidBuffer = _videoBuffer;
while ((fSize > 0) && (vidSize > 0)) {
uint32 n = _stream->readByte();
fSize--;
if ((n & 0x80) != 0) {
// Data
n = MIN<uint32>((n & 0x7F) + 1, MIN(fSize, vidSize));
_stream->read(vidBuffer, n);
vidBuffer += n;
vidSize -= n;
fSize -= n;
} else {
// Skip
n = MIN<uint32>(n + 1, vidSize);
vidBuffer += n;
vidSize -= n;
}
}
} else {
// Full direct frame
uint32 vidSize = MIN<uint32>(_videoBufferSize, frameSize);
_stream->read(_videoBuffer, vidSize);
}
_stream->seek(nextFramePos);
}
// Just a simple blit
void PreIMDDecoder::renderFrame() {
_dirtyRects.clear();
uint16 w = CLIP<int32>(_surface.w - _x, 0, _width);
uint16 h = CLIP<int32>(_surface.h - _y, 0, _height);
const byte *src = _videoBuffer;
byte *dst = (byte *)_surface.getBasePtr(_x, _y);
uint32 frameDataSize = _videoBufferSize;
while (h-- > 0) {
uint32 n = MIN<uint32>(w, frameDataSize);
memcpy(dst, src, n);
src += _width;
dst += _surface.pitch;
frameDataSize -= n;
}
_dirtyRects.push_back(Common::Rect(_x, _y, _x + _width, _y + _height));
}
uint32 PreIMDDecoder::getFlags() const {
return 0;
}
Graphics::PixelFormat PreIMDDecoder::getPixelFormat() const {
return Graphics::PixelFormat::createFormatCLUT8();
}
IMDDecoder::IMDDecoder(Audio::Mixer *mixer, Audio::Mixer::SoundType soundType) : CoktelDecoder(mixer, soundType),
_stream(0), _version(0), _stdX(-1), _stdY(-1), _stdWidth(-1), _stdHeight(-1),
_flags(0), _firstFramePos(0), _framePos(0), _frameCoords(0), _videoBufferSize(0),
_soundFlags(0), _soundFreq(0), _soundSliceSize(0), _soundSlicesCount(0) {
_videoBuffer [0] = 0;
_videoBuffer [1] = 0;
_videoBufferLen[0] = 0;
_videoBufferLen[1] = 0;
}
IMDDecoder::~IMDDecoder() {
close();
}
bool IMDDecoder::reloadStream(Common::SeekableReadStream *stream) {
if (!_stream)
return false;
if (!stream->seek(_stream->pos())) {
close();
return false;
}
delete _stream;
_stream = stream;
return true;
}
bool IMDDecoder::seek(int32 frame, int whence, bool restart) {
if (!evaluateSeekFrame(frame, whence))
return false;
if (frame == _curFrame)
// Nothing to do
return true;
// Try every possible way to find a file offset to that frame
uint32 framePos = 0;
if (frame == -1) {
// First frame, we know that position
framePos = _firstFramePos;
} else if (frame == 0) {
// Second frame, can be calculated from the first frame's position
framePos = _firstFramePos;
_stream->seek(framePos);
framePos += _stream->readUint16LE() + 4;
} else if (_framePos) {
// If we have an array of frame positions, use that
framePos = _framePos[frame + 1];
} else if (restart && (_soundStage == kSoundNone)) {
// If we are asked to restart the video if necessary and have no
// audio to worry about, restart the video and run through the frames
_curFrame = 0;
_stream->seek(_firstFramePos);
for (int i = ((frame > _curFrame) ? _curFrame : 0); i <= frame; i++)
processFrame();
return true;
} else {
// Not possible
warning("IMDDecoder::seek(): Frame %d is not directly accessible", frame + 1);
return false;
}
// Seek
_stream->seek(framePos);
_curFrame = frame;
return true;
}
void IMDDecoder::setXY(uint16 x, uint16 y) {
// Adjusting the standard coordinates
if (_stdX != -1) {
if (x != 0xFFFF)
_stdX = _stdX - _x + x;
if (y != 0xFFFF)
_stdY = _stdY - _y + y;
}
// Going through the coordinate table as well
if (_frameCoords) {
for (uint32 i = 0; i < _frameCount; i++) {
if (_frameCoords[i].left != -1) {
if (x != 0xFFFF) {
_frameCoords[i].left = _frameCoords[i].left - _x + x;
_frameCoords[i].right = _frameCoords[i].right - _x + x;
}
if (y != 0xFFFF) {
_frameCoords[i].top = _frameCoords[i].top - _y + y;
_frameCoords[i].bottom = _frameCoords[i].bottom - _y + y;
}
}
}
}
if (x != 0xFFFF)
_x = x;
if (y != 0xFFFF)
_y = y;
}
bool IMDDecoder::loadStream(Common::SeekableReadStream *stream) {
close();
_stream = stream;
uint16 handle;
handle = _stream->readUint16LE();
_version = _stream->readByte();
// Version checking
if ((handle != 0) || (_version < 2)) {
warning("IMDDecoder::loadStream(): Version incorrect (%d, 0x%X)", handle, _version);
close();
return false;
}
// Rest header
_features = _stream->readByte();
_frameCount = _stream->readUint16LE();
_defaultX = _stream->readSint16LE();
_defaultY = _stream->readSint16LE();
_width = _stream->readSint16LE();
_height = _stream->readSint16LE();
_flags = _stream->readUint16LE();
_firstFramePos = _stream->readUint16LE();
_x = _defaultX;
_y = _defaultY;
// IMDs always have video
_features |= kFeaturesVideo;
// IMDs always have palettes
_features |= kFeaturesPalette;
// Palette
for (int i = 0; i < 768; i++)
_palette[i] = _stream->readByte() << 2;
_paletteDirty = true;
if (!loadCoordinates()) {
close();
return false;
}
uint32 framePosPos, frameCoordsPos;
if (!loadFrameTableOffsets(framePosPos, frameCoordsPos)) {
close();
return false;
}
if (!assessAudioProperties()) {
close();
return false;
}
if (!assessVideoProperties()) {
close();
return false;
}
if (!loadFrameTables(framePosPos, frameCoordsPos)) {
close();
return false;
}
// Seek to the first frame
_stream->seek(_firstFramePos);
return true;
}
bool IMDDecoder::loadCoordinates() {
// Standard coordinates
if (_version >= 3) {
uint16 count = _stream->readUint16LE();
if (count > 1) {
warning("IMDDecoder::loadCoordinates(): More than one standard coordinate quad found (%d)", count);
return false;
}
if (count != 0) {
_stdX = _stream->readSint16LE();
_stdY = _stream->readSint16LE();
_stdWidth = _stream->readSint16LE();
_stdHeight = _stream->readSint16LE();
_features |= kFeaturesStdCoords;
} else
_stdX = _stdY = _stdWidth = _stdHeight = -1;
} else
_stdX = _stdY = _stdWidth = _stdHeight = -1;
return true;
}
bool IMDDecoder::loadFrameTableOffsets(uint32 &framePosPos, uint32 &frameCoordsPos) {
framePosPos = 0;
frameCoordsPos = 0;
// Frame positions
if (_version >= 4) {
framePosPos = _stream->readUint32LE();
if (framePosPos != 0) {
_framePos = new uint32[_frameCount];
_features |= kFeaturesFramePos;
}
}
// Frame coordinates
if (_features & kFeaturesFrameCoords)
frameCoordsPos = _stream->readUint32LE();
return true;
}
bool IMDDecoder::assessVideoProperties() {
uint32 suggestedVideoBufferSize = 0;
