scummvm/sound/softsynth/ym2612.cpp
2007-07-01 12:47:07 +00:00

764 lines
18 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*/
#include <math.h>
#include "sound/softsynth/ym2612.h"
#include "common/util.h"
////////////////////////////////////////
//
// Miscellaneous
//
////////////////////////////////////////
static int *sintbl = 0;
static int *powtbl = 0;
static int *frequencyTable = 0;
static int *keycodeTable = 0;
static int *keyscaleTable = 0;
static int *attackOut = 0;
////////////////////////////////////////
//
// Operator2612 implementation
//
////////////////////////////////////////
Operator2612::Operator2612 (Voice2612 *owner) :
_owner (owner),
_state (_s_ready),
_currentLevel ((int32)0x7f << 15),
_phase (0),
_lastOutput (0),
_feedbackLevel (0),
_detune (0),
_multiple (1),
_keyScale (0),
_specifiedTotalLevel (127),
_specifiedAttackRate (0),
_specifiedDecayRate (0),
_specifiedSustainRate (0),
_specifiedReleaseRate (15) {
velocity(0);
}
Operator2612::~Operator2612()
{ }
void Operator2612::velocity(int velo) {
_velocity = velo;
_totalLevel = ((int32)_specifiedTotalLevel << 15) +
((int32)(127-_velocity) << 13);
_sustainLevel = ((int32)_specifiedSustainLevel << 17);
}
void Operator2612::feedbackLevel(int level) {
_feedbackLevel = level;
}
void Operator2612::setInstrument(byte const *instrument) {
_detune = (instrument[8] >> 4) & 7;
_multiple = instrument[8] & 15;
_specifiedTotalLevel = instrument[12] & 127;
_keyScale = (instrument[16] >> 6) & 3;
_specifiedAttackRate = instrument[16] & 31;
_specifiedDecayRate = instrument[20] & 31;
_specifiedSustainRate = instrument[24] & 31;
_specifiedSustainLevel = (instrument[28] >> 4) & 15;
_specifiedReleaseRate = instrument[28] & 15;
_state = _s_ready;
velocity(_velocity);
}
void Operator2612::keyOn() {
_state = _s_attacking;
_tickCount = 0;
_phase = 0;
_currentLevel = ((int32)0x7f << 15);
}
void Operator2612::keyOff() {
if (_state != _s_ready)
_state = _s_releasing;
}
void Operator2612::frequency(int freq) {
double value; // Use for intermediate computations to avoid int64 arithmetic
int r;
_frequency = freq / _owner->_rate;
r = _specifiedAttackRate;
if (r != 0) {
r = r * 2 + (keyscaleTable[freq/262205] >> (3-_keyScale));
if (r >= 64)
r = 63;
}
r = 63 - r;
if (_specifiedTotalLevel >= 128)
value = 0;
else {
value = powtbl[(r&3) << 7];
value *= 1 << (r >> 2);
value *= 41;
value /= 1 << (15 + 5);
value *= 127 - _specifiedTotalLevel;
value /= 127;
}
_attackTime = (int32) value; // 1 ?? == (1 << 12)
if (_attackTime > 0)
_attackTime = (1 << (12+10)) / (_owner->_rate * _attackTime);
r = _specifiedDecayRate;
if (r != 0) {
r = r * 2 + (keyscaleTable[freq/262205] >> (3-_keyScale));
if (r >= 64)
r = 63;
}
value = (double) powtbl[(r&3) << 7] * (0x10 << (r>>2)) / 31;
_decayRate = (int32) value / _owner->_rate;
r = _specifiedSustainRate;
if (r != 0) {
r = r * 2 + (keyscaleTable[freq/262205] >> (3-_keyScale));
if (r >= 64)
r = 63;
}
value = (double) powtbl[(r&3) << 7] * (0x10 << (r>>2)) / 31;
_sustainRate = (int32) value / _owner->_rate;
r = _specifiedReleaseRate;
if (r != 0) {
r = r * 2 + 1; // (Translated) I cannot know whether the timing is a good choice or not
r = r * 2 + (keyscaleTable[freq/262205] >> (3-_keyScale));
// KS
if (r >= 64)
r = 63;
}
value = (double) powtbl[(r&3) << 7] * (0x10 << (r>>2)) / 31;
_releaseRate = (int32) value / _owner->_rate;
