mirror of
https://github.com/libretro/scummvm.git
synced 2025-01-07 10:21:31 +00:00
fcb8eda978
Currently we can't quite make Matrix3's default constructor constexpr, as the setToIdentity-call requires C++14.
511 lines
14 KiB
C++
511 lines
14 KiB
C++
/* ScummVM - Graphic Adventure Engine
|
|
*
|
|
* ScummVM is the legal property of its developers, whose names
|
|
* are too numerous to list here. Please refer to the COPYRIGHT
|
|
* file distributed with this source distribution.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#ifndef MATH_MATRIX_H
|
|
#define MATH_MATRIX_H
|
|
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "common/streamdebug.h"
|
|
|
|
/**
|
|
* \namespace Math
|
|
* This namespace contains some useful classes dealing with math and geometry.
|
|
*
|
|
* The most important classes are Matrix and its base classes.
|
|
* MatrixBase is a template class which is the base of all the matrices with
|
|
* many convenient functions.
|
|
* MatrixType is an intermediate class that, using template specialization,
|
|
* is able to create different kinds of matrices, like vectors or
|
|
* square matrices.
|
|
* Matrix is the actual matrix class and it is derived from MatrixType.
|
|
*
|
|
* MatrixBase and MatrixType have their constructors protected, so they can't
|
|
* be instantiated. But while MatrixBase is just a backend class, MatrixType
|
|
* can be used to create new kinds of matrices:
|
|
* \code
|
|
template<int dim>
|
|
class MatrixType<1, dim> : public MatrixBase<1, dim> {
|
|
...
|
|
};
|
|
* \endcode
|
|
* Given that declaration, every Matrix<1, dim>, with "dim" whatever positive
|
|
* number, will have the methods and members defined in MatrixType<1, dim>.
|
|
*
|
|
* This design allows us to have the equality of, say, the class "three-dimensional
|
|
* vector" and Matrix<3, 1>. Vector3d is not <b>a</b> Matrix<3, 1>, it <b>is</b> Matrix<3, 1>.
|
|
* Every method in MatrixBase and MatrixType returning a matrix returns a Matrix<\r, c>,
|
|
* and not a MatrixBase<\r, c>. This reduces code duplication, since otherwise many
|
|
* functions declared for Matrix would need to be declared for MatrixBase too,
|
|
* like many operators.
|
|
*/
|
|
namespace Math {
|
|
|
|
template<int rows, int cols> class Matrix;
|
|
|
|
/**
|
|
* \class MatrixBase
|
|
* The base class for all the matrices.
|
|
*/
|
|
template<int rows, int cols>
|
|
class MatrixBase {
|
|
public:
|
|
/**
|
|
* Convenient class for feeding a matrix.
|
|
*/
|
|
class Row {
|
|
public:
|
|
Row &operator<<(float value);
|
|
|
|
private:
|
|
Row(MatrixBase<rows, cols> *m, int row);
|
|
|
|
MatrixBase<rows, cols> *_matrix;
|
|
int _row;
|
|
int _col;
|
|
|
|
friend class MatrixBase<rows, cols>;
|
|
};
|
|
|
|
/**
|
|
* Returns true if this matrix's values are all 0.
|
|
*/
|
|
bool isZero() const;
|
|
Matrix<rows, cols> getNegative() const;
|
|
|
|
/**
|
|
* Returns an instance of Row for a particular row of this matrix.
|
|
* Row is a convenient class for feeding a matrix.
|
|
* \code
|
|
Matrix<3, 3> m;
|
|
m.getRow(0) << 0 << 0 << 0;
|
|
m.getRow(1) << 1 << 2 << 0;
|
|
m.getRow(2) << 0 << 0.5 << 1;
|
|
* \endcode
|
|
*
|
|
* \param row The row to be feeded.
|
|
*/
|
|
Row getRow(int row);
|
|
|
|
/**
|
|
* Returns a pointer to the internal data of this matrix.
|
|
*/
|
|
inline float *getData();
|
|
/**
|
|
* Returns a pointer to the internal data of this matrix.
|
|
*/
|
|
inline const float *getData() const;
|
|
/**
|
|
* Sets the internal data of this matrix.