// Sizes of the frame data and extra video buffer
if (_features & kFeaturesDataSize) {
uint32 size1, size2;
size1 = _stream->readUint16LE();
if (size1 == 0) {
size1 = _stream->readUint32LE();
size2 = _stream->readUint32LE();
} else
size2 = _stream->readUint16LE();
suggestedVideoBufferSize = MAX(size1, size2);
}
_videoBufferSize = _width * _height + 1000;
if (suggestedVideoBufferSize > _videoBufferSize) {
warning("Suggested video buffer size greater than what should be needed (%d, %d, %dx%d",
suggestedVideoBufferSize, _videoBufferSize, _width, _height);
_videoBufferSize = suggestedVideoBufferSize;
}
for (int i = 0; i < 2; i++) {
_videoBuffer[i] = new byte[_videoBufferSize]();
}
return true;
}
bool IMDDecoder::assessAudioProperties() {
if (_features & kFeaturesSound) {
_soundFreq = _stream->readSint16LE();
_soundSliceSize = _stream->readSint16LE();
_soundSlicesCount = _stream->readSint16LE();
if (_soundFreq < 0)
_soundFreq = -_soundFreq;
if (_soundSlicesCount < 0)
_soundSlicesCount = -_soundSlicesCount - 1;
if (_soundSlicesCount > 40) {
warning("IMDDecoder::assessAudioProperties(): More than 40 sound slices found (%d)", _soundSlicesCount);
return false;
}
_frameRate = Common::Rational(_soundFreq, _soundSliceSize);
_hasSound = true;
_soundEnabled = true;
_soundStage = kSoundLoaded;
_audioStream = Audio::makeQueuingAudioStream(_soundFreq, false);
}
return true;
}
bool IMDDecoder::loadFrameTables(uint32 framePosPos, uint32 frameCoordsPos) {
// Positions table
if (_framePos) {
_stream->seek(framePosPos);
for (uint32 i = 0; i < _frameCount; i++)
_framePos[i] = _stream->readUint32LE();
}
// Coordinates table
if (_features & kFeaturesFrameCoords) {
_stream->seek(frameCoordsPos);
_frameCoords = new Coord[_frameCount];
assert(_frameCoords);
for (uint32 i = 0; i < _frameCount; i++) {
_frameCoords[i].left = _stream->readSint16LE();
_frameCoords[i].top = _stream->readSint16LE();
_frameCoords[i].right = _stream->readSint16LE();
_frameCoords[i].bottom = _stream->readSint16LE();
}
}
return true;
}
void IMDDecoder::close() {
CoktelDecoder::close();
delete _stream;
delete[] _framePos;
delete[] _frameCoords;
delete[] _videoBuffer[0];
delete[] _videoBuffer[1];
_stream = 0;
_version = 0;
_stdX = -1;
_stdY = -1;
_stdWidth = -1;
_stdHeight = -1;
_flags = 0;
_firstFramePos = 0;
_framePos = 0;
_frameCoords = 0;
_videoBufferSize = 0;
_videoBuffer [0] = 0;
_videoBuffer [1] = 0;
_videoBufferLen[0] = 0;
_videoBufferLen[1] = 0;
_soundFlags = 0;
_soundFreq = 0;
_soundSliceSize = 0;
_soundSlicesCount = 0;
_hasSound = false;
_soundEnabled = false;
_soundStage = kSoundNone;
}
bool IMDDecoder::isVideoLoaded() const {
return _stream != 0;
}
const Graphics::Surface *IMDDecoder::decodeNextFrame() {
if (!isVideoLoaded() || endOfVideo())
return 0;
createSurface();
processFrame();
if (_curFrame == 0)
_startTime = g_system->getMillis();
return &_surface;
}
void IMDDecoder::processFrame() {
_curFrame++;
_dirtyRects.clear();
uint32 cmd = 0;
bool hasNextCmd = false;
bool startSound = false;
do {
cmd = _stream->readUint16LE();
if ((cmd & kCommandBreakMask) == kCommandBreak) {
// Flow control
if (cmd == kCommandBreak) {
_stream->skip(2);
cmd = _stream->readUint16LE();
}
// Break
if (cmd == kCommandBreakSkip0) {
continue;
} else if (cmd == kCommandBreakSkip16) {
cmd = _stream->readUint16LE();
_stream->skip(cmd);
continue;
} else if (cmd == kCommandBreakSkip32) {
cmd = _stream->readUint32LE();
_stream->skip(cmd);
continue;
}
}
// Audio
if (cmd == kCommandNextSound) {
nextSoundSlice(hasNextCmd);
cmd = _stream->readUint16LE();
} else if (cmd == kCommandStartSound) {
startSound = initialSoundSlice(hasNextCmd);
cmd = _stream->readUint16LE();
} else
emptySoundSlice(hasNextCmd);
// Set palette
if (cmd == kCommandPalette) {
_stream->skip(2);
_paletteDirty = true;
for (int i = 0; i < 768; i++)
_palette[i] = _stream->readByte() << 2;
cmd = _stream->readUint16LE();
}
hasNextCmd = false;
if (cmd == kCommandJump) {
// Jump to frame
int16 frame = _stream->readSint16LE();
if (_framePos) {
_curFrame = frame - 1;
_stream->seek(_framePos[frame]);
hasNextCmd = true;
}
} else if (cmd == kCommandVideoData) {
_videoBufferLen[0] = _stream->readUint32LE() + 2;
_stream->read(_videoBuffer[0], _videoBufferLen[0]);
Common::Rect rect = calcFrameCoords(_curFrame);
if (renderFrame(rect))
_dirtyRects.push_back(rect);
} else if (cmd != 0) {
_videoBufferLen[0] = cmd + 2;
_stream->read(_videoBuffer[0], _videoBufferLen[0]);
Common::Rect rect = calcFrameCoords(_curFrame);
if (renderFrame(rect))
_dirtyRects.push_back(rect);
}
} while (hasNextCmd);
// Start the audio stream if necessary
if (startSound && _soundEnabled) {
_mixer->playStream(_soundType, &_audioHandle, _audioStream,
-1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO);
_soundStage = kSoundPlaying;
}
// End the audio stream if necessary
if ((_curFrame >= (int32)(_frameCount - 1)) && (_soundStage == kSoundPlaying)) {
_audioStream->finish();
_soundStage = kSoundFinished;
}
}
Common::Rect IMDDecoder::calcFrameCoords(uint32 frame) {
Common::Rect rect;
if (frame == 0) {
// First frame is always a full "keyframe"
rect.left = _x;
rect.top = _y;
rect.right = _x + _width;
rect.bottom = _y + _height;
} else if (_frameCoords && ((_frameCoords[frame].left != -1))) {
// We have frame coordinates for that frame
rect.left = _frameCoords[frame].left;
rect.top = _frameCoords[frame].top;
rect.right = _frameCoords[frame].right + 1;
rect.bottom = _frameCoords[frame].bottom + 1;
} else if (_stdX != -1) {
// We have standard coordinates
rect.left = _stdX;
rect.top = _stdY;
rect.right = _stdX + _stdWidth;
rect.bottom = _stdY + _stdHeight;
} else {
// Otherwise, it must be a full "keyframe"
rect.left = _x;
rect.top = _y;
rect.right = _x + _width;
rect.bottom = _y + _height;
}
return rect;
}
bool IMDDecoder::renderFrame(Common::Rect &rect) {
if (!rect.isValidRect())
// Invalid rendering area
return false;
// Clip the rendering area to the video's visible area
rect.clip(Common::Rect(_x, _y, _x + _width, _y + _height));
if (!rect.isValidRect() || rect.isEmpty())
// Result is empty => nothing to do