}
void Operator2612::nextTick(const int *phasebuf, int *outbuf, int buflen) {
if (_state == _s_ready)
return;
if (_state == _s_attacking && _attackTime <= 0) {
_currentLevel = 0;
_state = _s_decaying;
}
int32 levelIncrement = 0;
int32 target = 0;
State next_state = _s_ready;
const int32 zero_level = ((int32)0x7f << 15);
const int phaseIncrement = (_multiple > 0) ? (_frequency * _multiple) : (_frequency / 2);
int32 output = _lastOutput;
int32 level = _currentLevel + _totalLevel;
while (buflen) {
switch (_state) {
case _s_ready:
return;
case _s_attacking:
next_state = _s_attacking;
break;
case _s_decaying:
levelIncrement = _decayRate;
target = _sustainLevel + _totalLevel;
next_state = _s_sustaining;
break;
case _s_sustaining:
levelIncrement = _sustainRate;
target = zero_level + _totalLevel;
next_state = _s_ready;
break;
case _s_releasing:
levelIncrement = _releaseRate;
target = zero_level + _totalLevel;
next_state = _s_ready;
break;
}
bool switching = false;
do {
if (next_state == _s_attacking) {
// Attack phase
++_tickCount;
int i = (int) (_tickCount * _attackTime);
if (i >= 1024) {
level = _totalLevel;
_state = _s_decaying;
switching = true;
} else {
level = (attackOut[i] << (31 - 8 - 16)) + _totalLevel;
}
} else {
// Decay, Sustain and Release phases
level += levelIncrement;
if (level >= target) {
level = target;
_state = next_state;
switching = true;
}
}
if (level < zero_level) {
int phaseShift = *phasebuf >> 2;
if (_feedbackLevel)
phaseShift += (output << (_feedbackLevel - 1)) / 1024;
output = sintbl[((_phase >> 7) + phaseShift) & 0x7ff];
output >>= (level >> 18);
// Here is the original code, which requires 64-bit ints
// output *= powtbl[511 - ((level>>25)&511)];
// output >>= 16;
// output >>= 1;
// And here's our 32-bit trick for doing it. (Props to Fingolfin!)
// Result varies from original code by max of 1.
// int powVal = powtbl[511 - ((level>>9)&511)];
// int outputHI = output / 256;
// int powHI = powVal / 256;
// output = (outputHI * powHI) / 2 + (outputHI * (powVal % 256) + powHI * (output % 256)) / 512;
// And here's the even faster code.
// Result varies from original code by max of 8.
output = ((output >> 4) * (powtbl[511-((level>>9)&511)] >> 3)) / 1024;
_phase += phaseIncrement;
_phase &= 0x3ffff;
} else
output = 0;
*outbuf += output;
--buflen;
++phasebuf;
++outbuf;
} while (buflen && !switching);
}
_lastOutput = output;
_currentLevel = level - _totalLevel;
}
////////////////////////////////////////
//
// Voice2612 implementation
//
////////////////////////////////////////
Voice2612::Voice2612() {
next = 0;
_control7 = 127;
_note = 40;
_frequency = 440;
_frequencyOffs = 0x2000;
_algorithm = 7;
_buffer = 0;
_buflen = 0;
int i;
for (i = 0; i < ARRAYSIZE(_opr); ++i)
_opr[i] = new Operator2612 (this);
velocity(0);
}
Voice2612::~Voice2612() {
int i;
for (i = 0; i < ARRAYSIZE(_opr); ++i)
delete _opr[i];
free(_buffer);
}
void Voice2612::velocity(int velo) {
_velocity = velo;
#if 0
int v = (velo * _control7) >> 7;
#else
int v = velo + (_control7 - 127) * 4;
#endif
bool iscarrier[8][4] = {
{ false, false, false, true, }, //0
{ false, false, false, true, }, //1
{ false, false, false, true, }, //2
{ false, false, false, true, }, //3
{ false, true, false, true, }, //4
{ false, true, true, true, }, //5
{ false, true, true, true, }, //6
{ true, true, true, true, }, //7
};
int opr;