|
|
*/
|
|
void setData(const float *data);
|
|
inline float getValue(int row, int col) const;
|
|
inline void setValue(int row, int col, float value);
|
|
|
|
inline float &operator()(int row, int col);
|
|
inline float operator()(int row, int col) const;
|
|
|
|
inline operator const Matrix<rows, cols>&() const { return getThis(); }
|
|
inline operator Matrix<rows, cols>&() { return getThis(); }
|
|
|
|
static Matrix<rows, cols> sum(const Matrix<rows, cols> &m1, const Matrix<rows, cols> &m2);
|
|
static Matrix<rows, cols> difference(const Matrix<rows, cols> &m1, const Matrix<rows, cols> &m2);
|
|
static Matrix<rows, cols> product(const Matrix<rows, cols> &m1, float factor);
|
|
static Matrix<rows, cols> product(const Matrix<rows, cols> &m1, const Matrix<rows, cols> &m2);
|
|
static Matrix<rows, cols> quotient(const Matrix<rows, cols> &m1, float factor);
|
|
static Matrix<rows, cols> quotient(const Matrix<rows, cols> &m1, const Matrix<rows, cols> &m2);
|
|
|
|
Matrix<rows, cols> &operator=(const Matrix<rows, cols> &m);
|
|
Matrix<rows, cols> &operator+=(const Matrix<rows, cols> &m);
|
|
Matrix<rows, cols> &operator-=(const Matrix<rows, cols> &m);
|
|
Matrix<rows, cols> &operator*=(float factor);
|
|
Matrix<rows, cols> &operator*=(const Matrix<rows, cols> &m);
|
|
Matrix<rows, cols> &operator/=(float factor);
|
|
Matrix<rows, cols> &operator/=(const Matrix<rows, cols> &m);
|
|
|
|
protected:
|
|
constexpr MatrixBase() = default;
|
|
MatrixBase(const float *data);
|
|
MatrixBase(const MatrixBase<rows, cols> &m);
|
|
MatrixBase &operator=(const MatrixBase<rows, cols> &m);
|
|
|
|
inline const Matrix<rows, cols> &getThis() const {
|
|
return *static_cast<const Matrix<rows, cols> *>(this); }
|
|
inline Matrix<rows, cols> &getThis() {
|
|
return *static_cast<Matrix<rows, cols> *>(this); }
|
|
|
|
private:
|
|
float _values[rows * cols] = { 0.0f };
|
|
};
|
|
|
|
/**
|
|
* \class MatrixType
|
|
* MatrixType is a class used to create different kinds of matrices.
|
|
*/
|
|
template<int r, int c>
|
|
class MatrixType : public MatrixBase<r, c> {
|
|
protected:
|
|
constexpr MatrixType() : MatrixBase<r, c>() { }
|
|
MatrixType(const float *data) : MatrixBase<r, c>(data) { }
|
|
MatrixType(const MatrixBase<r, c> &m) : MatrixBase<r, c>(m) { }
|
|
};
|
|
|
|
#define Vector(dim) Matrix<dim, 1>
|
|
|
|
/**
|
|
* \class Matrix The actual Matrix class.
|
|
* This template class must be instantiated passing it the number of the rows
|
|
* and the number of the columns.
|
|
*/
|
|
template<int r, int c>
|
|
class Matrix : public MatrixType<r, c> {
|
|
public:
|
|
constexpr Matrix() : MatrixType<r, c>() { }
|
|
Matrix(const float *data) : MatrixType<r, c>(data) { }
|
|
Matrix(const MatrixBase<r, c> &m) : MatrixType<r, c>(m) { }
|
|
};
|
|
|
|
|
|
template <int m, int n, int p>
|
|
Matrix<m, n> operator*(const Matrix<m, p> &m1, const Matrix<p, n> &m2);
|
|
|
|
template <int r, int c>
|
|
inline Matrix<r, c> operator+(const Matrix<r, c> &m1, const Matrix<r, c> &m2);
|
|
|
|
template <int r, int c>
|
|
inline Matrix<r, c> operator-(const Matrix<r, c> &m1, const Matrix<r, c> &m2);
|
|
|
|
template <int r, int c>
|
|
inline Matrix<r, c> operator*(const Matrix<r, c> &m1, float factor);
|
|
|
|
template <int r, int c>
|
|
inline Matrix<r, c> operator/(const Matrix<r, c> &m1, float factor);
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> operator*(float factor, const Matrix<r, c> &m1);
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> operator-(const Matrix<r, c> &m);
|
|
|
|
template <int r, int c>
|
|
bool operator==(const Matrix<r, c> &m1, const Matrix<r, c> &m2);
|
|
|
|
template <int r, int c>
|
|
bool operator!=(const Matrix<r, c> &m1, const Matrix<r, c> &m2);
|
|
|
|
|
|
// Constructors
|
|
template<int rows, int cols>
|
|
MatrixBase<rows, cols>::MatrixBase(const float *data) {
|
|