return false;
byte *dataPtr = _videoBuffer[0];
uint32 dataSize = _videoBufferLen[0] - 1;
uint8 type = *dataPtr++;
if (type & 0x10) {
// Palette data
// One byte index
int index = *dataPtr++;
int count = MIN((255 - index) * 3, 48);
for (int i = 0; i < count; i++)
_palette[index * 3 + i] = dataPtr[i] << 2;
dataPtr += 48;
dataSize -= 49;
type ^= 0x10;
_paletteDirty = true;
}
if (type & 0x80) {
// Frame data is compressed
type &= 0x7F;
if ((type == 2) && (rect.width() == _surface.w) && (_x == 0)) {
// Directly uncompress onto the video surface
const int offsetX = rect.left * _surface.format.bytesPerPixel;
const int offsetY = (_y + rect.top) * _surface.pitch;
const int offset = offsetX + offsetY;
if (deLZ77((byte *)_surface.getPixels() + offset, dataPtr, dataSize,
_surface.w * _surface.h * _surface.format.bytesPerPixel - offset))
return true;
}
_videoBufferLen[1] = deLZ77(_videoBuffer[1], dataPtr, dataSize, _videoBufferSize);
dataPtr = _videoBuffer[1];
dataSize = _videoBufferLen[1];
}
// Evaluate the block type
if (type == 0x01) {
if (_isDouble)
renderBlockSparseDouble(_surface, dataPtr, rect);
else
renderBlockSparse(_surface, dataPtr, rect);
} else if (type == 0x02) {
if (_isDouble)
renderBlockWholeDouble(_surface, dataPtr, rect);
else
renderBlockWhole(_surface, dataPtr, rect);
} else if (type == 0x42)
renderBlockWhole4X (_surface, dataPtr, rect);
else if ((type & 0x0F) == 0x02)
renderBlockWhole2Y (_surface, dataPtr, rect);
else
renderBlockSparse2Y(_surface, dataPtr, rect);
return true;
}
void IMDDecoder::nextSoundSlice(bool hasNextCmd) {
if (hasNextCmd || !_soundEnabled || !_audioStream) {
// Skip sound
_stream->skip(_soundSliceSize);
return;
}
// Read, convert, queue
byte *soundBuf = (byte *)malloc(_soundSliceSize);
_stream->read(soundBuf, _soundSliceSize);
unsignedToSigned(soundBuf, _soundSliceSize);
_audioStream->queueBuffer(soundBuf, _soundSliceSize, DisposeAfterUse::YES, 0);
}
bool IMDDecoder::initialSoundSlice(bool hasNextCmd) {
int dataLength = _soundSliceSize * _soundSlicesCount;
if (hasNextCmd || !_soundEnabled) {
// Skip sound
_stream->skip(dataLength);
return false;
}
if (!_audioStream || (_soundStage == kSoundFinished)) {
delete _audioStream;
_audioStream = Audio::makeQueuingAudioStream(_soundFreq, false);
_soundStage = kSoundLoaded;
}
// Read, convert, queue
byte *soundBuf = (byte *)malloc(dataLength);
_stream->read(soundBuf, dataLength);
unsignedToSigned(soundBuf, dataLength);
_audioStream->queueBuffer(soundBuf, dataLength, DisposeAfterUse::YES, 0);
return _soundStage == kSoundLoaded;
}
void IMDDecoder::emptySoundSlice(bool hasNextCmd) {
if (hasNextCmd || !_soundEnabled || !_audioStream)
return;
// Create an empty sound buffer and queue it
byte *soundBuf = (byte *)malloc(_soundSliceSize);
memset(soundBuf, 0, _soundSliceSize);
_audioStream->queueBuffer(soundBuf, _soundSliceSize, DisposeAfterUse::YES, 0);
}
uint32 IMDDecoder::getFlags() const {
return _flags;
}
Graphics::PixelFormat IMDDecoder::getPixelFormat() const {
return Graphics::PixelFormat::createFormatCLUT8();
}
class DPCMStream : public Audio::AudioStream {
public:
DPCMStream(Common::SeekableReadStream *stream, int rate, int channels, bool oldStereo) {
_stream = stream;
_rate = rate;
_channels = channels;
_oldStereo = oldStereo;
if (oldStereo) {
_buffer[0] = _buffer[1] = 0;
}
}
~DPCMStream() {
delete _stream;
}
int readBuffer(int16 *buffer, const int numSamples);
bool isStereo() const { return _channels == 2; }
int getRate() const { return _rate; }
bool endOfData() const { return _stream->pos() >= _stream->size() || _stream->eos() || _stream->err(); }
private:
Common::SeekableReadStream *_stream;
int _channels;
int _rate;
int _buffer[2];
bool _oldStereo;
};
int DPCMStream::readBuffer(int16 *buffer, const int numSamples) {
static const uint16 tableDPCM[128] = {
0x0000, 0x0008, 0x0010, 0x0020, 0x0030, 0x0040, 0x0050, 0x0060, 0x0070, 0x0080,
0x0090, 0x00A0, 0x00B0, 0x00C0, 0x00D0, 0x00E0, 0x00F0, 0x0100, 0x0110, 0x0120,
0x0130, 0x0140, 0x0150, 0x0160, 0x0170, 0x0180, 0x0190, 0x01A0, 0x01B0, 0x01C0,
0x01D0, 0x01E0, 0x01F0, 0x0200, 0x0208, 0x0210, 0x0218, 0x0220, 0x0228, 0x0230,
0x0238, 0x0240, 0x0248, 0x0250, 0x0258, 0x0260, 0x0268, 0x0270, 0x0278, 0x0280,
0x0288, 0x0290, 0x0298, 0x02A0, 0x02A8, 0x02B0, 0x02B8, 0x02C0, 0x02C8, 0x02D0,
0x02D8, 0x02E0, 0x02E8, 0x02F0, 0x02F8, 0x0300, 0x0308, 0x0310, 0x0318, 0x0320,
0x0328, 0x0330, 0x0338, 0x0340, 0x0348, 0x0350, 0x0358, 0x0360, 0x0368, 0x0370,
0x0378, 0x0380, 0x0388, 0x0390, 0x0398, 0x03A0, 0x03A8, 0x03B0, 0x03B8, 0x03C0,
0x03C8, 0x03D0, 0x03D8, 0x03E0, 0x03E8, 0x03F0, 0x03F8, 0x0400, 0x0440, 0x0480,
0x04C0, 0x0500, 0x0540, 0x0580, 0x05C0, 0x0600, 0x0640, 0x0680, 0x06C0, 0x0700,
0x0740, 0x0780, 0x07C0, 0x0800, 0x0900, 0x0A00, 0x0B00, 0x0C00, 0x0D00, 0x0E00,
0x0F00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x3000, 0x4000
};
assert((numSamples % _channels) == 0);
int samples = 0;
// Our starting position
if (!_oldStereo && _stream->pos() == 0) {
for (int i = 0; i < _channels; i++)
*buffer++ = _buffer[i] = _stream->readSint16LE();
samples += _channels;
}
while (!endOfData() && samples < numSamples) {
if (_channels == 2 && _stream->size() == 1) {
warning("Buffer underrun in DPCMStream");
break;
}
for (int i = 0; i < _channels; i++) {
byte data = _stream->readByte();
if (data & 0x80)
_buffer[i] -= tableDPCM[data & 0x7f];
else
_buffer[i] += tableDPCM[data];
// Emulating x86 16-bit signed register overflow
if (_buffer[i] > 32767) {
_buffer[i] -= 65536;
} else if (_buffer[i] < -32768) {
_buffer[i] += 65536;
}
*buffer++ = _buffer[i];
}
samples += _channels;
}
return samples;
}
VMDDecoder::File::File() {
offset = 0;
size = 0;
realSize = 0;
}
VMDDecoder::Part::Part() {
type = kPartTypeSeparator;
field_1 = 0;
field_E = 0;
size = 0;
left = 0;
top = 0;
right = 0;
bottom = 0;
id = 0;
flags = 0;
}
VMDDecoder::Frame::Frame() {
parts = 0;
offset = 0;
}
VMDDecoder::Frame::~Frame() {
delete[] parts;
}
VMDDecoder::VMDDecoder(Audio::Mixer *mixer, Audio::Mixer::SoundType soundType) : CoktelDecoder(mixer, soundType),