for (opr = 0; opr < 4; opr++)
if (iscarrier[_algorithm][opr])
_opr[opr]->velocity(v);
else
_opr[opr]->velocity(127);
}
void Voice2612::setControlParameter(int control, int value) {
switch (control) {
case 7:
_control7 = value;
velocity(_velocity);
break;
case 123:
// All notes off
noteOff(_note);
};
}
void Voice2612::setInstrument(byte const *instrument) {
if (instrument == NULL)
return;
_algorithm = instrument[32] & 7;
_opr[0]->feedbackLevel((instrument[32] >> 3) & 7);
_opr[1]->feedbackLevel(0);
_opr[2]->feedbackLevel(0);
_opr[3]->feedbackLevel(0);
_opr[0]->setInstrument(instrument + 0);
_opr[1]->setInstrument(instrument + 2);
_opr[2]->setInstrument(instrument + 1);
_opr[3]->setInstrument(instrument + 3);
}
void Voice2612::nextTick(int *outbuf, int buflen) {
if (_velocity == 0)
return;
if (_buflen < buflen) {
free(_buffer);
_buflen = buflen;
_buffer = (int *) malloc(sizeof(int) * buflen * 2);
}
int *buf1 = _buffer;
int *buf2 = _buffer + buflen;
memset(_buffer, 0, sizeof(int) * buflen * 2);
switch (_algorithm) {
case 0:
_opr[0]->nextTick(buf1, buf2, buflen);
_opr[1]->nextTick(buf2, buf1, buflen);
memset (buf2, 0, sizeof (int) * buflen);
_opr[2]->nextTick(buf1, buf2, buflen);
_opr[3]->nextTick(buf2, outbuf, buflen);
break;
case 1:
_opr[0]->nextTick(buf1, buf2, buflen);
_opr[1]->nextTick(buf1, buf2, buflen);
_opr[2]->nextTick(buf2, buf1, buflen);
_opr[3]->nextTick(buf1, outbuf, buflen);
break;
case 2:
_opr[1]->nextTick(buf1, buf2, buflen);
_opr[2]->nextTick(buf2, buf1, buflen);
memset(buf2, 0, sizeof(int) * buflen);
_opr[0]->nextTick(buf2, buf1, buflen);
_opr[3]->nextTick(buf1, outbuf, buflen);
break;
case 3:
_opr[0]->nextTick(buf1, buf2, buflen);
_opr[1]->nextTick(buf2, buf1, buflen);
memset(buf2, 0, sizeof(int) * buflen);
_opr[2]->nextTick(buf2, buf1, buflen);
_opr[3]->nextTick(buf1, outbuf, buflen);
break;
case 4:
_opr[0]->nextTick(buf1, buf2, buflen);
_opr[1]->nextTick(buf2, outbuf, buflen);
_opr[2]->nextTick(buf1, buf1, buflen);
_opr[3]->nextTick(buf1, outbuf, buflen);
break;
case 5:
_opr[0]->nextTick(buf1, buf2, buflen);
_opr[1]->nextTick(buf2, outbuf, buflen);
_opr[2]->nextTick(buf2, outbuf, buflen);
_opr[3]->nextTick(buf2, outbuf, buflen);
break;
case 6:
_opr[0]->nextTick(buf1, buf2, buflen);
_opr[1]->nextTick(buf2, outbuf, buflen);
_opr[2]->nextTick(buf1, outbuf, buflen);
_opr[3]->nextTick(buf1, outbuf, buflen);
break;
case 7:
_opr[0]->nextTick(buf1, outbuf, buflen);
_opr[1]->nextTick(buf1, outbuf, buflen);
_opr[2]->nextTick(buf1, outbuf, buflen);
_opr[3]->nextTick(buf1, outbuf, buflen);
break;
};
}
void Voice2612::noteOn(int n, int onVelo) {
_note = n;
velocity(onVelo);
recalculateFrequency();
int i;
for (i = 0; i < ARRAYSIZE(_opr); i++)
_opr[i]->keyOn();
}
bool Voice2612::noteOff(int note) {
if (_note != note)
return false;
int i;
for (i = 0; i < ARRAYSIZE(_opr); i++)
_opr[i]->keyOff();
return true;
}
void Voice2612::pitchBend(int value) {
_frequencyOffs = value;
recalculateFrequency();
}
void Voice2612::recalculateFrequency() {
//
//
//
int32 basefreq = frequencyTable[_note];
int cfreq = frequencyTable[_note - (_note % 12)];
int oct = _note / 12;
int fnum = (int) (((double)basefreq * (1 << 13)) / cfreq);
fnum += _frequencyOffs - 0x2000;
if (fnum < 0x2000) {
fnum += 0x2000;
oct--;
}
if (fnum >= 0x4000) {
fnum -= 0x2000;
oct++;
}
//
_frequency = (int) ((frequencyTable[oct*12] * (double)fnum) / 8);