setData(data);
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
MatrixBase<rows, cols>::MatrixBase(const MatrixBase<rows, cols> &m) {
|
|
setData(m._values);
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
MatrixBase<rows, cols> &MatrixBase<rows, cols>::operator=(const MatrixBase<rows, cols> &m) {
|
|
setData(m._values);
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
// Data management
|
|
template<int rows, int cols>
|
|
float *MatrixBase<rows, cols>::getData() {
|
|
return _values;
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
const float *MatrixBase<rows, cols>::getData() const {
|
|
return _values;
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
void MatrixBase<rows, cols>::setData(const float *data) {
|
|
::memcpy(_values, data, rows * cols * sizeof(float));
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
float MatrixBase<rows, cols>::getValue(int row, int col) const {
|
|
assert(rows > row && cols > col && row >= 0 && col >= 0);
|
|
return _values[row * cols + col];
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
void MatrixBase<rows, cols>::setValue(int row, int col, float v) {
|
|
operator()(row, col) = v;
|
|
}
|
|
|
|
|
|
|
|
// Operations helpers
|
|
template<int rows, int cols>
|
|
bool MatrixBase<rows, cols>::isZero() const {
|
|
for (int i = 0; i < rows * cols; ++i) {
|
|
if (_values[i] != 0.f) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> MatrixBase<r, c>::getNegative() const {
|
|
Matrix<r, c> result;
|
|
for (int i = 0; i < r * c; ++i) {
|
|
result._values[i] = -_values[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> MatrixBase<r, c>::sum(const Matrix<r, c> &m1, const Matrix<r, c> &m2) {
|
|
Matrix<r, c> result;
|
|
for (int i = 0; i < r * c; ++i) {
|
|
result._values[i] = m1._values[i] + m2._values[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> MatrixBase<r, c>::difference(const Matrix<r, c> &m1, const Matrix<r, c> &m2) {
|
|
Matrix<r, c> result;
|
|
for (int i = 0; i < r * c; ++i) {
|
|
result._values[i] = m1._values[i] - m2._values[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> MatrixBase<r, c>::product(const Matrix<r, c> &m1, float factor) {
|
|
Matrix<r, c> result;
|
|
for (int i = 0; i < r * c; ++i) {
|
|
result._values[i] = m1._values[i] * factor;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> MatrixBase<r, c>::product(const Matrix<r, c> &m1, const Matrix<r, c> &m2) {
|
|
Matrix<r, c> result;
|
|
for (int i = 0; i < r * c; ++i) {
|
|
result._values[i] = m1._values[i] * m2._values[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> MatrixBase<r, c>::quotient(const Matrix<r, c> &m1, float factor) {
|
|
Matrix<r, c> result;
|
|
for (int i = 0; i < r * c; ++i) {
|
|
result._values[i] = m1._values[i] / factor;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> MatrixBase<r, c>::quotient(const Matrix<r, c> &m1, const Matrix<r, c> &m2) {
|
|
Matrix<r, c> result;
|
|
for (int i = 0; i < r * c; ++i) {
|
|
result._values[i] = m1._values[i] / m2._values[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
// Member operators
|
|
template<int rows, int cols>
|
|
float &MatrixBase<rows, cols>::operator()(int row, int col) {
|
|
assert(rows > row && cols > col && row >= 0 && col >= 0);
|
|
return _values[row * cols + col];
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
float MatrixBase<rows, cols>::operator()(int row, int col) const {
|
|
return getValue(row, col);
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
Matrix<rows, cols> &MatrixBase<rows, cols>::operator=(const Matrix<rows, cols> &m) {
|
|
setData(m._values);
|
|
|
|
return getThis();
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
Matrix<rows, cols> &MatrixBase<rows, cols>::operator+=(const Matrix<rows, cols> &m) {
|
|
for (int i = 0; i < rows * cols; ++i) {
|
|
_values[i] += m._values[i];
|
|
}
|
|