_stream(0), _version(0), _flags(0), _frameInfoOffset(0), _partsPerFrame(0), _frames(0),
_soundFlags(0), _soundFreq(0), _soundSliceSize(0), _soundSlicesCount(0),
_soundBytesPerSample(0), _soundStereo(0), _soundHeaderSize(0), _soundDataSize(0),
_soundLastFilledFrame(0), _audioFormat(kAudioFormat8bitRaw),
_hasVideo(false), _videoCodec(0), _blitMode(0), _bytesPerPixel(0),
_firstFramePos(0), _videoBufferSize(0), _externalCodec(false), _codec(0),
_subtitle(-1), _isPaletted(true), _autoStartSound(true), _oldStereoBuffer(nullptr) {
_videoBuffer [0] = 0;
_videoBuffer [1] = 0;
_videoBuffer [2] = 0;
_videoBufferLen[0] = 0;
_videoBufferLen[1] = 0;
_videoBufferLen[2] = 0;
}
VMDDecoder::~VMDDecoder() {
close();
}
bool VMDDecoder::reloadStream(Common::SeekableReadStream *stream) {
if (!_stream)
return false;
if (!stream->seek(_stream->pos())) {
close();
return false;
}
delete _stream;
_stream = stream;
return true;
}
bool VMDDecoder::seek(int32 frame, int whence, bool restart) {
if (!evaluateSeekFrame(frame, whence))
return false;
if (frame == _curFrame)
// Nothing to do
return true;
// Restart sound
if (_hasSound && (frame == -1) &&
((_soundStage == kSoundNone) || (_soundStage == kSoundFinished))) {
delete _audioStream;
_soundStage = kSoundLoaded;
createAudioStream();
}
_subtitle = -1;
if ((_blitMode > 0) && (_flags & 0x4000)) {
if (_curFrame > frame) {
_stream->seek(_frames[0].offset);
_curFrame = -1;
}
while (frame > _curFrame)
decodeNextFrame();
return true;
}
// Seek
_stream->seek(_frames[frame + 1].offset);
_curFrame = frame;
_startTime = g_system->getMillis() - ((frame + 2) * getStaticTimeToNextFrame());
return true;
}
void VMDDecoder::setXY(uint16 x, uint16 y) {
uint16 curX = _x;
uint16 setX = x;
if ((x != 0xFFFF) && (_blitMode == 1)) {
curX *= _bytesPerPixel;
setX *= _bytesPerPixel;
}
for (uint32 i = 0; i < _frameCount; i++) {
for (int j = 0; j < _partsPerFrame; j++) {
if (_frames[i].parts[j].type == kPartTypeVideo) {
if (x != 0xFFFF) {
_frames[i].parts[j].left = _frames[i].parts[j].left - curX + setX;
_frames[i].parts[j].right = _frames[i].parts[j].right - curX + setX;
}
if (y != 0xFFFF) {
_frames[i].parts[j].top = _frames[i].parts[j].top - _y + y;
_frames[i].parts[j].bottom = _frames[i].parts[j].bottom - _y + y;
}
}
}
}
if (x != 0xFFFF)
_x = x;
if (y != 0xFFFF)
_y = y;
}
bool VMDDecoder::openExternalCodec() {
delete _codec;
_codec = 0;
if (_externalCodec) {
if (_videoCodec == kVideoCodecIndeo3) {
_isPaletted = false;
_codec = new Image::Indeo3Decoder(_width, _height, g_system->getScreenFormat().bpp());
} else {
warning("VMDDecoder::openExternalCodec(): Unknown video codec FourCC \"%s\"",
tag2str(_videoCodec));
return false;
}
}
return true;
}
void VMDDecoder::colorModeChanged() {
openExternalCodec();
}
bool VMDDecoder::loadStream(Common::SeekableReadStream *stream) {
close();
_stream = stream;
_stream->seek(0);
uint16 headerLength;
uint16 handle;
headerLength = _stream->readUint16LE();
handle = _stream->readUint16LE();
_version = _stream->readUint16LE();
// Version checking
if (headerLength == 50) {
// Newer version, used in Addy 5 upwards
warning("VMDDecoder::loadStream(): TODO: Addy 5 videos");
} else if (headerLength == 814) {
// Old version
_features |= kFeaturesPalette;
} else {
warning("VMDDecoder::loadStream(): Version incorrect (%d, %d, %d)", headerLength, handle, _version);
close();
return false;
}
_frameCount = _stream->readUint16LE();
_defaultX = _stream->readSint16LE();
_defaultY = _stream->readSint16LE();
_width = _stream->readSint16LE();
_height = _stream->readSint16LE();
_x = _defaultX;
_y = _defaultY;
if ((_width != 0) && (_height != 0)) {
_hasVideo = true;
_features |= kFeaturesVideo;
} else
_hasVideo = false;
_bytesPerPixel = 1;
if (_version & 4)
_bytesPerPixel = handle + 1;
if (_bytesPerPixel > 3) {
warning("VMDDecoder::loadStream(): Requested %d bytes per pixel (%d, %d, %d)",
_bytesPerPixel, headerLength, handle, _version);
close();
return false;
}
_flags = _stream->readUint16LE();
_partsPerFrame = _stream->readUint16LE();
_firstFramePos = _stream->readUint32LE();
_videoCodec = _stream->readUint32BE();
if (_features & kFeaturesPalette) {
for (int i = 0; i < 768; i++)
_palette[i] = _stream->readByte() << 2;
_paletteDirty = true;
}
uint32 videoBufferSize1 = _stream->readUint32LE();
uint32 videoBufferSize2 = _stream->readUint32LE();
_videoBufferSize = MAX(videoBufferSize1, videoBufferSize2);
if (_hasVideo) {
if (!assessVideoProperties()) {
close();
return false;
}
}
_soundFreq = _stream->readSint16LE();
_soundSliceSize = _stream->readSint16LE();
_soundSlicesCount = _stream->readSint16LE();
_soundFlags = _stream->readUint16LE();
_hasSound = (_soundFreq != 0);
if (_hasSound) {
if (!assessAudioProperties()) {
close();
return false;
}
} else
_frameRate = 12;
_frameInfoOffset = _stream->readUint32LE();
int numFiles;
if (!readFrameTable(numFiles)) {
close();
return false;
}
_stream->seek(_firstFramePos);
if (numFiles == 0)
return true;
_files.reserve(numFiles);
if (!readFiles()) {
close();
return false;
}
_stream->seek(_firstFramePos);
return true;
}
bool VMDDecoder::assessVideoProperties() {
_isPaletted = true;
if ((_version & 2) && !(_version & 8)) {
_externalCodec = true;
_videoBufferSize = 0;
} else
_externalCodec = false;
if (!openExternalCodec())
return false;
if (_externalCodec)
_blitMode = 0;
else if (_bytesPerPixel == 1)
_blitMode = 0;
else if ((_bytesPerPixel == 2) || (_bytesPerPixel == 3)) {
int n = (_flags & 0x80) ? 2 : 3;
_blitMode = _bytesPerPixel - 1;
_bytesPerPixel = n;
_isPaletted = false;
}
if (_blitMode == 1) {
_width /= _bytesPerPixel;
_defaultX /= _bytesPerPixel;
_x /= _bytesPerPixel;
}
if (_hasVideo) {
uint32 suggestedVideoBufferSize = _videoBufferSize;
_videoBufferSize = _width * _height * _bytesPerPixel + 1000;
if ((suggestedVideoBufferSize > _videoBufferSize) && (suggestedVideoBufferSize < 2097152)) {
warning("Suggested video buffer size greater than what should be needed (%d, %d, %dx%d",
suggestedVideoBufferSize, _videoBufferSize, _width, _height);
_videoBufferSize = suggestedVideoBufferSize;
}
for (int i = 0; i < 3; i++) {