int i;
for (i = 0; i < ARRAYSIZE(_opr); i++)
_opr[i]->frequency(_frequency);
}
////////////////////////////////////////
//
// MidiChannel_YM2612
//
////////////////////////////////////////
MidiChannel_YM2612::MidiChannel_YM2612() {
_voices = 0;
_next_voice = 0;
}
MidiChannel_YM2612::~MidiChannel_YM2612() {
removeAllVoices();
}
void MidiChannel_YM2612::removeAllVoices() {
if (!_voices)
return;
Voice2612 *last, *voice = _voices;
for (; voice; voice = last) {
last = voice->next;
delete voice;
}
_voices = _next_voice = 0;
}
void MidiChannel_YM2612::noteOn(byte note, byte onVelo) {
if (!_voices)
return;
_next_voice = _next_voice ? _next_voice : _voices;
_next_voice->noteOn(note, onVelo);
_next_voice = _next_voice->next;
}
void MidiChannel_YM2612::noteOff(byte note) {
if (!_voices)
return;
if (_next_voice == _voices)
_next_voice = 0;
Voice2612 *voice = _next_voice;
do {
if (!voice)
voice = _voices;
if (voice->noteOff(note)) {
_next_voice = voice;
break;
}
voice = voice->next;
} while (voice != _next_voice);
}
void MidiChannel_YM2612::controlChange(byte control, byte value) {
//
if (control == 121) {
// Reset controller
removeAllVoices();
} else {
Voice2612 *voice = _voices;
for (; voice; voice = voice->next)
voice->setControlParameter(control, value);
}
}
void MidiChannel_YM2612::sysEx_customInstrument(uint32 type, const byte *fmInst) {
if (type != 'EUP ')
return;
Voice2612 *voice = new Voice2612;
voice->next = _voices;
_voices = voice;
voice->_rate = _rate;
voice->setInstrument(fmInst);
}
void MidiChannel_YM2612::pitchBend(int16 value) {
//
Voice2612 *voice = _voices;
for (; voice; voice = voice->next)
voice->pitchBend(value);
}
void MidiChannel_YM2612::nextTick(int *outbuf, int buflen) {
Voice2612 *voice = _voices;
for (; voice; voice = voice->next)
voice->nextTick(outbuf, buflen);
}
void MidiChannel_YM2612::rate(uint16 r) {
_rate = r;
Voice2612 *voice = _voices;
for (; voice; voice = voice->next)
voice->_rate = r;
}
////////////////////////////////////////
//
// MidiDriver_YM2612
//
////////////////////////////////////////
MidiDriver_YM2612::MidiDriver_YM2612(Audio::Mixer *mixer)
: MidiDriver_Emulated(mixer) {
_next_voice = 0;
createLookupTables();
_volume = 256;
int i;
for (i = 0; i < ARRAYSIZE(_channel); i++)
_channel[i] = new MidiChannel_YM2612;
rate(getRate());
}
MidiDriver_YM2612::~MidiDriver_YM2612() {
int i;
for (i = 0; i < ARRAYSIZE(_channel); i++)
delete _channel[i];
removeLookupTables();
}
int MidiDriver_YM2612::open() {
if (_isOpen)
return MERR_ALREADY_OPEN;
MidiDriver_Emulated::open();
_mixer->playInputStream(Audio::Mixer::kPlainSoundType, &_mixerSoundHandle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, false, true);
return 0;
}
void MidiDriver_YM2612::close() {
if (!_isOpen)
return;
_isOpen = false;
_mixer->stopHandle(_mixerSoundHandle);
}
void MidiDriver_YM2612::send(uint32 b) {
send(b & 0xF, b & 0xFFFFFFF0);
}
void MidiDriver_YM2612::send(byte chan, uint32 b) {
//byte param3 = (byte) ((b >> 24) & 0xFF);
byte param2 = (byte) ((b >> 16) & 0xFF);
byte param1 = (byte) ((b >> 8) & 0xFF);
byte cmd = (byte) (b & 0xF0);
if (chan > ARRAYSIZE(_channel))
return;
switch (cmd) {
case 0x80:// Note Off
_channel[chan]->noteOff(param1);
break;
case 0x90: // Note On
_channel[chan]->noteOn(param1, param2);
break;
case 0xA0: // Aftertouch
break; // Not supported.