|
|
return getThis();
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
Matrix<rows, cols> &MatrixBase<rows, cols>::operator-=(const Matrix<rows, cols> &m) {
|
|
for (int i = 0; i < rows * cols; ++i) {
|
|
_values[i] -= m._values[i];
|
|
}
|
|
|
|
return getThis();
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
Matrix<rows, cols> &MatrixBase<rows, cols>::operator*=(float factor) {
|
|
for (int i = 0; i < rows * cols; ++i) {
|
|
_values[i] *= factor;
|
|
}
|
|
|
|
return getThis();
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
Matrix<rows, cols> &MatrixBase<rows, cols>::operator/=(float factor) {
|
|
for (int i = 0; i < rows * cols; ++i) {
|
|
_values[i] /= factor;
|
|
}
|
|
|
|
return getThis();
|
|
}
|
|
|
|
|
|
|
|
// Row
|
|
template<int rows, int cols>
|
|
typename MatrixBase<rows, cols>::Row MatrixBase<rows, cols>::getRow(int row) {
|
|
return Row(this, row);
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
MatrixBase<rows, cols>::Row::Row(MatrixBase<rows, cols> *m, int row) :
|
|
_matrix(m), _row(row), _col(0) {
|
|
|
|
}
|
|
|
|
template<int rows, int cols>
|
|
typename MatrixBase<rows, cols>::Row &MatrixBase<rows, cols>::Row::operator<<(float value) {
|
|
assert(_col < cols);
|
|
_matrix->setValue(_row, _col++, value);
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
// Global operators
|
|
template <int m, int n, int p>
|
|
Matrix<m, n> operator*(const Matrix<m, p> &m1, const Matrix<p, n> &m2) {
|
|
Matrix<m, n> result;
|
|
for (int row = 0; row < m; ++row) {
|
|
for (int col = 0; col < n; ++col) {
|
|
float sum(0.0f);
|
|
for (int j = 0; j < p; ++j)
|
|
sum += m1(row, j) * m2(j, col);
|
|
result(row, col) = sum;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <int r, int c>
|
|
inline Matrix<r, c> operator+(const Matrix<r, c> &m1, const Matrix<r, c> &m2) {
|
|
return Matrix<r, c>::sum(m1, m2);
|
|
}
|
|
|
|
template <int r, int c>
|
|
inline Matrix<r, c> operator-(const Matrix<r, c> &m1, const Matrix<r, c> &m2) {
|
|
return Matrix<r, c>::difference(m1, m2);
|
|
}
|
|
|
|
template <int r, int c>
|
|
inline Matrix<r, c> operator*(const Matrix<r, c> &m1, const Matrix<r, c> &m2) {
|
|
return Matrix<r, c>::product(m1, m2);
|
|
}
|
|
|
|
template <int r, int c>
|
|
inline Matrix<r, c> operator*(const Matrix<r, c> &m1, float factor) {
|
|
return Matrix<r, c>::product(m1, factor);
|
|
}
|
|
|
|
template <int r, int c>
|
|
inline Matrix<r, c> operator/(const Matrix<r, c> &m1, const Matrix<r, c> &m2) {
|
|
return Matrix<r, c>::quotient(m1, m2);
|
|
}
|
|
|
|
template <int r, int c>
|
|
inline Matrix<r, c> operator/(const Matrix<r, c> &m1, float factor) {
|
|
return Matrix<r, c>::quotient(m1, factor);
|
|
}
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> operator*(float factor, const Matrix<r, c> &m1) {
|
|
return Matrix<r, c>::product(m1, factor);
|
|
}
|
|
|
|
template <int r, int c>
|
|
Matrix<r, c> operator-(const Matrix<r, c> &m) {
|
|
return m.getNegative();
|
|
}
|
|
|
|
template <int r, int c>
|
|
bool operator==(const Matrix<r, c> &m1, const Matrix<r, c> &m2) {
|
|
for (int row = 0; row < r; ++row) {
|
|
for (int col = 0; col < c; ++col) {
|
|
if (m1(row, col) != m2(row, col)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <int r, int c>
|
|
bool operator!=(const Matrix<r, c> &m1, const Matrix<r, c> &m2) {
|
|
return !(m1 == m2);
|
|
}
|
|
|
|
template<int r, int c>
|
|
Common::StreamDebug &operator<<(Common::StreamDebug &dbg, const Math::Matrix<r, c> &m) {
|
|
dbg.nospace() << "Matrix<" << r << ", " << c << ">(";
|
|
for (int col = 0; col < c; ++col) {
|
|
dbg << m(0, col) << ", ";
|
|
}
|
|
for (int row = 1; row < r; ++row) {
|
|
dbg << "\n ";
|
|
for (int col = 0; col < c; ++col) {
|
|
dbg << m(row, col) << ", ";
|
|
}
|
|
}
|
|
dbg << ')';
|
|
|
|
return dbg.space();
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|