_videoBuffer[i] = new byte[_videoBufferSize]();
_8bppSurface[i].init(_width * _bytesPerPixel, _height, _width * _bytesPerPixel,
_videoBuffer[i], Graphics::PixelFormat::createFormatCLUT8());
}
}
return true;
}
bool VMDDecoder::assessAudioProperties() {
bool supportedFormat = true;
_features |= kFeaturesSound;
_soundStereo = (_soundFlags & 0x8000) ? 1 : ((_soundFlags & 0x200) ? 2 : 0);
if (_soundSliceSize < 0) {
_soundBytesPerSample = 2;
_soundSliceSize = -_soundSliceSize;
if (_soundFlags & 0x10) {
_audioFormat = kAudioFormat16bitADPCM;
_soundHeaderSize = 3;
_soundDataSize = _soundSliceSize >> 1;
if (_soundStereo > 0)
supportedFormat = false;
} else {
_audioFormat = kAudioFormat16bitDPCM;
_soundHeaderSize = 1;
_soundDataSize = _soundSliceSize;
if (_soundStereo == 1) {
supportedFormat = false;
} else if (_soundStereo == 2) {
_soundDataSize = 2 * _soundDataSize + 2;
_soundHeaderSize = 4;
}
}
} else {
if (_soundStereo == 2) {
supportedFormat = false;
}
_soundBytesPerSample = 1;
_soundHeaderSize = 0;
_soundDataSize = _soundSliceSize;
if (_soundStereo == 1) {
_audioFormat = kAudioFormat16bitDPCM;
} else {
_audioFormat = kAudioFormat8bitRaw;
}
}
if (!supportedFormat) {
warning("VMDDecoder::assessAudioProperties(): Unsupported audio format: %d bits, encoding %d, stereo %d",
_soundBytesPerSample * 8, _audioFormat, _soundStereo);
return false;
}
_frameRate = Common::Rational(_soundFreq, _soundSliceSize / (_soundStereo == 1 ? 2 : 1));
_hasSound = true;
_soundEnabled = true;
_soundStage = kSoundLoaded;
createAudioStream();
return true;
}
bool VMDDecoder::readFrameTable(int &numFiles) {
numFiles = 0;
_stream->seek(_frameInfoOffset);
_frames = new Frame[_frameCount];
for (uint16 i = 0; i < _frameCount; i++) {
_frames[i].parts = new Part[_partsPerFrame];
_stream->skip(2); // Unknown
_frames[i].offset = _stream->readUint32LE();
}
_soundLastFilledFrame = 0;
for (uint16 i = 0; i < _frameCount; i++) {
bool separator = false;
for (uint16 j = 0; j < _partsPerFrame; j++) {
_frames[i].parts[j].type = (PartType) _stream->readByte();
_frames[i].parts[j].field_1 = _stream->readByte();
_frames[i].parts[j].size = _stream->readUint32LE();
if (_frames[i].parts[j].type == kPartTypeAudio) {
_frames[i].parts[j].flags = _stream->readByte();
_stream->skip(9); // Unknown
if (_frames[i].parts[j].flags != 3)
_soundLastFilledFrame = i;
} else if (_frames[i].parts[j].type == kPartTypeVideo) {
_frames[i].parts[j].left = _stream->readUint16LE();
_frames[i].parts[j].top = _stream->readUint16LE();
_frames[i].parts[j].right = _stream->readUint16LE();
_frames[i].parts[j].bottom = _stream->readUint16LE();
_frames[i].parts[j].field_E = _stream->readByte();
_frames[i].parts[j].flags = _stream->readByte();
} else if (_frames[i].parts[j].type == kPartTypeSubtitle) {
_frames[i].parts[j].id = _stream->readByte();
// Speech text file name
_stream->skip(9);
} else if (_frames[i].parts[j].type == kPartTypeFile) {
if (!separator)
numFiles++;
_stream->skip(10);
} else if (_frames[i].parts[j].type == kPartTypeSeparator) {
separator = true;
_stream->skip(10);
} else {
// Unknown type
_stream->skip(10);
}
}
}
return true;
}
bool VMDDecoder::readFiles() {
uint32 ssize = _stream->size();
for (uint16 i = 0; i < _frameCount; i++) {
_stream->seek(_frames[i].offset);
for (uint16 j = 0; j < _partsPerFrame; j++) {
if (_frames[i].parts[j].type == kPartTypeSeparator)
break;
if (_frames[i].parts[j].type == kPartTypeFile) {
File file;
file.offset = _stream->pos() + 20;
file.size = _frames[i].parts[j].size;
file.realSize = _stream->readUint32LE();
char name[16];
_stream->read(name, 16);
name[15] = '\0';
file.name = name;
_stream->skip(_frames[i].parts[j].size - 20);
if ((((uint32) file.realSize) >= ssize) || (file.name == ""))
continue;
_files.push_back(file);
} else
_stream->skip(_frames[i].parts[j].size);
}
}
return true;
}
void VMDDecoder::close() {
CoktelDecoder::close();
delete _stream;
delete[] _frames;
delete[] _videoBuffer[0];
delete[] _videoBuffer[1];
delete[] _videoBuffer[2];
delete _codec;
_files.clear();
_stream = 0;
_version = 0;
_flags = 0;
_frameInfoOffset = 0;
_partsPerFrame = 0;
_frames = 0;
_soundFlags = 0;
_soundFreq = 0;
_soundSliceSize = 0;
_soundSlicesCount = 0;
_soundBytesPerSample = 0;
_soundStereo = 0;
_soundHeaderSize = 0;
_soundDataSize = 0;
_soundLastFilledFrame = 0;
_audioFormat = kAudioFormat8bitRaw;
_oldStereoBuffer = nullptr;
_hasVideo = false;
_videoCodec = 0;
_blitMode = 0;
_bytesPerPixel = 0;
_firstFramePos = 0;
_videoBufferSize = 0;
_videoBuffer [0] = 0;
_videoBuffer [1] = 0;
_videoBuffer [2] = 0;
_videoBufferLen[0] = 0;
_videoBufferLen[1] = 0;
_videoBufferLen[2] = 0;
_externalCodec = false;
_codec = 0;
_isPaletted = true;
}
bool VMDDecoder::isVideoLoaded() const {
return _stream != 0;
}
const Graphics::Surface *VMDDecoder::decodeNextFrame() {
if (!isVideoLoaded() || endOfVideo())
return 0;
createSurface();
processFrame();
if (_curFrame == 0)
_startTime = g_system->getMillis();
return &_surface;
}
void VMDDecoder::processFrame() {
_curFrame++;
_dirtyRects.clear();
_subtitle = -1;
bool startSound = false;
_stream->seek(_frames[_curFrame].offset, SEEK_SET);
for (uint16 i = 0; i < _partsPerFrame; i++) {
Part &part = _frames[_curFrame].parts[i];
if (part.type == kPartTypeAudio) {
if (part.flags == 1) {
// Next sound slice data
if (_soundEnabled) {
filledSoundSlice(part.size);
if (_soundStage == kSoundLoaded)
startSound = true;
} else
_stream->skip(part.size);
} else if (part.flags == 2) {
// Initial sound data (all slices)
if (_soundEnabled) {
uint32 mask = _stream->readUint32LE();
filledSoundSlices(part.size - /* mask size */ 4, mask);
if (_soundStage == kSoundLoaded)
startSound = true;
} else
_stream->skip(part.size);
} else if (part.flags == 3) {
// Empty sound slice
if (_soundEnabled) {
if ((uint32)_curFrame < _soundLastFilledFrame)
emptySoundSlice(_soundDataSize * _soundBytesPerSample);
if (_soundStage == kSoundLoaded)
startSound = true;
}
_stream->skip(part.size);
} else if (part.flags == 4) {
warning("VMDDecoder::processFrame(): TODO: Addy 5 sound type 4 (%d)", part.size);
disableSound();
_stream->skip(part.size);