case 0xB0: // Control Change
_channel[chan]->controlChange(param1, param2);
break;
case 0xC0: // Program Change
_channel[chan]->programChange(param1);
break;
case 0xD0: // Channel Pressure
break; // Not supported.
case 0xE0: // Pitch Bend
_channel[chan]->pitchBend((param1 | (param2 << 7)) - 0x2000);
break;
case 0xF0: // SysEx
// We should never get here! SysEx information has to be
// sent via high-level semantic methods.
warning("MidiDriver_YM2612: Receiving SysEx command on a send() call");
break;
default:
warning("MidiDriver_YM2612: Unknown send() command 0x%02X", cmd);
}
}
void MidiDriver_YM2612::sysEx(const byte *msg, uint16 length) {
if (msg[0] != 0x7C || msg[1] >= ARRAYSIZE(_channel))
return;
_channel[msg[1]]->sysEx_customInstrument('EUP ', &msg[2]);
}
void MidiDriver_YM2612::generateSamples(int16 *data, int len) {
memset(data, 0, 2 * sizeof(int16) * len);
nextTick(data, len);
}
void MidiDriver_YM2612::nextTick(int16 *buf1, int buflen) {
int *buf0 = (int *)buf1;
int i;
for (i = 0; i < ARRAYSIZE(_channel); i++)
_channel[i]->nextTick(buf0, buflen);
for (i = 0; i < buflen; ++i)
buf1[i*2+1] = buf1[i*2] = ((buf0[i] * volume()) >> 10) & 0xffff;
}
void MidiDriver_YM2612::rate(uint16 r)
{
int i;
for (i = 0; i < ARRAYSIZE(_channel); i++)
_channel[i]->rate(r);
}
void MidiDriver_YM2612::createLookupTables() {
{
int i;
sintbl = new int [2048];
for (i = 0; i < 2048; i++)
sintbl[i] = (int)(0xffff * sin(i/2048.0*2.0*PI));
}
{
int i;
powtbl = new int [1025];
for (i = 0; i <= 1024; i++)
powtbl[i] = (int)(0x10000 * pow(2.0, (i-512)/512.0));
}
{
int i;
int block;
static int fnum[] = {
0x026a, 0x028f, 0x02b6, 0x02df,
0x030b, 0x0339, 0x036a, 0x039e,
0x03d5, 0x0410, 0x044e, 0x048f,
};
// (int)(880.0 * 256.0 * pow(2.0, (note-0x51)/12.0))
//
frequencyTable = new int [120];
for (block = -1; block < 9; block++) {
for (i = 0; i < 12; i++) {
double freq = fnum[i] * (166400.0 / 3) * pow(2.0, block-21);
frequencyTable[(block+1)*12+i] = (int)(256.0 * freq);
}
}
keycodeTable = new int [120];
// detune
for (block = -1; block < 9; block++) {
for (i = 0; i < 12; i++) {
// see p.204
int f8 = (fnum[i] >> 7) & 1;
int f9 = (fnum[i] >> 8) & 1;
int f10 = (fnum[i] >> 9) & 1;
int f11 = (fnum[i] >> 10) & 1;
int n4 = f11;
int n3 = f11&(f10|f9|f8) | (~f11&f10&f9&f8);
int note = n4*2 + n3;
// see p.207
keycodeTable[(block+1)*12+i] = block*4 + note;
}
}
}
{
int freq;
keyscaleTable = new int [8192];
keyscaleTable[0] = 0;
for (freq = 1; freq < 8192; freq++) {
keyscaleTable[freq] = (int)(log((double)freq) / 9.03 * 32.0) - 1;
// 8368[Hz] (o9c)
}
}
{
int i;
attackOut = new int [1024];
for (i = 0; i < 1024; i++)
attackOut[i] = (int)(((0x7fff+0x03a5)*30.0) / (30.0+i)) - 0x03a5;
}
}
void MidiDriver_YM2612::removeLookupTables() {
delete [] sintbl;
delete [] powtbl;
delete [] frequencyTable;
delete [] keycodeTable;
delete [] keyscaleTable;
delete [] attackOut;
sintbl = powtbl = frequencyTable = keycodeTable = keyscaleTable = attackOut = 0;
}
////////////////////////////////////////
//
// MidiDriver_YM2612 factory
//
////////////////////////////////////////
MidiDriver *MidiDriver_YM2612_create(Audio::Mixer *mixer) {
return new MidiDriver_YM2612(mixer);
}