} else {
warning("VMDDecoder::processFrame(): Unknown sound type %d", part.flags);
_stream->skip(part.size);
}
} else if ((part.type == kPartTypeVideo) && !_hasVideo) {
warning("VMDDecoder::processFrame(): Header claims there's no video, but video found (%d)", part.size);
_stream->skip(part.size);
} else if ((part.type == kPartTypeVideo) && _hasVideo) {
uint32 size = part.size;
// New palette
if (part.flags & 2) {
uint8 index = _stream->readByte();
uint8 count = _stream->readByte();
for (int j = 0; j < ((count + 1) * 3); j++)
_palette[index * 3 + j] = _stream->readByte() << 2;
_stream->skip((255 - count) * 3);
_paletteDirty = true;
size -= (768 + 2);
}
_stream->read(_videoBuffer[0], size);
_videoBufferLen[0] = size;
Common::Rect rect(part.left, part.top, part.right + 1, part.bottom + 1);
if (renderFrame(rect))
_dirtyRects.push_back(rect);
} else if (part.type == kPartTypeSeparator) {
// Ignore
} else if (part.type == kPartTypeFile) {
// Ignore
_stream->skip(part.size);
} else if (part.type == kPartType4) {
// Unknown, ignore
_stream->skip(part.size);
} else if (part.type == kPartTypeSubtitle) {
_subtitle = part.id;
_stream->skip(part.size);
} else {
warning("VMDDecoder::processFrame(): Unknown frame part type %d, size %d (%d of %d)",
part.type, part.size, i + 1, _partsPerFrame);
}
}
if (startSound && _soundEnabled) {
if (_hasSound && _audioStream) {
if (_autoStartSound)
_mixer->playStream(_soundType, &_audioHandle, _audioStream,
-1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO);
_soundStage = kSoundPlaying;
} else
_soundStage = kSoundNone;
}
if (((uint32)_curFrame == (_frameCount - 1)) && (_soundStage == 2)) {
_audioStream->finish();
_soundStage = kSoundFinished;
}
}
bool VMDDecoder::renderFrame(Common::Rect &rect) {
Common::Rect realRect, fakeRect;
if (!getRenderRects(rect, realRect, fakeRect))
return false;
if (_externalCodec) {
if (!_codec)
return false;
Common::MemoryReadStream frameStream(_videoBuffer[0], _videoBufferLen[0]);
const Graphics::Surface *codecSurf = _codec->decodeFrame(frameStream);
if (!codecSurf)
return false;
rect = Common::Rect(_x, _y, _x + codecSurf->w, _y + codecSurf->h);
rect.clip(Common::Rect(_x, _y, _x + _width, _y + _height));
renderBlockWhole(_surface, (const byte *)codecSurf->getPixels(), rect);
return true;
}
uint8 srcBuffer = 0;
byte *dataPtr = _videoBuffer[srcBuffer];
uint32 dataSize = _videoBufferLen[srcBuffer] - 1;
uint8 type = *dataPtr++;
if (type & 0x80) {
// Frame data is compressed
type &= 0x7F;
if ((type == 2) && (rect.width() == _surface.w) && (_x == 0) && (_blitMode == 0)) {
// Directly uncompress onto the video surface
const int offsetX = rect.left * _surface.format.bytesPerPixel;
const int offsetY = rect.top * _surface.pitch;
const int offset = offsetX + offsetY;
if (deLZ77((byte *)_surface.getPixels() + offset, dataPtr, dataSize,
_surface.w * _surface.h * _surface.format.bytesPerPixel - offset))
return true;
}
srcBuffer = 1;
_videoBufferLen[srcBuffer] =
deLZ77(_videoBuffer[srcBuffer], dataPtr, dataSize, _videoBufferSize);
dataPtr = _videoBuffer[srcBuffer];
dataSize = _videoBufferLen[srcBuffer];
}
Common::Rect *blockRect = &fakeRect;
Graphics::Surface *surface = &_surface;
if (_blitMode == 0) {
*blockRect = Common::Rect(blockRect->left + _x, blockRect->top + _y,
blockRect->right + _x, blockRect->bottom + _y);
} else {
surface = &_8bppSurface[2];
}
// Evaluate the block type
if (type == 0x01) {
if (_isDouble)
renderBlockSparseDouble(*surface, dataPtr, *blockRect);
else
renderBlockSparse(*surface, dataPtr, *blockRect);
} else if (type == 0x02) {
if (_isDouble)
renderBlockWholeDouble(*surface, dataPtr, *blockRect);
else
renderBlockWhole(*surface, dataPtr, *blockRect);
} else if (type == 0x03)
renderBlockRLE (*surface, dataPtr, *blockRect);
else if (type == 0x42)
renderBlockWhole4X (*surface, dataPtr, *blockRect);
else if ((type & 0x0F) == 0x02)
renderBlockWhole2Y (*surface, dataPtr, *blockRect);
else
renderBlockSparse2Y(*surface, dataPtr, *blockRect);
if (_blitMode > 0) {
if (_bytesPerPixel == 2)
blit16(*surface, *blockRect);
else if (_bytesPerPixel == 3)
blit24(*surface, *blockRect);
*blockRect = Common::Rect(blockRect->left + _x, blockRect->top + _y,
blockRect->right + _x, blockRect->bottom + _y);
}
rect = *blockRect;
return true;
}
bool VMDDecoder::getRenderRects(const Common::Rect &rect,
Common::Rect &realRect, Common::Rect &fakeRect) {
realRect = rect;
fakeRect = rect;
if (_blitMode == 0) {
realRect = Common::Rect(realRect.left - _x, realRect.top - _y,
realRect.right - _x, realRect.bottom - _y);
fakeRect = Common::Rect(fakeRect.left - _x, fakeRect.top - _y,
fakeRect.right - _x, fakeRect.bottom - _y);
} else if (_blitMode == 1) {
realRect = Common::Rect(rect.left / _bytesPerPixel, rect.top,
rect.right / _bytesPerPixel, rect.bottom);
realRect = Common::Rect(realRect.left - _x, realRect.top - _y,
realRect.right - _x, realRect.bottom - _y);
fakeRect = Common::Rect(fakeRect.left - _x * _bytesPerPixel, fakeRect.top - _y,
fakeRect.right - _x * _bytesPerPixel, fakeRect.bottom - _y);
} else if (_blitMode == 2) {
fakeRect = Common::Rect(rect.left * _bytesPerPixel, rect.top,
rect.right * _bytesPerPixel, rect.bottom);
realRect = Common::Rect(realRect.left - _x, realRect.top - _y,
realRect.right - _x, realRect.bottom - _y);
fakeRect = Common::Rect(fakeRect.left - _x * _bytesPerPixel, fakeRect.top - _y,
fakeRect.right - _x * _bytesPerPixel, fakeRect.bottom - _y);
}
realRect.clip(Common::Rect(_surface.w, _surface.h));
fakeRect.clip(Common::Rect(_surface.w * _bytesPerPixel, _surface.h));
if (!realRect.isValidRect() || realRect.isEmpty())
return false;
if (!fakeRect.isValidRect() || realRect.isEmpty())
return false;
return true;
}
void VMDDecoder::blit16(const Graphics::Surface &srcSurf, Common::Rect &rect) {
rect = Common::Rect(rect.left / 2, rect.top, rect.right / 2, rect.bottom);
Common::Rect srcRect = rect;
rect.clip(_surface.w, _surface.h);
Graphics::PixelFormat pixelFormat = getPixelFormat();
// We cannot use getBasePtr here because srcSurf.format.bytesPerPixel is
// different from _bytesPerPixel.
const byte *src = (const byte *)srcSurf.getPixels() +
(srcRect.top * srcSurf.pitch) + srcRect.left * _bytesPerPixel;
byte *dst = (byte *)_surface.getBasePtr(_x + rect.left, _y + rect.top);
for (int i = 0; i < rect.height(); i++) {
const byte *srcRow = src;
byte *dstRow = dst;
for (int j = 0; j < rect.width(); j++, srcRow += 2, dstRow += _surface.format.bytesPerPixel) {
uint16 data = READ_LE_UINT16(srcRow);
byte r = ((data & 0x7C00) >> 10) << 3;
byte g = ((data & 0x03E0) >> 5) << 3;
byte b = ((data & 0x001F) >> 0) << 3;
uint32 c = pixelFormat.RGBToColor(r, g, b);
if ((r == 0) && (g == 0) && (b == 0))
c = 0;
if (_surface.format.bytesPerPixel == 2)
*((uint16 *)dstRow) = (uint16) c;
else if (_surface.format.bytesPerPixel == 4)
*((uint32 *)dstRow) = (uint32) c;
}
src += srcSurf .pitch;
dst += _surface.pitch;
}
}
void VMDDecoder::blit24(const Graphics::Surface &srcSurf, Common::Rect &rect) {
rect = Common::Rect(rect.left / 3, rect.top, rect.right / 3, rect.bottom);
Common::Rect srcRect = rect;
rect.clip(_surface.w, _surface.h);
Graphics::PixelFormat pixelFormat = getPixelFormat();
// We cannot use getBasePtr here because srcSurf.format.bytesPerPixel is
// different from _bytesPerPixel.
const byte *src = (const byte *)srcSurf.getPixels() +
(srcRect.top * srcSurf.pitch) + srcRect.left * _bytesPerPixel;
byte *dst = (byte *)_surface.getBasePtr(_x + rect.left, _y + rect.top);
for (int i = 0; i < rect.height(); i++) {
const byte *srcRow = src;
byte *dstRow = dst;
for (int j = 0; j < rect.width(); j++, srcRow += 3, dstRow += _surface.format.bytesPerPixel) {
byte r = srcRow[2];
byte g = srcRow[1];
byte b = srcRow[0];
uint32 c = pixelFormat.RGBToColor(r, g, b);
if ((r == 0) && (g == 0) && (b == 0))
c = 0;
if (_surface.format.bytesPerPixel == 2)
*((uint16 *)dstRow) = (uint16) c;
else if (_surface.format.bytesPerPixel == 4)
*((uint32 *)dstRow) = (uint32) c;
}
src += srcSurf .pitch;
dst += _surface.pitch;
}
}
void VMDDecoder::emptySoundSlice(uint32 size) {
if (_soundStereo == 1) {
// Technically an empty slice could be used at the very beginning of the
// stream, but anywhere else it would need to dynamically calculate the
// delta between the current sample and zero sample level and the steps
// to get a zero level
error("Old-style stereo cannot be filled with an empty slice");
}
byte *soundBuf = (byte *)malloc(size);
if (soundBuf) {
uint32 flags = 0;
memset(soundBuf, 0, size);
flags |= (_soundBytesPerSample == 2) ? Audio::FLAG_16BITS : 0;
flags |= (_soundStereo > 0) ? Audio::FLAG_STEREO : 0;
_audioStream->queueBuffer(soundBuf, size, DisposeAfterUse::YES, flags);
}
}
void VMDDecoder::filledSoundSlice(uint32 size) {
if (!_audioStream) {
_stream->skip(size);
return;
}
if (_soundStereo == 1) {
void *buf = malloc(size);
assert(buf);
const uint32 numBytesRead = _stream->read(buf, size);
assert(numBytesRead == size);
const uint32 numBytesWritten = _oldStereoBuffer->write(buf, size);
assert(numBytesWritten == size);
free(buf);
return;
}
Common::SeekableReadStream *data = _stream->readStream(size);
Audio::AudioStream *sliceStream = 0;
if (_audioFormat == kAudioFormat8bitRaw)
sliceStream = create8bitRaw(data);
else if (_audioFormat == kAudioFormat16bitDPCM)
sliceStream = create16bitDPCM(data);
else if (_audioFormat == kAudioFormat16bitADPCM)
sliceStream = create16bitADPCM(data);
if (sliceStream)
_audioStream->queueAudioStream(sliceStream);
}
void VMDDecoder::filledSoundSlices(uint32 size, uint32 mask) {
bool fillInfo[32];
uint8 max;
uint8 n = evaluateMask(mask, fillInfo, max);
// extraSize is needed by videos in some games (GK2) or audio data will be
// incomplete
int32 extraSize = size - n * _soundDataSize;
if (_soundSlicesCount > 32)
extraSize -= (_soundSlicesCount - 32) * _soundDataSize;
if (n > 0)
extraSize /= n;
// extraSize cannot be negative or audio data will be incomplete in some
// games (old-style stereo videos in Lighthouse)
if (extraSize < 0)
extraSize = 0;
for (uint8 i = 0; i < max; i++)
if (fillInfo[i])
filledSoundSlice(_soundDataSize + extraSize);
else
emptySoundSlice(_soundDataSize * _soundBytesPerSample);
if (_soundSlicesCount > 32)
filledSoundSlice((_soundSlicesCount - 32) * _soundDataSize + _soundHeaderSize);
}
void VMDDecoder::createAudioStream() {
_audioStream = Audio::makeQueuingAudioStream(_soundFreq, _soundStereo != 0);
if (_soundStereo == 1) {
_oldStereoBuffer = new Common::MemoryReadWriteStream(DisposeAfterUse::YES);
_audioStream->queueAudioStream(new DPCMStream(_oldStereoBuffer, _soundFreq, 2, true));
}
}
uint8 VMDDecoder::evaluateMask(uint32 mask, bool *fillInfo, uint8 &max) {
max = MIN<int>(_soundSlicesCount - 1, 31);
uint8 n = 0;
for (int i = 0; i < max; i++) {
if (!(mask & 1)) {
n++;
*fillInfo++ = true;
} else
*fillInfo++ = false;
mask >>= 1;
}
return n;
}
Audio::AudioStream *VMDDecoder::create8bitRaw(Common::SeekableReadStream *stream) {
int flags = Audio::FLAG_UNSIGNED;
if (_soundStereo != 0)
flags |= Audio::FLAG_STEREO;
return Audio::makeRawStream(stream, _soundFreq, flags, DisposeAfterUse::YES);
}
Audio::AudioStream *VMDDecoder::create16bitDPCM(Common::SeekableReadStream *stream) {
// Old-style stereo audio blocks are not self-contained so cannot be played
// using this mechanism
assert(_soundStereo != 1);
return new DPCMStream(stream, _soundFreq, (_soundStereo == 0) ? 1 : 2, false);
}
class VMD_ADPCMStream : public Audio::DVI_ADPCMStream {
public:
VMD_ADPCMStream(Common::SeekableReadStream *stream, DisposeAfterUse::Flag disposeAfterUse,
int rate, int channels) : Audio::DVI_ADPCMStream(stream, disposeAfterUse, stream->size(), rate, channels, 0) {
// FIXME: Using the same predictor/index for two channels probably won't work
// properly However, we have no samples of this, so an assert is here for now.
// Also, since the DPCM stereo has a second predictor, I'm lead to believe
// all VMD with ADPCM are mono unless they changed the code in a later
// revision.
assert(channels == 1);
_startPredictorValue = stream->readSint16LE();
_startIndexValue = stream->readByte();
_startpos = 3;
reset();
}
protected:
virtual void reset() {
Audio::DVI_ADPCMStream::reset();
_status.ima_ch[0].last = _startPredictorValue;
_status.ima_ch[0].stepIndex = _startIndexValue;
}
private:
int32 _startPredictorValue;
int32 _startIndexValue;
};
Audio::AudioStream *VMDDecoder::create16bitADPCM(Common::SeekableReadStream *stream) {
return new VMD_ADPCMStream(stream, DisposeAfterUse::YES, _soundFreq, (_soundStereo == 0) ? 1 : 2);
}
uint32 VMDDecoder::getFlags() const {
return _flags;
}
Graphics::PixelFormat VMDDecoder::getPixelFormat() const {
if (_externalCodec) {
if (_codec)
return _codec->getPixelFormat();
// If we don't have the needed codec, just assume it's in the
// current screen format
return g_system->getScreenFormat();
}
if (_blitMode > 0)
return g_system->getScreenFormat();
return Graphics::PixelFormat::createFormatCLUT8();
}
bool VMDDecoder::getPartCoords(int16 frame, PartType type, int16 &x, int16 &y, int16 &width, int16 &height) {
if (frame >= ((int32) _frameCount))
return false;
Frame &f = _frames[frame];
// Look for a part matching the requested type, stopping at a separator
Part *part = 0;
for (int i = 0; i < _partsPerFrame; i++) {
Part &p = f.parts[i];
if ((p.type == kPartTypeSeparator) || (p.type == type)) {
part = &p;
break;
}
}
if (!part)
return false;
x = part->left;
y = part->top;
width = part->right - part->left + 1;
height = part->bottom - part->top + 1;
return true;
}
bool VMDDecoder::getFrameCoords(int16 frame, int16 &x, int16 &y, int16 &width, int16 &height) {
return getPartCoords(frame, kPartTypeVideo, x, y, width, height);
}
bool VMDDecoder::hasEmbeddedFiles() const {
return !_files.empty();
}
bool VMDDecoder::hasEmbeddedFile(const Common::String &fileName) const {
for (Common::Array<File>::const_iterator file = _files.begin(); file != _files.end(); ++file)
if (!file->name.compareToIgnoreCase(fileName))
return true;
return false;
}
Common::SeekableReadStream *VMDDecoder::getEmbeddedFile(const Common::String &fileName) const {
const File *file = 0;
for (Common::Array<File>::const_iterator it = _files.begin(); it != _files.end(); ++it)
if (!it->name.compareToIgnoreCase(fileName)) {
file = &*it;
break;
}
if (!file)
return 0;
if ((file->size - 20) != file->realSize) {
warning("VMDDecoder::getEmbeddedFile(): Sizes for \"%s\" differ! (%d, %d)",
fileName.c_str(), (file->size - 20), file->realSize);
return 0;
}
if (!_stream->seek(file->offset)) {
warning("VMDDecoder::getEmbeddedFile(): Can't seek to offset %d to (file \"%s\")",
file->offset, fileName.c_str());
return 0;
}
byte *data = (byte *) malloc(file->realSize);
if (_stream->read(data, file->realSize) != file->realSize) {
free(data);
warning("VMDDecoder::getEmbeddedFile(): Couldn't read %d bytes (file \"%s\")",
file->realSize, fileName.c_str());
return 0;
}
Common::MemoryReadStream *stream =
new Common::MemoryReadStream(data, file->realSize, DisposeAfterUse::YES);
return stream;
}
int32 VMDDecoder::getSubtitleIndex() const {
return _subtitle;
}
bool VMDDecoder::hasVideo() const {
return _hasVideo;
}
bool VMDDecoder::isPaletted() const {
return _isPaletted;
}
void VMDDecoder::setAutoStartSound(bool autoStartSound) {
_autoStartSound = autoStartSound;
}
AdvancedVMDDecoder::AdvancedVMDDecoder(Audio::Mixer::SoundType soundType) {
setSoundType(soundType);
_decoder = new VMDDecoder(g_system->getMixer(), soundType);
_decoder->setAutoStartSound(false);
}
AdvancedVMDDecoder::~AdvancedVMDDecoder() {
close();
delete _decoder;
}
bool AdvancedVMDDecoder::loadStream(Common::SeekableReadStream *stream) {
close();
if (!_decoder->loadStream(stream))
return false;
if (_decoder->hasVideo()) {
_videoTrack = new VMDVideoTrack(_decoder);
addTrack(_videoTrack);
}
if (_decoder->hasSound()) {
_audioTrack = new VMDAudioTrack(_decoder);
addTrack(_audioTrack);
}
return true;
}
void AdvancedVMDDecoder::close() {
VideoDecoder::close();
_decoder->close();
}
void AdvancedVMDDecoder::setSurfaceMemory(void *mem, uint16 width, uint16 height, uint8 bpp) {
_decoder->setSurfaceMemory(mem, width, height, bpp);
}
AdvancedVMDDecoder::VMDVideoTrack::VMDVideoTrack(VMDDecoder *decoder) : _decoder(decoder) {
}
uint16 AdvancedVMDDecoder::VMDVideoTrack::getWidth() const {
return _decoder->getWidth();
}
uint16 AdvancedVMDDecoder::VMDVideoTrack::getHeight() const {
return _decoder->getHeight();
}
Graphics::PixelFormat AdvancedVMDDecoder::VMDVideoTrack::getPixelFormat() const {
return _decoder->getPixelFormat();
}
int AdvancedVMDDecoder::VMDVideoTrack::getCurFrame() const {
return _decoder->getCurFrame();
}
int AdvancedVMDDecoder::VMDVideoTrack::getFrameCount() const {
return _decoder->getFrameCount();
}
const Graphics::Surface *AdvancedVMDDecoder::VMDVideoTrack::decodeNextFrame() {
return _decoder->decodeNextFrame();
}
const byte *AdvancedVMDDecoder::VMDVideoTrack::getPalette() const {
return _decoder->getPalette();
}
bool AdvancedVMDDecoder::VMDVideoTrack::hasDirtyPalette() const {
return _decoder->hasDirtyPalette();
}
Common::Rational AdvancedVMDDecoder::VMDVideoTrack::getFrameRate() const {
return _decoder->getFrameRate();
}
AdvancedVMDDecoder::VMDAudioTrack::VMDAudioTrack(VMDDecoder *decoder) :
AudioTrack(decoder->getSoundType()),
_decoder(decoder) {
}
Audio::AudioStream *AdvancedVMDDecoder::VMDAudioTrack::getAudioStream() const {
return _decoder->getAudioStream();
}
} // End of namespace Video
#endif // VIDEO_COKTELDECODER_H